菌糠基复合高吸水树脂的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农用高吸水树脂材料被称为继化肥、农药、地膜之后能够被农民接受的第四大类农用化学制品。但目前的保水剂成本高,保水和释水的功能单一,而且吸水后凝胶强度低,一直没有得到广泛使用。本论文以食用菌菌糠(食用菌糠是由玉米芯和木屑等物质组成的,培育食用菌后,得到菌糠。)为原料,采用溶液聚合法,通过微波辐射及紫外光引发与高分子单体混合共聚合成了多种菌糠基复合高吸水树脂,并对其制备最合成条件及性能进行了研究。主要工作如下:
     1、在一定中和度下,以微波辐射加热引发成功合成了黑木耳菌糠/聚(丙烯酸-co-丙烯酰胺)新型高吸水树脂共聚物。系统的研究了最佳合成条件,即黑木耳菌糠、丙烯酰胺单体、引发剂和交联剂相对丙烯酸的比率以及丙烯酸中和度对高吸水树脂性能的影响。实验发现所制备的复合高吸水树脂在蒸馏水中最大的吸水倍率达1548g.g~(-1),在0.9wt%NaCl溶液中吸水倍率为72g.g~(-1)。傅里叶变换红外光谱测定了复合高吸水的分子结构特征,并通过扫描电子显微镜证实复合高吸水树脂为结构致密的多孔材料,透射电子显微镜进一步证实黑木耳菌糠与高分子聚合物形成互穿网络结构。热重分析表明复合高吸水树脂材料具有较高的热稳定性能。此外,树脂溶胀吸水过程符合一级动力学方程,并用复合高吸水树脂在各种肥料中的吸水倍率和吸附性也被研究,揭示出复合高吸水树脂吸水倍率及肥料吸附性与肥料浓度之间的关系。
     2、用KOH中和丙烯酸,一定功率的微波辐射引发合成了富含植营养元素K的白灵菇菌糠复/聚丙烯酸钾复合高吸水树脂。复合高吸水树脂在蒸馏水中最大的吸水倍率为974g.g~(-1),在0.9wt%NaCl溶液中吸水倍率大为59g.g~(-1)。通过傅里叶变换红外光谱,热重和扫描电子显微镜表征复合高吸水材料的分子结构特征,分析了复合高吸水树脂的热稳定性能,并通过扫描电子显微镜证实复合高吸水树脂表面粗糙多孔,此外,在离心机转速为6000rpm下,50min复合高水树脂的失水率为6.2%。
     3、与2相同方式合成了平菇菌糠/丙烯酸钾复合高吸水树脂。复合高吸水树脂在蒸馏水中最大的吸水倍率为827g.g~(-1),在0.9%NaCl溶液中吸水倍率大为87g.g~(-1)。在离心机转速为6000rpm下,50min复合高水树脂的失水率仅为4.3%。
     4、以安息香双甲醚和过硫酸铵为复合引发剂,紫外光照射引发共聚合成滑子菇菌糠/聚丙烯酸钠复合高吸水树脂,通过傅里叶变换红外光谱,扫描电子显微镜和热重对复合高吸水树脂材料的分子结构,表面形态及热稳定性能进行了分析。实验发现所制备的复合高吸水树脂在蒸馏水中最大的吸水倍率为1701g.g~(-1),在0.9wt%NaCl溶液中吸水倍率388g.g~(-1)。并且这种复合材料在蒸馏水和NaCl溶液中吸水溶胀行为符合伪二阶溶胀动力学模型。此外,复合高吸水树脂材料在0.1wt%尿素溶液中的吸水倍率是1011g.g~(-1),并且有80%尿素扩散到复合材料水凝胶中,扩散机制遵循Fickian扩散机制。复合高吸水树脂材料热和耐压保水性被测定,即恒温60°C下,保持15小时,保水率可达到65%,在高速离心机转速为6000rpm(10954KPa)下,离心60分钟,其水的保持率为75%。
Superabsorbent polymers in agricultural are known as the fourth kind ofagricultural chemicals after fertilizers, pesticides and plastic films that can beaccepted by farmers. However, they are not widely used in many applications due tothe high cost, the single function of water retention and release, and that the gelstrength is low after swelling. In this paper, using waste edible fungus substrate(WEFS, the substrates of cultivate edible fungus, which consist of corn cobs andsawdust. After growth the edible fungus we can get the waste substrate) as the rawmaterial, mixing the modified WEFS with polymer monomer, a varietyof WMFS-based composite superabsorbent were synthesized by solutionpolymerization using microwave radiation and UV irradiation. And the preparation ofits most synthesis conditions and properties were studied. The major work of thisthesis was showed as follows:
     1. A novel superabsorbent polymer composite was successfully synthesized fromwaste material cultured Auricularia auricula (WMCAA) and poly (acrylicacid-co-acrylamide)(P(AA-co-AM)) using microwave irradiation at a certainneutralization degree of AA. Optimal synthesis conditions were determined byinvestigating the water absorbency of the superabsorbent composite, The effectsassociated with weight ratios of WMCAA, AM, initiators, cross-linkers to AA as wellas the degree of neutralization of AA were examined. The maximum waterabsorbencies were found to be1548g.g~(-1)(distilled water) and72g.g~(-1)g/g (0.9wt%NaCl solution). The molecular structure characteristics of the superabsorbentcomposite were analyzed by Fourier transform infrared spectroscopy (FTIR), andscanning electron microscopy (SEM) was used to demonstrate the characteristiccompact and porous structure of the material. Further studies conducted viatransmission electron microscopy (TEM) revealed the formation of a novelinterpenetrating polymer network structure. Thermogravimetry/differential thermal (TG/DTG) analysis demonstrated improved thermal stability in the compositematerial compared to WMCAA. Additionally, high water absorption rates observed inthe polymer during the swelling process indicated first-order kinetics. The waterabsorption and adsorption of the superabsorbent composite were studied in a varietyof fertilizer solutions, revealing an indirect relationship between water absorbingability and fertilizer concentration. Conversely, a direct relationship was observedbetween absorbed fertilizer and fertilizer concentration.
