智能电网技术经济综合评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了应对近年来全球气候变暖趋势、降低对日益匮乏的传统能源的依赖程度、抢占新一轮能源革命的制高点,世界主要发达国家纷纷把发展智能电网作为其国家战略和决策,掀起了一场全球范围的智能电网建设热潮,智能化已经成为国际电网发展的重要趋势。我国也提出了智能电网发展战略,国家电网公司2009年颁布的《国家电网智能化规划总报告》明确提出我国坚强智能电网发展目标:即到2020年,建成以特高压电网为骨干网架、各级电网协调发展的坚强网架为基础,以通信信息平台为支撑,具有信息化、自动化、互动化特征,包含电力系统的发电、输电、变电、配电、用电和调度各个环节,覆盖所有电压等级,实现“电力流、信息流、业务流”的高度一体化融合的坚强智能电网。智能电网建设是我国在新的环境下电力行业发展的重要发展战略,其建设将促进我国电力行业的技术革命和产业发展。但智能电网建设是一个浩大的系统性工程,不仅要解决众多的技术难题,而且其将对技术、经济、社会、环境等因素都会产生相互作用和影响。因此,还需要我们深入研究与之配套的宏观政策、社会经济、发展战略、市场机制、经营管理等方面的软科学问题,而这种研究是一个涉及经济、社会、法律、能源、信息等多学科的交叉领域。目前对于智能电网的研究主要集中在技术研发领域,对智能电网投资建设及运营等的技术经济问题研究则相对较少、不够系统和深入。
     论文在分析中,主要根据我国智能电网发展规划和我国电力行业特征,围绕坚强智能电网建设的产业前景、产业技术支撑、产业运营管理和产业政策管理等层面,重点分析智能电网投资建设的宏观效益、试点项目评价、智能电网建设后期资产运营管理、智能电网技术创新及电力产业规制等技术经济问题。本文将宏观与微观相结合,技术与市场相结合,全面和系统的研究了智能电网相关主要技术经济问题,选题具有鲜明的特色。具体创新如下:
     ①本文首先对智能电网投资建设按部门进行有效分解,然后应用投入产出模型分析投资建设对国民经济及各产业部门增长的影响;构建数量模型,定量分析智能电网产生的环境效益;基于电网全寿命周期和模糊集合理论,提出了智能电网试点项目技术性评价实用模型,对智能电网试点项目的安全性、可靠性、先进性和互动性的协调发展进行研究。
     ②构建了智能变电站状态检修模型。本文结合智能变电站技术特点,构建智能变电站状态检修核心模型。结合不同预测方法和输变电设备预测评估特征,选择时间序列法和灰色理论作为预测方法,应用模糊层次分析法建立了输变电设备状态预测评估模型;提出了基于定性评价的输变电设备风险评估模型,确定了资产、资产损失程度和设备平均故障率的评估和计算方法,具有较强的可操作性。
     ③本文应用技术创新和战略管理理论,结合我国智能电网建设目标、技术创新特征及我国电力行业技术创新水平,提出了我国智能电网技术创新战略路径和战略组织形式。智能电网背景下我国电力产业结构将呈现垄断竞争的产业格局,既不同于传统的垄断一体化产业结构,也不同于国外已经进行市场化改革的电力产业结构。本文根据这一特点,采用SCP范式(市场结构-市场行为-市场绩效),提出了我国智能电网环境下电力产业规制的思路和重点。
In order to deal with global climate change and the reliance on the fossil energy, aswell as realize the sustainable development of the energy industry, the world's majordeveloped countries have all decided to develop intelligent power as a national strategy,which sets off a global range of smart grid construction boom. Intellectualization hasbecome the trend of international power grid development, China also puts forward thestrategy of smart grid development, as “The Outline of State Grid Development Plan(2009)” clearly puts forward: until the year of2020our country will build a strongsmart grid which takes special high-voltage electric network as its backbone network,takes the coordinate development of all levels of strong power grid network as thefoundation, with the support of communication and information platform, in possessionof the features of informatization, automation and interaction, contains each link inpower system of power generation, transmission, substation, distribution and scheduling,as well as covers all voltage levels, realize the fusion of highly-integrated smart grid ofthe “power flow, information flow and operation flow”.
