外源DNA直接导入高梁的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将具有植株高大、茎秆多汁、含糖量高、抗病、生物产量高且生育期长等特点的热带高粱DNA通过花粉管通道导入到黑龙江省当地高粱品种中,以探讨此项技术用于高粱育种的可行性。
     于受体开花受粉后60min左右剪掉柱头,将供体DNA滴于切口处。导入后代出现了数量性状及质量性状等诸多性状的变异,变异性状包括农艺性状、育性、抗病性、含糖量及籽粒品质性状等。各性状的变异比率不同,且D_2代的质量性状分离比例不符合孟德尔遗传规律。
     对导入后代的品质性状的测定表明,有4个导入后代的淀粉含量高于受体,占总数的6.9%;3个导入后代的支链淀粉含量高于受体,占总数的5.2%;8个导入后代的单宁含量低于受体,占总数的11.4%。且出现了后代含量均高于或低于供体与受体的结果。
     将含糖量高的高粱DNA导入后,获得了15个高于受体含糖量的导入后代,占总数的7.9%。其中有8个导入后代的含糖量既高于受体,又高于供体,这是常规育种所不能得到的。
     将抗病性高于受体的DNA导入后,在导入后代中有27个导入后代的抗病性有所提高,占导入后代总数的9.1%,其中5个导入后代的抗病性提高了2级,3个导入后代的抗病性提高了3级,极显著地改变了受体的抗病性。
     利用导入后代配制杂交种后,部分不育系、保持系及恢复系的育性均发生了改变。同时导入后代的变异性状可以在杂交后代中表现出来,说明导入后所引起的性状变异是可遗传的。
     为了对导入后的变异后代进行验证,对导入后代进行了酯酶及过氧化物酶同工酶的测定。结果表明,导入后代的酶谱明显不同于受体,供体的酶带不同程度地出现在导入后代中,且出现了酶活性减弱及酶带缺失等现象,证明供体DNA片段已进入受体,并参与受体DNA的合成。这与导入后代性状的剧烈分离现象相符。
     同时对导入后代进行了RAPD分子验证。在后代的扩增产物中出现了供体具有,而受体没有的特异带,说明供体DNA片段已通过花粉管通道进入受体,并对受体基因的表达产生影响。
     利用外源DNA导入技术获得了常规育种无法得到的变异后代,实现了地理远缘的品种间的遗传物质转移,丰富了遗传类型,表明此项技术用于高粱的种质创新和品质改良是可行的,可作为常规育种的一个辅助手段。
Exogenous DNA of tropical sorghum with characters of tall plant height, more juice in haulm, high sugar content, diseases resistance, high biomass and long growth duration, was introduced directly into local sorghum varieties through pollen tube pathway, in order to study the feasibility of this technique used in sorghum breading.
    Stigma was cut when the receptor had been self-pollinated about 60 min, and dripped foreign DNA on the nick. Many characters could be variable, not only quantitative characters, but also qualitative ones, including agronomic characters, fertility, diseases resistance, sugar content, and kernel quality characters. The transferred frequencies of every variable characters were different. The regularity of segregation of qualitative characters in D2 was not accord with Mendel's regularity of segregation.
    The determination of quality characters indicated that, 4 transferred progenies'starch content was higher than their receptors, accounting for 6.9 %. 3 transferred progenies' amylopectin content was higher than their receptors, accounting for 5.1%, 8 transferred progenies' tannin content was lower than their receptors, accounting for 11.4%. Some transferred progenies' contents were both higher and lower than their receptors and donors.
    15 transferred progenies' sugar content was higher than their receptors, accounting for 7.9%. Of the 15 transferred progenies, 8 transferred progenies' sugar content was higher than their receptors and donors. These progenies can't be obtained in conventional breeding.
    27 transferred progenies' diseases resistance was increased because of the DNA transferring, accounting for 9.1%. In which 5 transferred progenies' diseases resistance increased 2 grade, and 3 transferred progenies' diseases resistance increased 3 grade. The disease resistant of receptor was increased significantly.
    When the transferred progenies were used in cross breading, some of the sterile lines, maintenance lines and restoring lines' fertility was changed. Meanwhile, variant characters of their transferred progenies could be appeared in filial generation. This indicated that the variant characters after transference were hereditable.
    To check the variant progenies, POD and ES isoenzymes were analysed in transferred progenies. The results indicated that the transferred progenies' bands of isoenzyme were different from their receptors. The donor's bands of isoenzyme appeared in the transferred progenies in various extends. The activity of isoenzymes was decreased and the bands of isoenzymes were lost. This proved that the DNA fragment of donor had entered to the receptor, and participate in DNA synthesis of receptor. This conformed to the transferred
    
    
    progenies' crazy segregation phenomenon.
    The transferred progenies were checked with RAPD. The specific bands were obtained in progenies' amplification primers, and the bands didn't exist in receptor. They inserted into receptor through pollen tube, and affected the expressing of genes in receptors.