     2. The waste material cultured pleurotus nebrodensis (WMCPN)/Potassiumpolyacrylate(PAA-K)composite superabsorbent rich in plant nutrient elements K,neutralizing acrylic acid with potassium hydroxide, was synthesized via a certainpower of microwave radiation. The maximum water absorbency of the synthesizedcomposite superabsorbent under the optimal conditions of synthesis was974g.g~(-1)indistilled water and59g.g~(-1)in0.9wt%NaCl solution, respectively. The molecularstructure characteristics of the superabsorbent composite were measured by FTIR.The thermal stability of the composite was also analyzed by TG/DTG. SEM was usedto demonstrate the characteristic coarse and porous surface of the material. In addition,the water loss rate was6.2%with centrifuging at6000rpm for60minutes.
     3. The waste material cultured pleurotus ostreatus (WMCPO)/PAA-K compositesuperabsorbent was synthesized by the same way with two. The maximum waterabsorbencies of the superabsorbent was827g.g~(-1)in distilled water and87g.g~(-1)in0.9%NaCl solution, respectively.The water loss rate was only4.3%with centrifugingat6000rpm for60minutes.
     4. The composite superabsorbent was synthesized by copolymerization of TheWaste material cultured nameko (WMCN)and Sodium polyacrylate(PAA-Na)under UV irradiation, in the presence of dimethoxy-2-phenylacetophenone(BDK) andAPS as initiator. The structure, morphology and thermal stability of the compositesuperabsorbent were analyzed by FTIR, SEM and TG/DTG. The experiment showedthat the maximum water absorbency of the synthesized superabsorbent was1701g.g~(-1)in distilled water and388g.g~(-1)in0.9wt%NaCl solution, respectively. Moreover,the swelling process of the composite in distilled water and0.9wt%NaCl solution follows the pseudo-second-order swelling kinetic model. In addition, The waterabsorbency in0.1wt%urea solution was1011g/g, and80%amount of urea diffusedinto the gels. The urea diffusion mechanism follows Fickian diffusion mechanism.The Retention capability of superabsorbent under pressure and heating was alsodetermined, Water retention capability of composite superabsorbent is65%atconstant temperature of60°C for15hours and75%with centrifuging at6000rpm(10954KPa) for60minutes.
引文
[1] RAJU K M, RAJU M P, MOHAN Y M. Synthesis and water absorbency ofcrosslinked superabsorbent polymers [J]. Journal of Applied Polymer Science,2002,85(8):1795-1801.
    [2]崔小明.高吸水性树脂及其应用[J].甘肃化工,1997,(02):9-13.
    [3] LONG F, FAN S, WANG Y, et al. Promoting effect of super absorbent polymeron hydrate formation [J]. Journal of Natural Gas Chemistry,2010,19(3):251-254.
    [4]刘廷栋.高吸水性树脂在医疗卫生用品中的应用[J].合成树脂及塑料,1992,(04):38-41.
    [5] YU C, YU L, YIGULI A, et al. Structure and drug release of superabsorbentsponge prepared by polyelectrolyte complexation and freezing-induced phaseseparation [J]. Journal of Applied Polymer Science,2012,126(4):1307-1315.
    [6]陈国权.高吸水树脂在妇女卫生巾和高吸水纸等方面的应用[J].杭州化工,1986,(02):45-47.
    [7]倪靖滨,李红,张晓东, et al.高吸水性树脂在卫生用品上的应用[J].化学工程师,2009,(04):46-48.
    [8]林杰.高吸水性树脂在园林绿化中应用研究; proceedings of the中国科协2002年学术年会,中国四川成都,2002[C].
    [9]刘维刚,林杰.高吸水性树脂在园林绿化生产中的应用技术[J].福建热作科技,2003,(02):18-19.
    [10]邵赛,张跃龙,符仕君, et al.耐降解保水剂在播植草坪上的应用[J].湖南农业科学,2010,(13):140-142.
    [11]袁俊霞.高吸水性树脂在节水农业中的应用[J].环境与可持续发展,2007,(03):52-54.
    [12]黄宇祥,金忠华,李庆久.高吸水性树脂在北方春玉米抗旱节水栽培中的应用研究[J].辽宁农业科学,2010,(01):32-34.