     Smart grid construction is the important development strategy under the newenvironment of electric power industry development of our country, and its constructionwill promote the technology revolution of China’s electric power industry and theindustrial development. However, the construction of smart grid is a huge systematicengineering work, which not only needs to solve many difficult technical problems, butalso has impact on technical, economic, social and environmental factors and theirinteractions. Therefore, further researches of its supporting macro policy, socialeconomy, development strategy, market mechanism, business management, and othersoft science problem, which involves the interaction of economy, society, law, energy,information, and many other disciplines. But the present research of smart grid mainlyfocuses on technology aspect, the studies of the smart grid construction and economicand technical problems of operation are relatively weak. Smart grid will be the mainfeature of China’s power industry. On the basis of the development plan of China’ssmart grid and the features of China’s power industry, also around the industry outlook、industry science and technology support、industry operation management and industrypolicy management of smart grid construction, this thesis focuses on the macro benefit,evaluation of pilot projects, post-construction asset operation and management, technology innovation strategy of smart grid, the regulation of power industry and othertechnical-economic problems. Although there are a lot of research works on smart gridin China currently, most of them are from the technology perspective while someliteratures do some general and superficial studies of the economic problems of smartgrid. The study of this thesis is not only limited in one project analysis, but combinesmacro and micro as well as technology and market, expounds thetechnological-economic problems in the smart grid construction and operationcomprehensively and systematically, which shows distinct characteristics in topicselection.
     Compared with other research results, the main efforts and innovation of this thesisare as follows:
     1. This thesis makes a comprehensive evaluation and measurement of the macrobenefits and pilot projects in smart grid. At first it analyzes the construction investmentsof smart grid, then applies the input-output model in the evaluation of the effects ofinvestments on national economy and industry sector, then puts forward thetechnological utility evaluating model of smart grid projects based on grid full life cycleand fuzzy set theory, and studies the coordinated development of security, reliability,advancement and interactivity of pilot projects.
     2. An intelligent transform-condition-based maintenance model is built. This thesiscombines kinds of prediction methods and the forecast evaluation feature oftransmission and distribution power equipment, then chooses time series method andGrey theory as prediction method to build the model. It also puts forward riskassessment model of power transmission and distribution equipment based onqualitative evaluation, determines the evaluation and calculate methods of the assets,assets loss rate and mean failure rate of equipments, which has strong operability.
     3. The innovation strategy path and strategy organization form of China’s smartgrid is puts forward. This thesis applies technology innovation and strategicmanagement theory, combines China’s smart grid construction, technology innovationfeature and technology innovation level of China's power industry to put forwardindependent innovation path of China’s smart grid, and then puts forward the strategyorganization form of technology innovation of China’s smart grid, as well as clear theinnovation strategies of each links according to their different characteristics. The ideasand key points of China’s power industry’s regulation is proposed under theenvironment of China’s smart grid. The structure of China’s electric power industry under the background of smart grid is different from not only the traditionalmonopoly-integration industry structure but also some foreign structures of electricpower industry, of which marketization reform has already taken place. According tothis feature, the thesis comes up with the ideas and key points of China’s powerindustry’s regulation, using SCP paradigm (market structure--market conduct--marketperformance).
引文
白让让.2006.制度偏好差异与电力产业规制放松的困境——“厂网分开”引发的深层思考[J].中国工业经济,(03):29-37.
    宾光富,李学军, DHILLON Balbir-S,楚万文.2010.基于模糊层次分析法的设备状态系统量化评价新方法[J].系统工程理论与实践,30(4):744-750.
    蔡声霞,王守相,王成山,贾根良.2009.智能电网的经济学视角思考[J].电力系统自动化,(20):13-16.
    操敦奎.1987.变压器油中气体分析与判断[M].湖北省电力试验研究所.
    曹洪,周江.2005.季节性产品动态定价研究[J].数量经济与技术经济研究,(10):33-37.
    曾鸣,鄢帆,田廓,董军.2010.基于三角模糊数的智能电网投资效益分析[J].华东电力,(05):638-640.
    曾鸣等.2011.智能电网背景下我国电网侧低碳化发展路径研究[J].华东电力,(1):32-35.
    陈春阳,李学伟.2006.中国机车车辆业技术创新模式研究[J].中国软科学,(12):87-93.
    陈汉利,马超群,秦滔.2007.电力消费与中国经济增长的关系分析[J].系统工程,(08):68-73.
    陈红霞,郭进,杨扬.2005.可维修系统的故障率分析[J].微机发展,15(2):56-57.
