淀粉微球制备及其载药性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淀粉微球是天然淀粉的一种人造衍生物,已经作为制剂的药物载体在鼻腔给药系统、动脉栓塞、放射性治疗、免疫分析等领域得到了应用,是一类极具开发潜力的新型药物载体。但由于淀粉微球制备的过程的复杂性和试验参数的多样性,制备直径小,分布范围窄的微球一直是淀粉微球制备的难点之一;另外,目前的淀粉微球普遍存在着载药率低,控释效果不好的缺点;淀粉微球多为一步交联变性而成,化学性质单一,所能够担载的药物种类、类型有限。针对上述问题,本论文对含固相淀粉反相乳液稳定性进行了研究,以此为基础,采用反相乳液法,以可溶性淀粉为原料,环氧氯丙烷和N,N'-亚甲基双丙烯酰胺(MBAA)为交联剂制备交联淀粉微球,并优化了淀粉微球制备工艺,以中性淀粉微球为基础,制备了离子化淀粉微球,对淀粉微球的微观颗粒形貌,理化性质进行了表征,制备了姜黄素淀粉微球和精氨酸淀粉微球,对微球的载药和释药性能进行了研究。具体研究内容如下:
     1.采用单因素试验的方法对含固相淀粉反相乳液的稳定性进行了研究,得出以淀粉水溶液为分散相,液体石蜡为连续相,span60为乳化剂,制备稳定性良好的反相乳液条件为:乳化剂的HLB值4.7、淀粉浓度为16%、油相水相体积比为3:1、乳化强度17500r/min搅拌时间30s、乳化剂用量为0.6%。
     2.采用正交试验的方法,对制备环氧氯丙烷交联淀粉微球(EMS)工艺进行了优化,以ESM平均粒径最小为指标,最佳工艺参数为:油相水相体积比为4:1、交联剂用量为3ml、反应温度为45℃、乳化剂用量为0.3%;以ESM沉降积最小为指标,最佳工艺参数为:油相水相体积比为4:1、交联剂用量为4ml、反应温度为50℃、乳化剂用量为0.4%;对两指标取最小值综合考虑,较优工艺参数为:油相水相体积比为4:1、交联剂用量为3ml、反应温度为50℃、乳化剂用量为0.4%;此条件下制备的ESM平均粒径为40um,沉降积为1.1ml。
     3.采用均匀试验设计的方法,优化N,N'-亚甲基双丙烯酰胺交联淀粉微球(MSM)的制备工艺,得出以MSM平均粒径最小为指标,最佳工艺参数为:引发剂浓度18mmol/L、乳化剂浓度0.23%油相、交联剂浓度0.025mol/L、反应时间2.1h、反应温度40.4℃、油相水相体积比为2:1、搅拌速度400r/min;以MSM交联度最大为指标,最佳工艺参数为:引发剂浓度17mmol/L、乳化剂浓度0.6%、交联剂浓度0.025mol/L、反应时间4.4h、反应温度51.2℃、油相水相体积比2.1、搅拌速度400r/min。
     4.SEM、IR和DSC分析表明,EMS近似球状,球体表面粗糙,粒径分布均匀,结构呈多孔立体网络结构,淀粉的部分羟基发生了交联反应;MSM球形圆整,粒径分布较窄,未出现双宽峰分布;淀粉与MBAA有明显的交联;MSM交联过程中,MBAA发生均聚物,交联使ESM、MSM热稳定性增加。
     5.利用人工胃液、人工小肠液和人工血液对ESM、MSM的降解性能进行了体外模拟,结果表明,ESM和MSM在人工体液中均表现出了一定的抗降解的能力,降解速度与微球粒径和交联度呈反比,ESM和MSM满足结肠靶向给药,栓塞治疗和药物缓释载体对降解性的要求。
     6.对姜黄素稳定性进行了研究,结果表明,姜黄素在pH值为2~7条件下稳定性较好,降低温度利于其稳定性的提高;姜黄素易溶于有机溶剂,在20%的乙醇溶液中稳定性较好。
     7.以MSM为载体,采用吸附法制备了姜黄素淀粉微球,对其载药和释药性能进行了研究,结果表明,MSM的载药量与直径的呈反比,与交联度呈正比;MSM与姜黄素质量比为5:1时,吸附2h达到最大载药量134.24mg/g,载药率为83.9%;MSM姜黄素载药微球在含0.8%十二烷基硫酸钠的20%乙醇溶液中,25h时累积释药率达到80.53%。对姜黄素淀粉微球进行了DSC分析,结果表明,在微球中,姜黄素已失去晶体结构,与MSM形成复合物的形式存在。
     8.以ESM为载体,采用吸附法制备了精氨酸淀粉微球,对其载药和释药性能进行了研究,结果表明,ESM的载药量与直径的呈反比,与交联度呈正比;ESM与精氨酸质量比为2:1,吸附1.5h达到最大载药量31mg/g,载药率为6.22%:ESM精氨酸载药微球在水溶液中,6h时累积释药率达到85.53%。
     9.以ESM为原料,STP为离子化剂制备阴离子淀粉微球,IR和DSC分析表明,STP与淀粉酯化成功,STP与淀粉的二次交联增加了阴离子点微球的热稳定性;对阴离子淀粉微球的载药和释药性能进行了研究,结果表明,阴离子淀粉微球对精氨酸的载药量高于ESM,载药量随取代度增加而提高,在微球与精氨酸质量比为250:1时,DS为0.02的阴离子微球载药量为4.54mg/g,阴离子淀粉微球对精氨酸的释放也存在突释现象,但缓释效果更突出。
     10.以MSM为原料,GTA为离子化剂制备阳离子淀粉微球,IR和DSC分析表明,GTA与淀粉反应成功,微球阳离子化后分解放热温度范围较宽;阳离子微球的载药和释药性能进行了研究,结果表明,阳离子微球对姜黄素的载药量高于MSM,随着取代度提高,载药量随取代度增加而提高,当微球与姜黄素质量比为250:1时,DS为0.024时微球载药量达到最大值9.26mg/g,载药阳离子微球仍有突释现象,但缓释效果更加突出。
Starch microsphere(SM) is a kind of artificial derivant from natural starch. As drug delivery carrier, it has been used in the fields such as intranasal administration, arterial embolization, radiation therapy, immunoassay and so on. SM is one of the great potential new type drug delivery carrier. However, due to the complexity of the SM process and the diversity of the process parameters, one of the challenges in process is the preparation of the SM with narrow diameter distribution. SM also has shortcomings on the drug loading efficiency and drug control release. Moreover, SM is prepared by one-step cross-linked methods mostly and has single chemical properties, so it has single drug loading properties. In order to solve the above problems, this thesis studies the stabilitiy of inverse emulsion including starch granule. Based on these research, using soluble starch as raw material, epichlorohydrin (ECU) and N,N'-methylenebisacrylamide(MBAA) as crosslinker, this thesis studies the preparation of crosslingked starch microspheres(CSM) by the inverse emulsion method and the optimal conditions for preparation are studied. Using CSM as the raw material, the ionized starch microspheres are prepared.The morphologies and physical and chemical properties of the SM are characterized. The curcumin-loading CSM and arginine-loading CSM are prepared and their drug loading and drug release properies are observed separately. The main results are listed as follows:
     1. The stabilities of inverse emulsion including starch are investigated by the single factor test. The results show that when the value of HLB of emulsifier is 4.7, the concentration of the starch solution is 16%, volume ratio between oil phase and aqueous phase is 3:1, the agitation strength is 17500r/min mixing 30s, the amount of the emulsifier is 0.6%, inverse emulsion has the best stability.
     2.The optimum conditions of the starch microspheres crosslinked with ECH (ESM) preparation are determined by orthogonal experiments. The results show when the volume ratio between oil phase and aqueous phase is 4:1, the amount of crosslinker is 3 ml, the temperature is 45℃, the amount of emulsifier is 0.3%, the average diameter of ESM are smallest and when the volume ratio between oil phase and aqueous phase is 4:1, the amount of crosslinker is 4 ml, the temperature is 50℃, the amount of emulsifier is 0.4%, the deposition volume of ESM are smallest. Considered the two index, the optimum conditions of ESM preparation are decided as the volume ratio between oil phase and aqueous phase is 4:1, the amount of crosslinker is 3 ml, the temperature is 50℃, the amount of emulsifier is 0.4%. The average diameter of the ESM prepared under the condition is 39.5um, deposition volume is 1.1ml.
     3. The optimum conditions of the starch microspheres crosslinked with MBAA (ESM) preparation are determined by Uniform desgin experiments. The results show when the concentration of the initiator is 18mmol/L, the amount of the emulsifier is 0.23%, the concentration of the crosslinker is 0.025mol/L, the reaction time is 2.1h, the reaction temperature is 40.4℃, the volume ratio between oil phase and aqueous phase is 2:1, the speed of agitation is 400r/min, the average diameter of MSM is smallest and when the concentration of the initiator is 17mmol/L, the amount of the emulsifier is 0.23%, the concentration of the crosslinker is 0.025mol/L, the reaction time is 4.4h, the reaction temperature is 51.2℃, the volume ratio between oil phase and aqueous phase is 2.1, the speed of agitation is 400r/min, the deposition volume of MSM is smallest.
     4.The analysis results of SEM, IR and DSC prove that EMS is almost spherical, even distributing particulates with rough surface and has tri-dimensional structure, crosslink reaction occurs between some hydroxyl groups of starch. The analysis results of SEM, IR and DSC proved that MSM is spherical, diameter distribution of MSM is narrow, crosslink reaction between starch and MBAA is success, MBAA occurs polymerization during crosslink reaction. After crosslinked, the thermal stabilities of ESM and MSM are improved.
     5.With In-Vitro degradability model, the degradabilities of ESM and MSM are tested in simulated gastric fluid, simulated intestinal fluid and simulated blood. The results indicate that ESM and MSM have some degree anti-degradation ability in the artificial body fluids and the rate of the degradation is decreased with the diameter and the crosslinking degree increased. ESM and MSM have prospects on the application to colonic targeted drug delivery, arterial embolization and drug control release.