    [13] RAAFAT A I, EID M, EL-ARNAOUTY M B. Radiation synthesis ofsuperabsorbent CMC based hydrogels for agriculture applications [J]. NuclearInstruments and Methods in Physics Research Section B: Beam Interactions withMaterials and Atoms,2012,283:71-76.
    [14]范国胜.高吸水树脂在建筑涂料中的应用[J].河南科技,1995,(11):16.
    [15]汪丽梅,窦立岩.高吸水树脂在混凝土中的应用现状分析[J].科技信息,2012,(05):12+72.
    [16] POURJAVADI A, FAKOORPOOR S M, KHALOO A, et al. Improving theperformance of cement-based composites containing superabsorbent polymers byutilization of nano-SiO2particles [J]. Materials&Design,2012,42:94-101.
    [17]李开扬,任天瑞.高吸水性树脂在农业中的应用[J].过程工程学报,2002,(01):91-96.
    [18]黄占斌,夏春良.农用保水剂作用原理研究与发展趋势分析[J].水土保持研究,2005,(05):108-110.
    [19]乌兰.高吸水性树脂在农业上的应用与前景展望[J].中国水土保持,2006,(04):45-47.
    [20] MO C, SHU-QUAN Z, HUA-MIN L, et al. Synthesis of poly(acrylicacid)/sodium humate superabsorbent composite for agricultural use [J]. Journal ofApplied Polymer Science,2006,102(6):5137-5143.
    [21] EL-REHIM H A A, HEGAZY E-S A, EL-MOHDY H L A. Radiation synthesisof hydrogels to enhance sandy soils water retention and increase plant performance [J].Journal of Applied Polymer Science,2004,93(3):1360-1371.
    [22] BAI W, ZHANG H, LIU B, et al. Effects of super-absorbent polymers on thephysical and chemical properties of soil following different wetting and drying cycles[J]. Soil Use and Management,2010,26(3):253-260.
    [23]刘迪.保水剂对草地早熟禾生长及抗旱性的影响[D]:东北林业大学,2008.
    [24]张袁.保水剂对春玉米、大豆生长发育及腾发量影响的试验研究[D]:东北农业大学,2013.
    [25] XIE L, LU S, LIU M, et al. Recovery of ammonium onto wheat straw to bereused as a slow-release fertilizer [J]. J Agric Food Chem,2013,61(14):3382-3388.
    [26] LIU M, LIANG R, ZHAN F, et al. Preparation of superabsorbent slow releasenitrogen fertilizer by inverse suspension polymerization [J]. Polymer International,2007,56(6):729-737.
    [27] ZHAO G-Z, LIU Y-Q, TIAN Y, et al. Preparation and properties ofmacromelecular slow-release fertilizer containing nitrogen, phosphorus and potassium[J]. Journal of Polymer Research,2009,17(1):119-125.
    [28] LIANG R, LIU M. Preparation of poly(acrylic acid-co-acrylamide)/kaolin andrelease kinetics of urea from it [J]. Journal of Applied Polymer Science,2007,106(5):3007-3015.
    [29] HE X-S, LIAO Z-W, HUANG P-Z, et al. Characteristics and Performance ofNovel Water-Absorbent Slow Release Nitrogen Fertilizers [J]. Agricultural Sciencesin China,2007,6(3):338-346.
    [30]CHEN L, XIE Z, ZHUANG X, et al. Controlled release of urea encapsulated bystarch-g-poly(l-lactide)[J]. Carbohydrate Polymers,2008,72(2):342-348.
    [31]黄占斌,万会娥,邓西平, et al.保水剂在改良土壤和作物抗旱节水中的效应[J].土壤侵蚀与水土保持学报,1999,(04):52-55.
    [32]崔娜,张玉龙,白丽萍.不同粒径保水剂对土壤物理性质和番茄苗期生长的影响[J].核农学报,2011,(01):127-130.
    [33]CHEN P, ZHANG W A, LUO W, et al. Synthesis of superabsorbent polymers byirradiation and their applications in agriculture [J]. Journal of Applied PolymerScience,2004,93(4):1748-1755.
    [34]秦舒浩,王蒂,张俊莲, et al.保水剂对旱作马铃薯土壤水分特性及马铃薯产量形成的影响[J].甘肃农业大学学报,2013,(02):30-33.
    [35]刘殿红,黄占斌,董莉.保水剂施用方式对马铃薯产量和水分利用效率的影响[J].干旱地区农业研究,2007,(04):105-108+129.
    [36]刘殿红,黄占斌,蔡连捷, et al.保水剂用法和用量对马铃薯产量和效益的影响[J].西北农业学报,2008,(01):266-270.
    [37]CHEN Z, DONG F, LIU M, et al. Preparation and properties of porouspoly(sodium acrylate-co-acrylamide) salt-resistant superabsorbent composite [J].Polymer Engineering&Science,2011,51(12):2453-2464.
    [38]EL‐REHIM H A A, HEGAZY E S A, DIAAD A. Characterization ofSuper‐Absorbent Material Based on Carboxymethylcellulose Sodium Salt Preparedby Electron Beam Irradiation [J]. Journal of Macromolecular Science, Part A,2006,43(1):101-113.