    陈树勇等.2009.智能电网技术综述[J].电网技术,33(8):1-7.
    陈秀山,徐瑛.2005西电东送区域经济效应评价[J].统计研究,(04):28-34.
    程志华,章剑光.2003.状态检修技术及其辅助分析系统的应用[J].电网技术,27(7):16-24.
    迟峰.2010.我国智能电网的发展机遇与前景[J].上海节能,(6):8-12.
    慈向阳.2010.智能电网建设对中国电力运营模式的影响及政策启示[J].华东电力,(03):329-331.
    丹尼斯·卡尔顿,杰弗里·佩罗夫.1991.现代产业组织[M].上海:上海人民出版社,83.
    丁茂生,王钢,贺文.2007.基于可靠性经济分析的继电保护最优检修间隔时间[J].中国电机工程学报,27(25):44-48.
    董其国.2000.电力变压器故障与诊断[M].北京.中国电力出版社.
    符力文.2011.智能电网的低碳效益分析[J].电力建设,(03):51-55.
    高文胜,钱政,严璋.1999.基于决策树神经网络模型的电力变压器故障诊断方法[J].西安交通大学学报,33(6):11-16.
    郭明星.2006.我国电力市场产出波动与宏观经济波动的关联性研究[D].吉林大学.
    国家电网安监[2005]145号.国家电网公司电力生产事故调查规程.
    国家电网公司.2009.国家电网智能化规划总报告.北京:国家电网公司.
    国家电网公司.2010.“十二五”电网智能化规划报告.北京:国家电网公司.
    国家电网公司.2008.国家电网公司关于规范开展状态检修工作意见[Z].北京:国家电网公司.
    国家电网公司.2008.国家电网公司设备状态检修管理规定(试行)[Z].北京:国家电网公司.
    国网能源研究院.2009.国家电网资产全寿命周期管理框架体系[R].
    韩丰等.2009.我国智能电网发展相关问题初探[J].特高压输电技术国际会议论文集.北京.
    韩勇.2011.智能需求侧管理关键技术研究及发展路线图规划[J].电力系统自动化,(02):52-57.
    何华峰.电网的智能革命[EB/OL]. http://blog.caijing.com.cn/topic_article-5-331.shtml.
    贾文昭等.2011.智能电网促进低碳发展的能力与效益测评模型[J].电力系统自动化,(1):7-12.
    贾玉君.2003.状态检修解决方案探讨[J].山西电力,(1):9-10.
    姜益民.2004.变压器的全寿命周期成本分析[J].上海电力,(3):188-191.
    李立理,张义斌,靳晓凌,孙强.2010.追踪与借鉴:探究智能电网的发展目标与途径[J].能源技术经济,(03):22-28.
    李文斐.2007.基于SCP框架分析的我国电力产业规制研究[J].中南财经政法大学研究生学报,(02):98-103.
    李文沅(著),周家启等(译).2006.电力系统风险评估模型、方法和应用[M].北京:科学出版社.
    李秀云,严俊杰,林万超.2001.火电厂冷端系统评价指标及诊断方法的研究[J].中国电机工程学报,21(9):23-27.
    李艳,李晓华,张胜宝.2005.以可靠性为中心的状态检修在高压输电网运行中的应用[J].中国科技信息,(21):90-91.
    林博鸿,吴烨.2010.长三角地区汽车拥有量与co2排放研究[J].中国科技论文在线,(06):18-25.
    林宇锋等.2009.智能电网技术体系探讨[J].电网技术,33(12):8-14.
    刘伦武.2003.基础设施对经济增长的推动作用分析[D].江西财经大学.
    刘跃新,熊浩清,罗汉武.2010.智能电网成本效益分析及测算模型研究[J].华东电力,(06):13-15.
    刘振亚.2010.智能电网技术[M].北京:中国电力出版社.
    柳学信.2006.信息非对称下中国网络型产业规制问题研究[M].北京:首都经济贸易大学出版社.
    卢键明,曾秀文,刘海燕.2011.计及经济增加值的电网建设项目投资评价方法[J].广东电力,(04):24-25.
    鲁宗相.2007.电厂事故的可靠性预测与防范[M].北京:中国电力出版社,86.
    陆晓菁.2009.电力市场买电型和趸售型竞争模式福利比较[J].科学技术与工程,(12):3384-3400.