     6. The stability of curcumin is studied and the result shows that it has good stability when pH value is 2-7. Lower temperature could improve the cucumin stability. The curcumin is soluble in the organic solvents and it has better stability in the 20% ethanol solution.
     7.Using the MSM as drug carrier, the curcumin-loading starch microspheres is prepared by adsorption method. The drug loading properties and drug release properties of curcumin-loading starch microspheres are studied. The results show the curcumin loading amount of MSM is increased with diameter decreased and with crosslinking degree increased. When the quantity ratio between MSM and curcumin is 5:1, the curcumin loading is 134.24mg/g, the rate of drug-loading is 83.9% after absorpting for 2h. The curcumin release ratio of the curcumin-loading MSM is 80.53% in the 20% ethanol solution including 0.8% sodium dodecyl sulfate after 25h. The analysis results of DSC prove that curcumin lose its crystal structure and exist as the complex with the MSM in curcumin-loading starch microspheres.
     8.Using the ESM as drug carrier, the arginine-loading starch microspheres is prepared by adsorption method. The drug loading properties and drug release properties of arginine-loading starch microspheres are studied. The results show the arginine loading amount of ESM is increased with diameter decreased and with crosslinking degree increased. When the quantity ratio between ESM and arginine is 2:1, the arginine loading is 31mg/g, the rate of drug-loading is 6.22% after absorpting for 1.5h. The arginine release ratio of the arginine-loading ESM is 85.53% in the water after 6h.
     9.Using the ESM as raw material and STP as ionize agent, the anionic starch microspheres is prepared. The analysis results of IR and DSC show that the crosslink reaction between STP and ESM is success and thermal stability of anionic starch microspheres increases. The drug loading properties and drug release properties of anionic starch microspheres are studied. The results show the arginine loading amount of anionic starch microspheres is higher than ESM, the arginine loading amount of anionic starch microspheres is increased with DS increased. When the quantity ratio between anionic starch microspheres and arginine is 250:1, the arginine loading of anionic starch microspheres with DS 0.02 is 4.54mg/g. The release of arginine from anionic starch microspheres has the phenomenon of drug burst release, but the anionic starch microspheres has better drug control release properties than ESM.