    [39]LIMPARYOON N, SEETAPAN N, KIATKAMJORNWONG S.Acrylamide/2-acrylamido-2-methylpropane sulfonic acid and associated sodium saltsuperabsorbent copolymer nanocomposites with mica as fire retardants [J]. PolymerDegradation and Stability,2011,96(6):1054-1063.
    [40]SHUKLA N B, MADRAS G. Photo, thermal, and ultrasonic degradation ofEGDMA-crosslinked poly(acrylic acid-co-sodium acrylate-co-acrylamide)superabsorbents [J]. Journal of Applied Polymer Science,2012,125(1):630-639.
    [41]PHANG Y-N, CHEE S-Y, LEE C-O, et al. Thermal and microbial degradation ofalginate-based superabsorbent polymer [J]. Polymer Degradation and Stability,2011,96(9):1653-1661.
    [42]LANTHONG P, NUISIN R, KIATKAMJORNWONG S. Graft copolymerization,characterization, and degradation of cassava starch-g-acrylamide/itaconic acidsuperabsorbents [J]. Carbohydrate Polymers,2006,66(2):229-245.
    [43]EBRAHIMI R. Influence of ultrasonic parameters on degradation of acrylicacid/acrylamide copolymer based superabsorbent hydrogels cross-linked with NMBA[J]. Iranian Polymer Journal,2011,21(1):11-20.
    [44]SEETAPAN N, WONGSAWAENG J, KIATKAMJORNWONG S. Gel strengthand swelling of acrylamide-protic acid superabsorbent copolymers [J]. Polymers forAdvanced Technologies,2011,22(12):1685-1695.
    [45]SHI X, WANG W, WANG A. Synthesis and enhanced swelling properties of aguar gum-based superabsorbent composite by the simultaneous introduction ofstyrene and attapulgite [J]. Journal of Polymer Research,2011,18(6):1705-1713.
    [46]宋文淼,张汇营,韩心强, et al. PAAM高吸水树脂吸水速率研究[J].中南林业科技大学学报,2010,(07):127-132.
    [47]罗学刚,兰英.高吸水树脂在农业上的应用研究——Ⅱ.土壤中常见阳离子对高吸水树脂吸水率的影响[J].西南农业学报,1993,(04):68-71.
    [48]罗学刚,杨勤.高吸水树脂在农业上的应用研究——1.NPK肥料对高吸水树脂吸水率的影响及其吸附[J].西南农业学报,1992,(03):59-64.
    [49]CHEN Y, LIU Y-F, TAN H-M, et al. Synthesis and characterization of a novelsuperabsorbent polymer of N,O-carboxymethyl chitosan graft copolymerized withvinyl monomers [J]. Carbohydrate Polymers,2009,75(2):287-292.
    [50]YADAV M, SAND A, BEHARI K. Synthesis and properties of a water solublegraft (chitosan-g-2-acrylamidoglycolic acid) copolymer [J]. Int J Biol Macromol,2012,50(5):1306-1314.
    [51]刘玉贵,张瑾,朱忠其, et al.聚(丙烯酸-丙烯酰胺)高吸水树脂吸水保水性能研究[J].功能材料,2013,(13):1842-1846.
    [52]郑彤,王鹏,张志谦, et al.纤维素接枝丙烯酸制备高吸水树脂及树脂保水性能的研究[J].哈尔滨商业大学学报(自然科学版),2002,(02):192-196.
    [53]SINGH A, SARKAR D J, SINGH A K, et al. Studies on novelnanosuperabsorbent composites: Swelling behavior in different environments andeffect on water absorption and retention properties of sandy loam soil and soil-lessmedium [J]. Journal of Applied Polymer Science,2011,120(3):1448-1458.
    [54]SHAHID S A, QIDWAI A A, ANWAR F, et al. Improvement in the waterretention characteristics of sandy loam soil using a newly synthesizedpoly(acrylamide-co-acrylic acid)/AlZnFe2O4superabsorbent hydrogelnanocomposite material [J]. Molecules,2012,17(8):9397-9412.
    [55]BAO Y, MA J, LI N. Synthesis and swelling behaviors of sodium carboxymethylcellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel [J].Carbohydrate Polymers,2011,84(1):76-82.
    [56]TIAN D-T, LI S-R, LIU X-P, et al. Preparation of superabsorbent based on thegraft copolymerization of acrylic acid and acrylamide onto konjac glucomannan andits application in the water retention in soils [J]. Journal of Applied Polymer Science,2012,125(4):2748-2754.
    [57]POURJAVADI A, BARDAJEE G R, SOLEYMAN R. Synthesis and swellingbehavior of a new superabsorbent hydrogel network based on polyacrylamide graftedonto salep [J]. Journal of Applied Polymer Science,2009,112(5):2625-2633.
    [58] BAKASS M, BAHAJ H, BENADDI R, et al. Adsorption–desorption phenomenaof water vapor on a superabsorbent polymer partially crosslinked with potassium [J].Journal of Thermal Analysis and Calorimetry,2011,106(3):945-952.