    鹿飞.2006.“750”:自主创新的结晶——国家电网公司750千伏输变电示范工程科研与建设回眸[J].智能电网,(02):58-59.
    马克思.1975.资本论(第1卷)[M].北京:人民出版社,391.
    马晓久,石峰,刘鹏伟等.2006.全寿命周期成本管理简介及应用分析[J].河南电力,(4):18-21.
    莫娟,王雪,董明等.2004.基于粗糙集理论的电力变压器故障诊断方法[J].中国电机工程学报,24(7):162-167.
    牛迎水.2010.电能质量与国民经济和谐发展的思考[J].山西财经大学学报,(11):84-85.
    潘锡芒,王晓林,王秉钧.2002.输电线路绝缘故障率的计算[J].高电压技术,28(1):26-34.
    钱政,严璋,罗承沐.2001.范例推理与模糊数学的变压器故障诊断方法[J].高电压技术,27(6):1-5.
    秦寿康.2003.综合评价原来与应用[M].北京:电子工业出版社.
    任震,张静伟,张晋昕.2005.基于偏最小二乘法的设备故障率计算[J].电网技术,29(5):12-15.
    萨莉亨特.2006.电力竞争[M].北京:华夏出版社,7-8.
    邵胜利.1999.开展状态检修实现可靠性与经济性相统一[J].电力建设,20(3):24-27.
    世界银行.1994.1994年世界发展报告[M].北京:中国财政经济出版社,65.
    帅军庆.2009.创新发展建设智能电网:华东高级调度中心项目群建设的实践[J].中国电力企业管理,(4):19-21.
    司林波,孟卫东,乔花云.2011.中外风电设备整机制造企业自主创新能力及市场差距分析[J].生态经济,(05):156-159.
    孙宝钦.2007.电力设备状态检修策略及其实际应用[J].吉林化工学院学报,24(1):68-71.
    泰勒尔.1997.产业组织理论[M].北京:中国人民大学出版社,243.
    谭芙蓉,江志斌,白同朔.2005.大型发动机组早期故障率的统计分析[J].上海交通大学学报,39(12):2093-2096.
    田廓,鄢帆,薛松,曾鸣.2010.建设中国特色坚强智能电网技术经济关键问题框架研究[J].华东电力,(01):01-04.
    佟岩.2007.从模仿学习到自主创新—中国汽车产业技术进步的路径选择与政策研究[D].辽宁大学博士学位论文.
    王庆红.2009.智能电网研究综述[J].广西电力,(06):1-6.
    王仁钟,李雷,盛金保.2002.水库大坝的社会与环境风险标准研究[J].安全与环境学报,6(1):8-11.
    微软公司.2004. MS风险管理指南[M]. USA.
    吴疆.2009.用能效的观点比较中美不同的智能电网投资策略[J].中国能源,(09):15-18.
    吴鹏,蒋莉萍.2009.智能电网综合效益评价[J].中国电力企业管理,(07):35-37.
    武建东.2009.智能电网:经济创新增长的超级引擎[J].中国经济周刊,(22):34-35.
    西蒙·库兹涅茨.1985.各国的经济增长[M].北京:商务印书馆,170.
    肖世杰.2009.构建中国智能电网技术思考[J].电力系统自动化,33(9):12-4.
    谢开,刘永奇,朱治中等.2008.面向未来的智能电网[J].中国电力,(6):19-22.
    徐安,乔向明.2006.基于更新理论的复杂设备故障率表达[J].吉林大学学报,36(3):360-362.
    徐辉.2004.电力系统负荷预测方法及特点[J].山东电力技术,(6):75-77.
    许珊珊,聂继飞.2009.新能源分布式发电的应用研究现状[J].大众用电,(4):3-5.
    杨以涵等.1995.专家系统及其在电力系统中的应用[M].水利电力出版社,79.
    姚建国,赖业宁.2010.智能电网的本质动因和技术需求[J].电力系统自动化,(2):1-4.
    余立军.2010.电网企业推进资产全寿命周期管理的二个难点及对策[J].能源技术经济,(1):55-59.
    余贻鑫,栾文鹏.2009.智能电网[J].电网与清洁能源,(1):7-11.
    虞苍璧,杨敏英.2010.从利益相关者的角度分析我国智能电网发展模式[J].中国能源,(5):20-23.