     10.Using the MSM as raw material and GTA as ionize agent, the cationic starch microspheres is prepared. The analysis results of IR and DSC show that the reaction between GTA and MSM is success and cationic starch microspheres decomposes in a wider temperature range than MSM. The drug loading properties and drug release properties of cationic starch microspheres are studied. The results show the curcumin loading amount of cationic starch microspheres is higher than MSM, the curcumin loading amount of cationic starch microspheres is increased with DS increased. When the quantity ratio between cationic starch microspheres and curcumin is 250:1, the curcumin loading of anionic starch microspheres with DS 0.024 is 9.26mg/g. The release of curcumin from cationic starch microspheres has the phenomenon of drug burst release, but the cationic starch microspheres has better drug control release properties than MSM.
引文
1.曹爱丽,黄积涛,于素竹等.1992.粉末剂型聚丙烯酸盐类吸水剂的研制聚合物乳液通讯,1:15-17
    2.陈明清,陆剑燕,江金强,刘晓亚.2008.功能高分子微球制备技术研究进展.江南大学学报(自然科学版),7(1):122-126
    3.程原,杜拴丽.1999.丙烯酞胺反相乳液聚合的研究.华北工学院学报,20(1):79-82
    4.段梦林,于九皋,田汝川等.1989.药物载体淀粉微球的合成与表面性质研究.齐齐哈尔轻工业学院学报,5(4):25-31
    5.段尧,易宜昌,聂中越.2006.硫酸庆大霉素缓释片的制备及其体外释放度的试验研究.中国现代应用药学杂志,23(7):635-636
    6.方开泰.1994.均匀设计与均匀设计表.北京:科学出版社
    7.高青雨,石家华,王真卫等.2000.DMAEMA/SAMPS反相乳液聚合动力学.胶体与聚合物,18(3):1-4
    8.高庆,陈正国,路国红.2001.可交联AA/AM反相乳液聚合的稳定性研究.湖北大学学报,23(3):255-257
    9.官建国,何平,谢洪泉.1994.丙烯酸反相乳液聚合稳定性的研究.石油化工,23:514-519
    10.国家技术监督局.中华人民共和国国家标准.淀粉及其衍生物磷总含量测定方法.GB/T 12092-89
    11.国家药典委员会中华人民共和国药典二部.2005年版.北京:化学工业出版社,附录72,158
    12.韩婷,芬鹤鸣.2001.姜黄的化学成分及药理活性研究进展.解放军药学学报,17(2):95-97
    13.何葆芳,姚日生,邓胜松,尤亚华.2003.正戊醇对形成淀粉微乳液的影响.合肥工业大学学报(自然科学版),26(1):100-103
    14.何文,蔡鸿生,罗顺德.2002.阿司匹林鼻粘膜给药淀粉微球的制备工艺及其质量控制.中国医院药学杂志,22(3):31-34
    15.胡飞,陈玲,温其标等.2001.淀粉微细化国内外研究概况与展望.郑州工程学院学报,12(4):141-142
    16.胡青平,马涛.2003.玉米淀粉接枝丙烯酰胺合成.无锡轻工大学学报,22(1):71-76
    17.胡新,侯新朴.1997.淀粉微球的制备与均匀设计.中国医药工业杂志,28(9):406-407
    18.黄黎明,李德仪,原青民.1991.酸液胶凝剂CT1-6的合成及应用实验.油田化学,8(4):300-315
    19.黄鹏程.1996.二甲基二烯丙基氯化钱反相乳液聚合动力学及机理的研究.化学学报,54(3):209
    20.李建宗,程时远,黄鹤.1993.反相乳液聚合研究进展.高分子通报,2:71-76
    21.李静茹,金征宇.2005.可降解淀粉微球制备工艺的优化.食品技术,11:21-23
    22.李静茹,金征宇.2006.可降解淀粉微球的性能研究.食品与生物技术学报,25(3):29-32
    23.李连涛,侯新朴,沈慧明.1995.药物载体-马来酸醋化淀粉共聚物微球的合成研究.北京医科大学学报,27(5):393-395
    24.李晓,张卫英,袁惠根.2003.反相微乳液聚合机理及模型化处理.中国工程科学,5(1):69-73
    25.李志达,张蓉真,林刚,郑卫东,黄椿鉴.1993.磷酸二醋交联淀粉的研究.中国粮油学报,8(4):50-54
    26.林观样,潘晓军,王贤亲.2008.姜黄素多孔淀粉微球的制备.海峡药学,20(9):25-26
    27.刘海峰,常津,张爽男等.2003.明胶-聚乳酸载药纳米微球的制备及其体外释药研究.中国生物医学工程学报,22(2):178-182
    28.刘焕云.2000.姜黄色素稳定性的研究.食品工业,21(3):22-24
    29.刘莲英,孟晶,杨万泰.2002.丙烯酞胺/氧化还原引发体系的反相乳液聚合.北京化工大学学报,29(2):59-62
    30.刘庆普,王燕军,哈润华,姚康德.1997.过硫酸钾-脲氧化还原引发的甲基丙烯酸乙酯基三甲基氯化铵反相乳液聚合.材料研究学报,11(2):222-224
    31.刘祥义,徐晓军.2005.氧化还原引发下的淀粉、丙烯酸反相乳液聚合.应用化工,34(3):159-161
    32.刘玉勇.2003.反相乳液聚合研究进展.化学推进剂与高分子材料,1(6):27-30
    33.刘钰,栾立标.2006.姜黄素固体分散体的制备及体外溶出度测定.药学进展,30(1):40-42
    34.陆彬,张景,杨红.1999.肺靶向卡铂明胶微球的研究.药学学报,34(10):786-789
    35.马素德,郭众,李仲谨,邱维,曹直.2003.淀粉微球的用途及发展建议.化工新型材料,31(10):6-8
    36.马素德,郭众,李仲谨等.2003.淀粉微球的用途及发展建议.化工新型材料,3(10):6-8
    37.麦振洪,赵永男.2001.微乳液技术制备纳米材料.物理,30(2):106-110
    38.毛世瑞,刘欢,陈建明,魏振平,毕殿洲.2004.褪黑激素鼻腔给药淀粉微球的制备工艺.沈阳药科大学学报,21(5):324-327
    39.彭顺金,陈正果,张贵军,方华等.1998.可聚合非离子子型乳化剂稳定的聚丙烯酞胺反相胶乳,应用化学,15(5):80-82
    40.彭湘红,张俐那.2000.壳聚糖-丝心蛋白包药微球的结构和释放性能的研究.高分子学报,4:502-505
    41.彭小敏,廖丹葵,柳雨春,张友全,韦小杰,童张法.2005.高锰酸钾引发木薯淀粉与丙烯酰胺接枝共聚反应的研究.安徽工业大学学报,22(1):30-34.