    [59] XU X, GAO B Y, TANG X, et al. Characteristics of cellulosic amine-crosslinkedcopolymer and its sorption properties for Cr(VI) from aqueous solutions [J]. J HazardMater,2011,189(1-2):420-426.
    [60] DEMITRI C, DEL SOLE R, SCALERA F, et al. Novel superabsorbentcellulose-based hydrogels crosslinked with citric acid [J]. Journal of Applied PolymerScience,2008,110(4):2453-2460.
    [61]IBRAHIM S M, EL SALMAWI K M, ZAHRAN A H. Synthesis of crosslinkedsuperabsorbent carboxymethyl cellulose/acrylamide hydrogels through electron-beamirradiation [J]. Journal of Applied Polymer Science,2007,104(3):2003-2008.
    [62]陈海丽.保水剂农用特性及其在黄瓜和大白菜栽培中的应用研究[D]:南京农业大学,2006.
    [63]华丰.抗旱保水剂玉米种植的施用方法[J].农村实用技术与信息,2007,(11):19.
    [64]怎样给果树施保水剂[J].新农业,2005,(12):45.
    [65]毛克春,魏开宏,刘振怀.保水剂在果树生产中的应用及注意事项[J].科学种养,2011,(01):22.
    [66]刘学生,高凤文,赵凤民, et al.保水剂对玉米产量性状和产量的影响[J].东北农业大学学报,2006,(02):151-154.
    [67]潘勇刚,秦嘉海,王爱勤, et al.保水剂不同施用量对土壤蓄水量和制种玉米经济效益的影响[J].种子科技,2012,(06):27-29.
    [68]杨红善,刘瑞凤,张俊平, et al. PAAM-atta复合保水剂对土壤持水性及其物理性能的影响[J].水土保持学报,2005,(03):38-41.
    [69] LIU P-S, LI L, ZHOU N-L, et al. Waste polystyrene foam-graft-acrylicacid/montmorillonite superabsorbent nanocomposite [J]. Journal of Applied PolymerScience,2007,104(4):2341-2349.
    [70] BAGHERI MARANDI G, MAHDAVINIA G R, GHAFARY S.Collagen-g-poly(Sodium Acrylate-co-Acrylamide)/sodium montmorillonitesuperabsorbent nanocomposites: synthesis and swelling behavior [J]. Journal ofPolymer Research,2010,18(6):1487-1499.
    [71]张璐,孙向阳,田赟, et al.复合保水剂吸水保水性能及其应用[J].农业工程学报,2012,(15):87-93.
    [72]岳征文,王百田,王红柳, et al.复合营养长效保肥保水剂应用及其缓释节肥效果[J].农业工程学报,2011,(08):56-62.
    [73]郑林用,黄小琴,彭卫红.食用菌菌糠的利用[J].食用菌学报,2006,(01):74-75.
    [74]晏家友,张纯,张锦秀, et al.菌糠的营养价值及其应用概况[J].饲料博览,2010,(11):41-43.
    [75]吴振忠,吴潇.菌草菌糠的研究开发和利用[J].食用菌,2010,(02):4-5.
    [76]马庆菊.食用菌菌糠的研究[J].中国畜禽种业,2010,(05):148-151.
    [77]易斌.食用菌菌糠资源的开发利用[J].农村新技术,2011,(22):22-23.
    [78]周巍,盛萱宜,彭霞薇, et al.菌糠的综合利用研究进展[J].生物技术,2011,(02):94-97.
    [79]耿小丽,刘宇,赵爽, et al.食用菌菌糠再利用研究[J].中国食用菌,2012,(01):24-25.
    [80]程云辉,钱勇,钟声, et al.秸秆菌糠在肉羊育肥生产中的应用[J].江苏农业学报,2007,(05):495-496.
    [81]李进杰,蒋明琴,李新民, et al.平菇菌糠在奶牛饲养中的应用试验[J].黑龙江畜牧兽医,2007,(02):62-63.
    [82]王艳荣,王鸿升,张海棠, et al.平菇菌糠营养价值分析[J].贵州农业科学,2008,(04):158-159.
    [83]夏友国,黄勤楼,杨信, et al.菌糠饲料开发利用的研究进展[J].家畜生态学报,2010,(04):6-9.
    [84]张雅雪,古永辉,殷中琼, et al.菌糠的营养价值及其在动物生产中的应用[J].中国饲料,2013,(03):41-44.
    [85]潘军,高腾云,付彤, et al.白灵菇菌糠对肉牛适口性和育肥效果的影响[J].家畜生态学报,2010,(01):59-63.
    [86]蒋明琴,李进杰,冯巧婷.平菇菌糠对育肥猪生长性能的影响试验[J].中国畜牧兽医,2009,(06):194-195.
    [87]杜纪格,万四新,王尚堃.利用平菇菌糠培养料栽培鸡腿菇的试验研究[J].安徽农业科学,2006,(21):5501+5537.
    [88]赵桂云,王伟功,刘岩.平菇菌糠替代木屑栽培滑菇试验[J].北方园艺,2010,(17):209-210.