    张成林,王克英.2006.变电设备状态检修现状与展望[J].供用电,23(6):1-3.
    张怀宇,朱松林,张扬等.2009.输变电设备状态检修技术体系研究与实施[J].电网技术,33(13):70-73.
    张金萍,刘国贤,袁泉,等.2004.变电设备健康状态评估系统的设计与实现[J].现代电力,21(4):45-49
    张黎,张波.2005.电气设备故障率参数的一种最优估计算法[J].继电器,33(17):31-34.
    张粒子,黄仁辉.2010.智能电网对电力市场发展模式的影响与展望[J].电力系统自动化,(08):5-8.
    张淑芳.2010.我国风电企业自主创新模式选择与保障机制研究[D].燕山大学.
    张文亮等.2009.智能电网的研究进展及发展趋势[J].电网技术,(13):1-11.
    张宗益,杨世兴,李豫湘.2003.激励性管制理论在电力产业的应用[J].外国经济与管理,(01):32-36.
    郑颖.2008.电网经营企业的规制研究[D].重庆大学.
    中国石油化工股份有限公司青岛安全工程研究院.2005.英国Tischuk国际公司编著.设备风险检测技术实施指南[M].北京:中国石化出版社.
    周怀峰.2008.国内市场需求对技术创新的影响[J].中南财经政法大学研究生学报.(05):75-79.
    朱成章.2011.电力安全是能源安全的核心[J].大众用电,(11):3-5.
    Amin M.2001. Toward self-healing energy infrastructure systems [J].IEEE Computer Applicationsin Power,14(1):20-28.
    BALDUCCI P J. ROOP J M. SCHIENBEIN L A. et al.2002. Elect rical power int errupt ion costest imat es for in dividualindust ries. sectors, and US economy[R]. Rich lan d. WA. USA:Pacific Northwest Nat ion al Laboratory.
    Barrie Murray.2008.电力市场条件下企业投资绩效评价[M].北京:中国电力出版社.
    BE LHOMME R. DE ASUA R C R. VALTORTA G. et al.2008. Address active demand for thesmart grids of the future//Pr oceedings of IEEE CIRED Semin ar2008: SmartGrid for Dist ribution, Ju ne23224. Frank furt. Germany.
    BURGIO A,MENNITI D,PINNARELLI A,et al.2009. Reliability studies of a PVWG hybridsystem in presence of multi-micro storage systems[C]∥PowerTech,2009. Bucharest,Romania:IEEE.
    Chang D Y.1996. Applications of the extent analysis method on fuzzy AHP[J]. European Journal ofOperational Research,,95:649-655.
    Cheng C H, Yang K L, Hwang C L.1999. Evaluating attack helicopters by AHP based on linguisticvariable weight[J]. European Journal of Operational Research,(2):423-433.
    CHIRADEJA Pathomthat. RAMAKUMAR R.2004. An approachto quantify the technical benefitsof distributed generation. IEEE Trans on Energy Conversion,19(4):7642773.
    Cigre study committees23and39.1998. Drivers for change in transmission maintenance policy andthe role of computer based information and decision support systems[R]. Cigre:Cigre studycommittees.
    David Russell.2007. Condition Based Risk Management[R]. EA Technology, UK.
    DL/T722-2000.2001.变压器油中溶解气体分析与判断导则[S].
    Electrieity Consumers Resource Couneil(ELCON).2008. Problems in the Organized Markets:ASpecial RePort of the Eleetrieity Consumers Resouree Counci[EB/OL].Washington.DChttP:WWW/elcon.org/documents/publications/LCONSPecialRePortAPril20OS.Pdf. July19.
    EPRI.2005.Intelli Grid architecture status report: technology transferactivities andrecommendations[R]. Palo Alto. CA. USA: EPRI.
    European Smartgrids Technology Platform.2006. Vision and strategy for europe’s electricitynetworks of the future[EB/OL]. http://www.smartgrids.eu.
    Felix T S, Chan N, Kumar M K, etal.2008. Global supplier selection:A Fuzzy-AHP approch[J].International Journal of Production Research,46(14):3825-3857.
    FINN P,FITZPATRIC C,LEAHY M.2009.Increased penetration of wind generated electricityusing real time pricing&demand side management[C]. IEEE International Symposium onSustai-nable Systems and Technology. Tempe,AZ,USA:ISSST’(09):1-6.