    42.尚小琴,童张法,龚福忠,郑成.2007.含固相淀粉的反相乳液体系稳定性研究.高分子材料科学与工程,23(3):70-73
    43.尚小琴,童张法,廖丹葵,黄祖强,张友全,郑成.2006.反相乳液法淀粉丙烯酰胺接枝共聚反应的研究.高校化学工程学报,20(3):461-463
    44.史黎明,刘爱芳,方春梅等.1998.淀粉微球的制备及性能试验.西北药学杂志,13(2):71-72
    45.苏秀霞,张春兰,李运涛.2006.玉米淀粉微球的制备与应用研究,陕西师范大学学报(自然科学版),(34)4:61-64
    46.唐启义,冯明光.2006.DPS数据处理系统-实验设计、统计分析及模型优化.北京:科学出版社
    47.田龙,刘亚伟.2005.三偏磷酸钠制备小麦淀粉磷酸酯研究.粮食与饲料工业,1:20-21
    48.田颖,李仲谨等.2007.载药淀粉微球的体外降解研究.粮食加工,32(4):81-83
    49.王东莎.2007.功能高分子微球的制备及其性能研究.大连轻工业学院硕士学位论文:1-2
    50.王磊,仲谨,赵新法,赖小娟.2007.药物载体淀粉微球的制备及表征.精细化工,24(1):86-90
    51.王萍,王亦军.2002.淀粉-丙烯酰胺接枝共聚物反应规律及产物结构性能的研究.陕西师范大学学报,30(5):124-127
    52.王晓茹,潘智存.1993.反相乳液聚合的新进展.现代化工,16(4):18-21
    53.王振卫,石家华,赵纪东等.2001.AM/SAMPS反相乳液聚合产物的表征.化学研究,12(2):21-26
    54.夏春娟,吴岳英,邓慧红.2001.几种不同引发剂在玉米淀粉与丙烯酸接枝共聚中的应用.上海大学学报(自然科学版),7(3):239-243
    55.肖昊江,宁青菊,李仲谨,赵新法,朱雷.2007.反相悬浮法制备交联阳离子型淀粉微球.陕西科技大学学报,25(4):32-35
    56.肖昊江,宁青菊,李仲谨,赵新法.2007.阳离子淀粉微球的合成与表征,陕西科技大学学报35(5):36-38
    57.谢彩峰,杨连生,莫佳林.2005.反相微乳液的研究及其在淀粉微球制备的应用.食品科学,26(9):137-141
    58.徐霞.2000.顺铂-可降解淀粉微球家兔动脉栓塞药动学研究.海峡药学,13(1):23-25
    59.徐相凌,张志成,费宾,葛学武,张曼维.1998.丙烯酸钠反相乳液聚合.高分子学报,2:134-138.
    60.杨驾辉.1993.磷酸醋淀粉的应用.精细化工,10(3):47-51
    61.杨建洲,林里,孙丽娟.2004.醚化剂GTA的合成及其在干法制备阳离子淀粉中的应用.造纸化学品,4:40-44
    62.叶强,葛学武,徐相凌.1998.水溶性超高分子量聚丙烯酞胺的辐射反相乳液聚合.辐射研究雨辐射工艺学报,16(2):94-96
    63.易昌凤,徐祖顺,程时远等.1999.丙烯酰胺-DBMA反相乳液聚合研究.高分子材料科学与工程,15(2):47-50
    64.殷丹.2006.胶原的性质与姜黄素胶原微球的制备及质量研究.湖北中医学院硕士学位论文:30-32
    65.于九皋,田汝川,刘延奇.1994.阴离子型淀粉微球的合成及性能研究.高等学校化学学报,15(4):616-619
    66.于开涛,封兴华.2002.介入栓塞用微球制剂的应用和研究进展.介入放射学杂志,11(2):132-134
    67.于英梅,孙庆元,倪长军,周德,赵略.2007.反相微乳法合成淀粉微球的研究.胶体与聚合物.(25)3:5-11
    68.詹国平,黄可龙,张法旺.2005.载药淀粉微球的合成研究.化学世界,12:726-728
    69.詹国平,黄可龙,张法旺.2005.阴离子型淀粉微球的制备研究.化上新型材料,33(6):44-46
    70.张洪涛,黄锦霞.2007.乳液聚合新技术及应用.第一版.北京:化学工业出版社,102-135
    71.张立武,阚建全,张锐利.2004.改性淀粉在新型药物传递系统中的运用.山西医药杂志,33(10):833-835
    72.张晓宇,童群义.2005.半干法制备低取代度阳离子淀粉研究.食品与生物技术学报,24(5):94-97
    73.张燕萍.2000.变性淀粉制造与应用.北京:化学工业出版社,70-74
    74.张友松.1999.变性淀粉生产与应用手册.北京:中国轻工业出版社,61
    75.张志荣,魏振平,王莉等.1998.米托葱醒肝动脉栓塞梭甲基淀粉微球的研究.药学学报,33(10):772-777
    76.赵琳琳,韩刚,宋树美,张卫国,刘楠,常佳.2007.姜黄素壳聚糖微球的制备及体外药物释放研究.中药材,30(2):230-232
    77.赵新法,李仲谨,蔡京荣,肖浩江,余丽丽,朱雷.2006.载药淀粉微球的反相乳液法合成及吸附性能研究.咸阳师范学院学报,21(4):33-35
    78.赵妍嫣,姜绍通,周建芹,邵平.高锰酸钾引发甘薯淀粉与丙烯酰胺接枝共聚的研究.合肥工业大学学报(自然科学版),1391-1395
    79.郑文杰,何燕岭,黄宁兴.1996.靶向给药系统材料与制剂.中国药学杂志,31(11):664-667.