    [89]马怀良,龚振杰,陈欢, et al.黑木耳菌糠粗纤维素酶和木聚糖酶浸提条件研究[J].北方园艺,2010,(20):176-178.
    [90]侯军,林晓民,李瑛, et al.响应面法优化杏鲍菇菌糠多糖提取工艺[J].食品科学,2010,(24):155-158.
    [91]程辉彩,张丽萍,崔冠慧, et al.平菇菌糠发酵生产沼气技术研究[J].中国食用菌,2010,(05):46-49.
    [92]李亚冰,张丽萍,史延茂, et al.利用菌糠厌氧发酵生产沼气初步研究[J].江苏农业科学,2009,(01):306-308.
    [93]路子佳.高温菌糠沼气发酵的初探及产甲烷菌的分离[D]:东北农业大学,2010.
    [94]谢修鸿,梁运江,李玉.黑木耳菌糠改良苏打盐碱土效果研*究[J].水土保持学报,2008,(05):130-133+152.
    [95]朱小平.菌糠复合剂对土壤和作物生长的影响[D]:中国农业大学,2005.
    [96]王栩,张华微,张天翼.菌糠改良保护地土壤pH的研究[J].中国园艺文摘,2013,(04):40+84.
    [97]张林芳,王峰,赵厚坤.菌糠肥料及其在种植业中的应用[J].食药用菌,2011,(02):17-18.
    [98]刘长宏.菌糠基肥在蔬菜生产上的应用[J].天津农林科技,2011,(04):46.
    [99]王根茂.菌糠作为有机肥对玉米—小麦轮作下土壤理化性质和作物生长的影响[D]:河南农业大学,2011.
    [100]阮晓东.利用菌糠生产花土[J].农业科技与信息,2005,(06):18.
    [101]陈世昌,常介田,张变莉.菌糠复合基质在番茄育苗上的效果[J].中国土壤与肥料,2011,(01):73-75+79.
    [102] ESTEVES L P. Superabsorbent polymers: On their interaction with water andpore fluid [J]. Cement and Concrete Composites,2011,33(7):717-724.
    [103] MA Z, LI Q, YUE Q, et al. Synthesis and characterization of a novelsuper-absorbent based on wheat straw [J]. Bioresour Technol,2011,102(3):2853-2858.
    [104] XIE L, LIU M, NI B, et al. Utilization of wheat straw for the preparation ofcoated controlled-release fertilizer with the function of water retention [J]. J AgricFood Chem,2012,60(28):6921-6928.
    [105] ZHOU Y, FU S, ZHANG L, et al. Superabsorbent nanocomposite hydrogelsmade of carboxylated cellulose nanofibrils and CMC-g-p(AA-co-AM)[J]. CarbohydrPolym,2013,97(2):429-435.
    [106] LI Q, MA Z, YUE Q, et al. Synthesis, characterization and swelling behavior ofsuperabsorbent wheat straw graft copolymers [J]. Bioresour Technol,2012,118:204-209.
    [107] LARSSONA M, ZHOUB Q, LARSSONA A. Different types ofmicrofibrillated cellulose as filler materials in polysodium acrylate superabsorbents[J]. Chinese Journal of Polymer Science,2011,29(4):407-413.
    [108] BO Z, RENKUAN L, YUNKAI L, et al. Water-absorption characteristics oforganic-inorganic composite superabsorbent polymers and its effect on summer maizeroot growth [J]. Journal of Applied Polymer Science,2012,126(2):423-435.
    [109] ISLAM M R, MAO S, XUE X, et al. A lysimeter study of nitrate leaching,optimum fertilisation rate and growth responses of corn (Zea mays L.) following soilamendment with water-saving super-absorbent polymer [J]. J Sci Food Agric,2011,91(11):1990-1997.
    [110] ROY P K, SWAMI V, KUMAR D, et al. Removal of toxic metals usingsuperabsorbent polyelectrolytic hydrogels [J]. Journal of Applied Polymer Science,2011,122(4):2415-2423.
    [111] H TTERMANN A, ORIKIRIZA L J B, AGABA H. Application ofSuperabsorbent Polymers for Improving the Ecological Chemistry of Degraded orPolluted Lands [J]. CLEAN-Soil, Air, Water,2009,37(7):517-526.
    [112] KANGWANSUPAMONKON W, JITBUNPOT W, KIATKAMJORNWONG S.Photocatalytic efficiency of TiO2/poly[acrylamide-co-(acrylic acid)] composite fortextile dye degradation [J]. Polymer Degradation and Stability,2010,95(9):1894-1902.
    [113] LIU Y, WANG W, WANG A. Adsorption of lead ions from aqueous solutionby using carboxymethyl cellulose-g-poly (acrylic acid)/attapulgite hydrogelcomposites [J]. Desalination,2010,259(1-3):258-264.
    [114] BARDAJEE G R, POURJAVADI A, SOLEYMAN R, et al.Salep-g-poly(sodium acrylate)/alumina as an environmental-sensitive biopolymersuperabsorbent composite: Synthesis and investigation of its swelling behavior [J].Advances in Polymer Technology,2012,31(1):41-51.