    Grid Wise Architecture Council.2008. Gridwise interoperability contextsetting framework[EB/OL].http://www.gridwiseac.org.
    Haase P.2005. Intelligrid:a smart network of power[J].EPRI Journal,(Fall):17-25.
    HLEDIK R.2009. How green is the smart grid[J]. The Electricity Journal,(4):29-41.
    IPAKCH I A.2009. Smart grid of the future with large scal e DR/DER p enet rat ion//Proceedin gsof IEEE Power Systems Conferen ce&Exhibit ion(PSCE.09). March15218. Seat t le. WA.USA.http://www.netl.doe.gov/moderngrid/docs.
    J. Moubray(著),石磊等(译).1995.以可靠性为中心的维修[M].京:朝鲜机械工业出版社.
    Jim Mc Calley. Tim Van Voorhis.2003. A. P. Meliopoulos. Yong Jiang. Risk-based MaintenanceAllocation and Scheduling for Bulk Transmission System Equipment[R]. The Power SystemsEngineering Reseaarch Center(PSERC).
    LACOMMAREKH, ETOJH.2006. Cost of power int errupt ions toelect ricity consumer s in the united States(US)[R]. Berkeley. CA. U SA: Lawren ce Berkel ey Nat ional Laboratory.
    LEE Sangseung,KIM Youngmin,PARK Jongkeun,et al.2007. Compressed air energy storage unitsfor power generation and DSM in Korea[C]∥IEEE Power Engineering Society GeneralMeeting.Tampa,FL,USA:[s.n.].
    LI Baozhu.2009. Demand side management new technologies application on grid development[D]. Beijing:North China Electric Power University.
    MALIDIN A S,KAYSER-BRIL C,MAIZI N,et al.2008. Assessing the impact of smart buildingtechniques:a prospective study for France[C]∥2008IEEE Energy2030Conference. Atlanta,GA,USA:IEEE.
    Modern grid initiative: a vision for modern grid [EB/OL].2009.06-19.
    Nowlan F S. Heap H.1978. Reliability-centered Maintenance. Springfield. Virginia: NationalTechnical Information Service. US Department of Commerce.
    Phillips. Almarin Commentary. In Harvey J. Goldschmid. H. Michael Mann. and J. FredWeston(eds).1974. Industrial Concentration: The New Learning. Boston: Little. Brown,409-410.
    Q/GDW383-2009智能变电站技术导则.北京:国家电网公司,2009.
    Q/GDW Z414-2010变电站智能化改造技术规范.北京:国家电网公司,2010.
    QURESHI W A,NAIR N K C,FARID M M,et al.2008. Demand side management through thermalenergy storage using phase change materia[lC]∥Australasian Universities Power EngineeringConference. Sydney,NSW,Australia:AUPEC,08:1-6.
    RICHARDSON I,THOMSON M,INFIELD D,et al.2009.A modelling framework for the studyof highly distributed power systems and demand side management[C]∥InternationalConference on Sustainable Power Generation and Supply. Nanjing,China:SUPERGEN’09:1-6.
    Strategic research agenda for europe’s electricity network future[EB/OL].2006.http://www.smartgrids.eu.
    Thor Hjartarson.2006. Condition Health Indices and Probabilities of Failure.5th AnnualWeidmann-ACTI Technical Conference Albuquerque. New Mexico,13-15Nov.
    United States Department of Energy Office of Electric Transmission and Distribution. Grid2030: anational version for electricity’s second100years[EB/OL].(2009-04-01).http:∥www.ferc.gov/eventcalendar/files/20050608125055-grid-2030.pdf.
    US Department of Energy.2007. Nation l Energy Techn ology Laboratory. Modern grid benefits[EB/OL].[2007208230]. ht tp://www. netl. doe. gov/modern grid/docs/.
    Vernon L.Smith.2000. Bargaining and Market Behavior: Essays in Experimental Economics [M].Cambridge University Press,58.
    Washington. DC.2008. http: www.elcon.org/documents/Publications/LCONS. Pecial Re PortAPril20OS. Pdf. July19.
    YOKOYAMA R.2009. The role of large scale battery storage for practical use of sustainable energyin smart grid [C]∥Interna-tional Forum on Smart Grid2009. Nanjing,China:[s.n.],79.
    Zadeh L A.1965. Fuzzy sets[J]. Information Control,(8):338-355.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700