    80.朱胜山.2003.药物新剂型.第一版北京:化学工业出版社,471
    81.邹芳建,李晓玺,陈玲等.2007.RS4型抗消化淀粉的结晶结构及消化性能研究.食品研究与开发,28(4):1-4
    82.A.Jostei,A.Mukherjee,J.Alenfall,L.Smethurst,S.M.Shalet.2005.A new sustained-release preparation of human growthhormone and its pharmacokinetic,pharmacodynamic and safety profile.Clin.Endocrinol,62:623-627
    83.A.Jostel,A.Mukherjee,J.Alenfall,L.Smethurst,S.M.Shalet.2005.A new sustained-release preparation of human growth hormone and its pharmacokinetic,pharmacodynamic and safety profile.Clin.Endocrinol.,62:623-627
    84.Adler J,Baldwin P M,Melia C D.1994.The Preparation of starch microspheres.Starch,46(7):1541-1546
    85.Artursson,Edman,Laakso,et al.1984.Characterization of polyacryl starch microparticle as carriers for protein and drugs.Journal of Pharmaceutical Science,73(11):1507
    86.Baade W,Reicher K H.1986.Polymerization of acrylamide in dispersion with paraffinic and aromatic liquids as oil phase.Makromol chem:Rapid Commun,7:235-241
    87.Began,G,Sudharshan,E.,Udaya Sankar,K.,AppuRao,A.G.1999.Interaction of curcumin with phosphatidylcholine:a spectrofluorometric study.J.Agric.Food Chem.,47:4992-4997
    88.Cerchiara T,Luppi B,Bigucci F,et al.2003.Chitosan salts as nasal sustained delivery systems for peptidic drugs.J Pharm Pharmacol,55(12):1623-1627
    89.Dakhil S,Ensmingero W,Cho K,et al.1982.Improved regional selectivity of hepatic arterial BCNU with degradable microspheres.Cancer,50:631-635
    90.Denkbas E.B.,Seyyal M.,Piskin E..1999.5-Fluorouracil loadedchitosan microspheres for chemoembolization .Microencapsul,16(6):741-746
    91.Dulong V,Lack S,Le CerfD,eta.2004.Hyaluronan-based hy-drogels particles prepared by crosslinkingwith trisodium tri-metaphosphate:synthesis and characterization.Carbohydrate Polymers,57(1):1-6
    92.Dziechciarek,van Soest,Philipse.2002.Preparation and properties of starch-based colloidal microgels . Journal of Colloid and Interface Science,246(l):48-59
    93.E.Bj(o|¨)rk,P.Edman.1988.Degradable starch microspheres as anasal delivery system for insulin.Int.J.Pharm,47:233-238
    94.Edman P.Ekman B.1980.Immobilization of proteins in icrospheres of biodegradable polyacryldextran.J Pharm Sci,69(7):838
    95.Epstein J R,Leung A P K,Lee K H,et al.2003.Hig-density.microsphere-based fiber optic DNA microarrays.Bioelectron,18:541-546
    96.Erik Bjork,Peter Edman.1990.Characteriation of degradable starch microspheres a nasal delivery system for drugs.International Journal of Pharmaceutics,62:18 7-192
    97.F.Maestrellia,N.Zerrouk..2008. Microspheres for colonic delivery of ketoprofen-hydroxypropyl-cyclodextrin complex.European journal of phamaceutial sciences,34 :1-11
    98.Fahlvik.A.K.Hdtz.E.,Leander,P.Schreder,U.and Kiave-ness.J.1990.Magentic starch micropheres:Efficacy and elimination.Invesr.Radiol..25:113-120
    99.Fundueanu,Constantin,Dalpia,et al.2004.Preparation and characterization of starch/cyclodextrin bioadhesive microspheres as platform for nasal administration of Gabexate Mesylate(Foyo)in all ergicrh in it is treatment.Biomaterials,25 (1):160-171
    100.G Hamdi,G.Ponchel,D.Duchene.2001.Formulation of epichlorohydrin cross-linked starch microspheres.J.Microencapsulation,18(3):373-383
    101.Ge Xuewu,Sheng Minya,Ye Qiang,et al.1999.Ampholytic terpolymers of acrylamide with sodium acrylate and (2-metharyloyoloxyethyl)trimthylammonium chloride synthesis with ~(60)Coγ-ray and polymerization kinetics.Polymer Journal,31(12):1243-1246
    102.Ghosh S.K.,Mandal B.M.1994 .Inverse emulsion polyerization of acrylamide using the oil-soluble photoinitiator 2,2-dimethoxy-2-phenyla-cetophenone(DMPA).Polym.Sci.,(1):9-14
    103.Ghosh Swapan Kumar,Nazimuddin Mohammad,Mandal Broja M.1992.Water soluble triplet radical generators as photoinitiators in inverse emulsion polyerization of acrylamide.Makromol.Chern.,Rapid Commun,13(12):583-586
    104.Glukhikh V,Graillat C,Pichot C.1987.Inverse emulsion polymerization of acrylamide(Ⅱ )Synthesis and characterization of copolymers with methacrylic acid[l].Journal of Polymer Science Part A:Polymer Chemistry,25:1127-1161
    105.Graillat C,Guyot A.,EI Aasser.M.S.1986.Inverse emulsion polymerization of acrylamide.I.Contribution to the study of some mechanistic aspects.J.Polym.Sci.,Part A:Polym.Chem.,24(3):427