    [115] CHANG C, DUAN B, CAI J, et al. Superabsorbent hydrogels based oncellulose for smart swelling and controllable delivery [J]. European Polymer Journal,2010,46(1):92-100.
    [116] GAO J, MA D, LU Q, et al. Synthesis and Characterization ofMontmorillonite-Graft-Acrylic Acid Superabsorbent by Using Glow-DischargeElectrolysis Plasma [J]. Plasma Chemistry and Plasma Processing,2010,30(6):873-883.
    [117] ANIRUDHAN T S, THARUN A R, REJEENA S R. Investigation onPoly(methacrylic acid)-Grafted Cellulose/Bentonite Superabsorbent Composite:Synthesis, Characterization, and Adsorption Characteristics of Bovine SerumAlbumin [J]. Industrial&Engineering Chemistry Research,2011,50(4):1866-1874.
    [118] GUPTA S, WRIGHT K C, ENSOR J, et al. Hepatic arterial embolization withdoxorubicin-loaded superabsorbent polymer microspheres in a rabbit liver tumormodel [J]. Cardiovasc Intervent Radiol,2011,34(5):1021-1030.
    [119] WANG W, WANG A. Preparation, swelling, and stimuli-responsivecharacteristics of superabsorbent nanocomposites based on carboxymethyl celluloseand rectorite [J]. Polymers for Advanced Technologies,2011,22(12):1602-1611.
    [120] ZHAI N, WANG W, WANG A. Synthesis and swelling characteristics of apH-responsive guar gum-g-poly(sodium acrylate)/medicinal stone superabsorbentcomposite [J]. Polymer Composites,2011,32(2):210-218.
    [121] PAN S, RAGAUSKAS A J. Preparation of superabsorbent cellulosic hydrogels[J]. Carbohydrate Polymers,2012,87(2):1410-1418.
    [122] YANG L, MA X, GUO N. Synthesis and properties of sodiumalginate/Na+rectorite grafted acrylic acid composite superabsorbent via60Coγirradiation [J]. Carbohydrate Polymers,2011,85(2):413-418.
    [123] ABD EL-REHIM H A. Swelling of radiation crosslinked acrylamide-basedmicrogels and their potential applications [J]. Radiation Physics and Chemistry,2005,74(2):111-117.
    [124] SALMAWI K M, IBRAHIM S M. Characterization of superabsorbentcarboxymethylcellulose/clay hydrogel prepared by electron beam irradiation [J].Macromolecular Research,2011,19(10):1029-1034.
    [125]杨富杰,朱红祥,王利军, et al.微波辐射蔗渣纤维高吸水性树脂的制备及性能研究; proceedings of the中国造纸学会第十五届学术年会,中国北京,2012
    [C].
    [126]王立娟,谷肄静,杨慧婷.微波辅助亚麻屑纤维素基可降解土壤保水剂的制备及性能[J].东北林业大学学报,2010,(02):85-87.
    [127]赵晓丽,陈智毅,刘学铭.菌糠的高效利用研究进展[J].中国食用菌,2012,(02):1-3.
    [128]高士友,周绪元.黑木耳菌糠综合利用技术的研究[J].中国果菜,2010,(10):55-57.
    [129]程志强,刘景华,康立娟, et al.废弃黑木耳菌糠特征及环境影响分析[J].环境污染与防治,2012,(07):45-48+54.
    [130] ZHU L, ZHANG L, TANG Y. Synthesis of Montmorillonite/Poly(acrylicacid-co-2-acrylamido-2-methyl-1-propane sulfonic acid) Superabsorbent Compositeand the Study of its Adsorption [J]. Bulletin of the Korean Chemical Society,2012,33(5):1669-1674.
    [131] MAHDAVINIA G R, MASSOUMI B, JALILI K, et al. Effect of sodiummontmorillonite nanoclay on the water absorbency and cationic dye removal ofcarrageenan-based nanocomposite superabsorbents [J]. Journal of Polymer Research,2012,19(9).
    [132] XIE Y, WEI Y, HUANG Y, et al. Synthesis and characterization ofpoly(sodium acrylate)/bentonite superabsorbent composite [J]. Journal of Physics:Conference Series,2012,339:012008.
    [133]陈红,王文波,王爱勤.不同矿点凹凸棒黏土对复合高吸水性树脂吸水性能的影响[J].非金属矿,2011,(01):1-3+25.
    [134] SPAGNOL C, RODRIGUES F H A, PEREIRA A G B, et al. Superabsorbenthydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid)[J]. Carbohydrate Polymers,2012,87(3):2038-2045.
    [135] WU F, ZHANG Y, LIU L, et al. Synthesis and characterization of a novelcellulose-g-poly(acrylic acid-co-acrylamide) superabsorbent composite based on flaxyarn waste [J]. Carbohydrate Polymers,2012,87(4):2519-2525.
    [136] LIU J, LI Q, SU Y, et al. Synthesis of wheat straw cellulose-g-poly (potassiumacrylate)/PVA semi-IPNs superabsorbent resin [J]. Carbohydr Polym,2013,94(1):539-546.
    [137] ZHOU M, ZHAO J, ZHOU L. Utilization of starch and montmorrilonite for thepreparation of superabsorbent nanocomposite [J]. Journal of Applied Polymer Science,2011,121(4):2406-2412.
    [138] CAO L-Q, XU S-M, FENG S, et al. Swelling and thermal behaviors of astarch-based superabsorbent hydrogel with quaternary ammonium and carboxylgroups [J]. Journal of Applied Polymer Science,2005,96(6):2392-2398.
    [139] LI A, ZHANG J, WANG A. Utilization of starch and clay for the preparation ofsuperabsorbent composite [J]. Bioresour Technol,2007,98(2):327-332.
    [140] PARVATHY P C, JYOTHI A N. Synthesis, characterization and swellingbehaviour of superabsorbent polymers from cassava starch-graft-poly(acrylamide)[J].Starch-St rke,2012,64(3):207-218.
    [141]马兆临,孟祥元.白灵菇菌糠栽培鸡腿菇技术[J].食用菌,2006,(S1):51.
    [142]张永新,马兆临.变废为宝白灵菇菌糠的再利用[J].北京农业,2006,(12):25-26.
    [143]黄增利.平菇菌糠替代部分精料育肥肉牛试验[J].畜牧与兽医,2007,(11):39-40.
    [144]李大军,李玉.平菇菌糠替换绵羊日粮中玉米的饲喂效果试验[J].饲料工业,2011,(03):33-35.
    [145]潘军,曹玉凤,韩志国, et al.平菇菌糠对山羊瘤胃消化代谢的影响[J].西北农业学报,2011,(02):27-32.
    [146]赵桂云,龚振杰,陈欢.平菇菌糠替代木屑栽培茶薪菇和黑木耳[J].食用菌学报,2009,(03):36-38.
    [147]刘慧,张坤朋.平菇菌糠加土栽培鸡腿菇比较试验[J].河南农业科学,2011,(03):129-130+148.
    [148]赵桂云,弥春霞,龚振杰, et al.平菇菌糠栽金针菇初试[J].中国林副特产,2009,(01):13-14.
    [149]王艳荣,张海棠,何云.玉米芯菌糠的营养价值分析[J].安徽农业科学,2008,(16):6716+6724.
    [150]张纯,晏家友,张锦秀, et al.平菇菌糠的营养价值研究[J].中国饲料,2012,(03):13-15.
    [151]李俐俐,刘天学.平菇菌糠提取液对5种食用菌菌丝生长的影响[J].安徽农业科学,2007,(02):430+432.
    [152] LIANG X, HUANG Z, ZHANG Y, et al. Synthesis and properties of novelsuperabsorbent hydrogels with mechanically activated sugarcane bagasse and acrylicacid [J]. Polymer Bulletin,2013,70(6):1781-1794.
    [153] ABD EL-REHIM H A, HEGAZY E-S A, ABD EL-MOHDY H L. Effect ofvarious environmental conditions on the swelling property of PAAm/PAAcKsuperabsorbent hydrogel prepared by ionizing radiation [J]. Journal of AppliedPolymer Science,2006,101(6):3955-3962.
    [154] YADAV M, SAND A, MISHRA M M, et al. Synthesis, characterization andapplications of graft copolymer (kappa-carrageenan-g-vinylsulfonic acid)[J]. Int JBiol Macromol,2012,50(3):826-832.
    [155] SHI X, WANG W, KANG Y, et al. Enhanced swelling properties of a novelsodium alginate-based superabsorbent composites: NaAlg-g-poly(NaA-co-St)/APT [J].Journal of Applied Polymer Science,2012,125(3):1822-1832.
    [156] LIU D M, KOS S, BUCZKOWSKI A, et al. Optimization of doxorubicinloading for superabsorbent polymer microspheres: in vitro analysis [J]. CardiovascIntervent Radiol,2012,35(2):391-398.
    [157] LIU J, SU Y, LI Q, et al. Preparation of wheat straw based superabsorbentresins and their applications as adsorbents for ammonium and phosphate removal [J].Bioresour Technol,2013,143:32-39.
    [158] SHUKLA N B, MADRAS G. Kinetics of adsorption of methylene blue andrhodamine6G on acrylic acid-based superabsorbents [J]. Journal of Applied PolymerScience,2012,126(2):463-472.
    [159] PATEL A M, PATEL R G, PATEL M P. Nickel and copper removal studyfrom aqueous solution using new cationic poly[acrylamide/N,N-DAMB/N,N-DAPB]super absorbent hydrogel [J]. Journal of Applied Polymer Science,2011,119(4):2485-2493.
    [160] LI J, JI J, XIA J, et al. Preparation of konjac glucomannan-based superabsorbentpolymers by frontal polymerization [J]. Carbohydrate Polymers,2012,87(1):757-763.
    [161]罗志河,杨万泰,杨正根.紫外光引发制备高吸水树脂研究进展[J].高分子通报,2010,(05):12-16.
    [162] SABER-SAMANDARI S, GAZI M, YILMAZ E. UV-induced synthesis ofchitosan-g-polyacrylamide semi-IPN superabsorbent hydrogels [J]. Polymer Bulletin,2011,68(6):1623-1639.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700