    106.Gyes J.W.Ensminger WD,Vanharken D,et al.1983.Improved regional selectivity of hepatic arterial mitomycin by starch microspheres.Clin Pharmacol Ther,34(2):259
    107.H.Teder,C.-J.Johansson,R.d'Argy,N.Lundin and P.O.Gunnarsson.1995.The Effect of Different Dose Levels of Degradable Starch Microspheres (Spherex")on the Distribution of a Cytotoxic Drug After Regional Admkistration to Tumour-bearing Rats.European jurnal of cancer,31(10):1701-1705
    108.H.F.M.Gremers,G.Kwon,Y.H.Bae,S.W.Kim,R.Verrijk,H.P.J.M.Notebom,J.Feijen.1994.Preparation and characterization of albumin-heparin microspheres.Biomaterials,15:38-48
    109.Hanna,A.A.,Basta,A.H.,El-saied,H.,& Abadir,J.F.1998.Thermal properties of cellulose acetate and its complexes with some transition metals.Macromolecular Chemistry,260:1-8
    110.Hernandez-Barajas Jose,Hunkeler David J.1997.Inverse emulsion polymerization of acrylamide using block copolymeric surfactants:mech-anism,kinetics and modeling.Polymer,38(2):437-447
    111.Horsteinn Loftsson,Dominique Duchene.2007.Cyclodextrins and their pharmaceutical applications.International Journal of Pharmaceutics,329:1-11
    112.Hunkeler D,Hamielec A E,Baad W.1989.Mechanism,Kinetics and modeling of the inverse-microsuspension homopolyerization of acrylamide . Polymer,30:127-142
    113.IllumL,Jorgensen H,Bisgaard O,et al.1987.Bioad hesive microspheres as a potential nasal drug delivery system.Int J P h a r m,39:189-199
    114.Jhunu Chatterjee,YousefHaik,Ching-Jen Chen.2001.Modification and characterization of polystyrene-based magnetic microspheres and comparisonwith albumin-basedmagneticmicrospheres 〔J〕 .Journal of Magnetism and MagneticMaterials,225:21-29
    115.Jun YJ,Kim JI,Jun MJ,et al.2005.Selective tumor targeting by enhancedpermeability and retention effect:Synthesis and antitumor activity of polyphosphazene-platinum(II)conjugates .J InorgBiochem,99(8):1593-1601
    116.Jung-Ah Han,James N.BeMiller.2008.Effects of protein on crosslinking of normal maize,waxy maize,and potato starches.Carbohydrate Polymers,73 :532-540
    117.Kei Shimoda,Takafumi Hara,Hatsuyuki Hamada.2007.Synthesis of curcumin b-maltooligosaccharides through biocatalytic glycosylation with Strophanthus gratus cell culture and cyclodextrin glucanotransferase.Tetrahedron Letters,48:4029-4032
    118.Kuntal Maiti,Kakali Mukherjee,Arunava Gantait,Bishnu Pada Sana,Pulok K.Mukherjee.2007. Curcumin-phospholipid complex:Preparation,therapeuticevaluation and pharmacokinetic study in rats.International Journal of Pharmaceutics,330 :155-163
    119.Kweon,D.K.,Cha,D.S.,Park,H.J.& Lim,S.T.2000.Starch-g-polycaprolactone copolymerization using diisocyanate intermediates and thermal characteristics of the copolymers.Journal of Applied Polymer Science,78:986-993
    120.Kyungsoo Woo,Paul A Seib.1997.Cross-linking of wheat starch and hydroxypropylated wheat starch in alkaline slurry with sodium trimetaphosphate.Carbohydrate Polymers,33:263-271
    121.LaaksoT,Sjoholm .1987.Some properties of polyaeryl starch microParticles prepared from acrylic acid-esterified starch.J Pharm Sci,76(12):935
    122.Lena Pereswetoff-Morath.1998.Microspheres as nasal drug delivery systems.Advanced Drug Delivery Reviews,29:185-194
    123.Lidia Elfstranda,Ann-Charlotte Eliassona,Monica J(o|¨)nssonb,Mats Reslowc,Marie Wahlgrena.2006.From Starch to Starch Microspheres:Factors Controlling the Microspheres Quality.Starch/Starke,58:381-390
    124.Linderg B,Lote K,Teder H,et al.1984.Microspheres and drug therapy pharmaccutical immunological and medical aspects.Elsevier Science Publishers BV,153
    125.M.Reslow,M.J(o|¨)nsson,T.Laakso.2002.Sustained-release of human growth hormone from PLG-coated starch microspheres.Drug Deliv.Syst.Sci.,2(4):103-109
    126.M.S.Latha,K.Rathinam,P.V.Mohanan,A.Jayakrishnan.1995. Bioavailability of theophylline from glutaraldehyde crosslinked casein microspheres in rabbits following oral administration.Journal of Controlled Release,34 :1-7
    127.Manna,L.,Banchero,M.,Sola,D.,Ferri,A.,Ronchetti,S.,Sicari,S..2007.Impregnation of PVP microparticles with ketoprofen inthe presence of supercritical C02.J.Super Fluids,42:378-384
    128.Murata T,Akagi K,Imamura M.1998.Studies on hyperthermia combined with arterial therapeatic blockade for treatment of tumors: effectiveness of hyperthermia combined with arterial chemoembolization using degradable starch microspheres on advanced liver cancer.Oncol Rep, 5(3):709-712
    129.Nagasuna Kinya,Nanba Takashi,Kimura Kazumasa,Shimomura Tadao,Rakuya Kenji,HozumiYoshiyuki.1990.Dispersants for inverse emulsion polymerizaion of hydrophilicpolymers.JP 02115201
    130.Nuraya,S.,Wong,T.W..2005.Effect of microwave on drug release properties of matrices of pectin.Carbohydrate Polym.62:245-257
    131.Owen VK,Bernadette E,Margaret M,et al.2003.Antigen-specific IgA and IgG responses in calves inoculated intranasally with ovalbu-min encapsulated in poly(dl-lactide-co-glycolide)microspheres.Vaccine,21:4472-4480
    132.Pei-run Jiang.1996.Kineties of the potassium persulfate-Intiated Inverse Emulsion Polymerization of Sodium Acrylate Solutions.Journal of Polymer Science:Part A:Polymer chemistry ,35:695-699
    133.Raghavendra C.Mundargi,Namdev B.Shelke,Ajit P.Rokhade,Sangamesh A.Patil,Tejraj M.Aminabhavi.2008.Formulation and in-vitro evaluation of novel starch-base tableted microspheres for controlled release of ampicillin Carbohydrate polymers,71:42-53
    134.Rita Acquistucci,Remo Bucci,Andrea D.1997.Thermal analysis of food carbohydrates by determination of starch gelatinization phenomena.Fresenius J Anal Chem,357:97-100
    135.Ryden,L.,Edman,P.1992.Effect of polymers and microspheres on the nasal absorption of insulin in rats.Int.J.Pharm.,83:1-5
    136.Shaojie Lu,Tong Lin,Deyong Cao.2003.Inverse Emulsion of Starch-graft-polyacrylamide,Starch/St(a|¨)rke,55:222-227
    137.Shirui Mao,Jianming Chen,Zhenping Wei,Huan Liu,Dianzhou Bi.2004.Intranasal administration of melatonin starch microspheres.International Journal of Pharmaceutics,272:37-43
    138.Silva GA,Costa FJ,Neves NM,et al.2005.Entrapment ability and release profile of corticosteroids from starch-based microparticles.J Biomed Mater Res,73A(2):234-243
    139.T.S.Nordmark,G.R.Ziegler.2002.Spherulitic crystallization of gelatinizedmaize starch and its fractions.Carbohydr.Polym,49(4):439-448
    140.Tadeusz Grega,Dorota Najgebauer,Marek Sady.2004.Polymeric Complexes from Casein and Starch Phosphate:Characteristics and Enzyme Susceptibility.Journal of Polymers and the Environment,12(1):1,17-25
    141.Tafaghodi M,Sajadi-Tabassi SA,Jaafari MR.2006.Induction of systemic and mueosal immune responses by intranasal administration of alginate microspheres encapsulated with tetanus toxoid and CpG-ODN.Int J Pharm,319(1-2):37-43
    142.Teder,H.,Johansson,C.J.,Argy,Ro et al.1995.The effect of diffet dose levels of deg radable starch microspheres(Spherex) on the distribution of a cytotoxic drug after regional administration to tumour-bearing rats.Cancer,31A:1701
    143.Urs HaK feli,Gay le Pauer,Sarah Failing.2001.Radiolabeling of magnetic particles with rhenium-188for cancer therapy(J).Journal of Magnetism and MagneticMaterials,225:73-78
    144.Vandamme,T.F.,Lenoury,A.,Charreau,C.,Chaumeil,J.C..2002.The use of polysaccharides to target drugs to the colon.Carbohydrate Polym.48:219-231
    145.Vanderhoff J W,Bradford E B,Tarkowski H L,et al.1962.Inverse emulsion polymerization.Adv Chem Ser,34:32-51
    146.Wang SB,Liu YG,Weng LJ,et al.2003.Effect of the molecular weights of poly-L-arginine on membrane strength and permeability of poly-L- arginine group microcapsules.Macromol Biosci,3(7):347-350
    147.Wang YJ,Pan MH,Cheng AL,etal.1997.Stbaility of curcumin in buffer solutions and characterization of its degradation Products.Phmaraceuties and Biomed Analysis,15(12):1867-1876
    148.Xiaoqin Wang,Esther Wenk,Akira Matsumoto.2007.Silk microspheres for encapsulation and controlled release.Journal of Controlled Release,117:360-370
    149.Yu Jiugao,Liu Jie.1994.Effects of Suspension Crosslinking Reacting Conditions on the Sizes of Starch Microspheres.Starch/St(a|¨)rke,46 (7):252-255
    150.YUCG ,HOCHANG,CHENG YiLi.1992.Preparation of starch PhosPhatesbyextrusion.Journal of Food Science,57:203-205
    151.Zerrouk,N.,Corti,G,Ancillotti,S.,Maestrelli,R,Cirri,M.,Mura,P..2006.Influence of cyclodextrin and chitosan,separately or in combination,on glyburide solubility and permeability.Eur.J.Pharm.Biopharm,62:241-246

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700