    Variant progenies were obtained by exogenous DNA introduction. And these progenies couldn't be obtained in conventional breeding. It realized the transference of inheritable matter between varieties of distant geography, and made the inheritable types abundant. The results indicated that it was possible to use this technique to create new germplasm and improve attributes by using the pollen tube passage to introduce exogenous DNA. This method can be used as a complementary method of conventional breeding.
引文
1 陈启锋,陈璋,林学健等.论DNA直接导入植物——一项育种新途径的建立与评述.福建农学院学报.1993,22(1):1-11
    2 陈启锋,朱秀英,陈璋等.外源DNA导致水稻性状变异.福建农学院学报.1987,16(3):175-182
    3 陈家宽,杨继.植物进化生物学.武汉大学出版社,1994:153-194
    4 崔良国,刘升昌,汪黎明.谷子DNA导入玉米创造变异及其利用的研究.山东农业科学.2002,3:18-20
    5 邓立平,郭亚华,杨晓辉.外源基因导入黄瓜获得新品种.遗传.1995,17(2):13
    6 丁国华,池春玉,史芝文.农业分子育种中外源DNA导入技术的研究与发展.生物学教学.2000,25(11):2-3
    7 丁国华,徐仲,朱祥春等.花粉管通道法导入抗赤霉病烤烟总DNA D_1代性状变异的研究.东北农业大学学报.2000,31(2):173-179
    8 段晓岚,陈善葆.外源DNA直接导入水稻的研究.第二次中日农业生物技术科学讨论会文集.日本.1987:67-71
    9 伏军,严钦泉,徐庆国.导入外源DNA引起水稻性状变异的一种简便方法.湖南农业科学.1996,4:18-20
    10 龚蓁蓁,沈慰芬,周光宇等.授粉后外源DNA导入植物技术——DNA通过花粉管通道进入胚囊.中国科学(B辑).1988,6:611-614
    11 郭光荣.人工诱变与外源DNA直接导入相结合创造遗传变异的探讨.作物研究.1994,8(2):15
    12 郭三堆.Cryl A杀虫基因的人工合成.中国农业科学.1993,26(2):85-85
    13 郝秀英,王冬梅,危晓薇.用花粉管通道转化法将免防御素基因导入新疆陆地棉试验.新疆农业科学.2000,1:12-14
    14 洪亚辉,董延瑜,赵燕等.密穗高梁DNA导入水稻的研究.湖南农业大学学报.1999,25(2):87-91
    15 胡能书,万贤国.同工酶技术及其应用.湖南科学技术出版社,1985:1-14
    16 黄承彦,楚秀生,杨平平等.外源基因导入技术培育抗旱耐盐小麦新品种.山东农业科学.2000,4:4-6
    17 黄骏麒.棉花的外源DNA导入技术与分子育种.江苏农业科学.1990,6:16-19
    18 黄兴奇,宋令荣,陈利等.水稻孕穗期穗茎注射法导入外源DNA引起的性状变异.见农业分子育种研究进展.中国农业科技出版社,1993
    19 季慧强,陈启锋.外源DNA处理水稻不同方法的比较试验.福建农学院学报.1988,17(4):285-290
    20 蒋建雄,张福泉,李宗道等.棉花DNA导入苎麻的RAPD验证.湖南农业大
    
    学学报.2000,26(1):34-36
    21 孔令旗.高粱籽粒营养品质性状数量遗传研究概述.辽宁农业科学.199l,2:51-54
    22 孔令旗,张文毅,李振武.高粱籽粒蛋白质及其组份的配合力与杂种优势分析.作物学报.1992,18(5):352-358
    23 孔令旗,张文毅,李振武.高粱籽粒淀粉含量的配合力与杂种优势分析.辽宁农业科学,1992,1:18-20
    24 孔令旗,张文毅,李振武.高粱籽粒直链淀粉和支链淀粉含量的基因效应分析.作物学报.1995,21(5):
    25 雷勃钧,李希臣,卢翠华等.野生大豆外源DNA导入栽培大豆及RAPD验证.中国科学(B辑).1994,24(6):596-601
    26 雷勃钧.外源DNA直接导入(DIED)法的大豆分子育种成效.大豆科学.2001,(20)1:26-29
    27 李艾莲,任立明.人参外源DNA直接导入技术方法研究.农业生物技术学报.2000,8(3):248
    28 李涛,谢伟军,杨晚霞等.黑籽南瓜DNA导入西瓜后子代RAPD标记的变化.果树科学.1996,13(3):175-177
    29 李希臣,雷勃钧,卢翠华等.RAPD用于大豆外源DNA导入的分子验证.哈尔滨医科大学学报.1997,31(5):
    30 李远新,王关林,葛晓光.黄瓜授粉后外源基因直接导入技术研究.华北农学报.2002,15(2):89-94
    31 李玥莹,杨立国,刘世强等.简单实用的分子标记技术——随机扩增多态性DNA (RAPD).杂粮作物.2000,20(1):21-24
    32 李振武,支萍,孔令旗等.甜高粱主要性状的遗传参数分析.作物学报.1992,18(3):213-221
    33 梁明山,曾宇,周翔等.遗传标记及其在作物品种鉴定中的应用.植物学通报.2001,18(3):257-265
    34 刘根齐,张孔恬.高粱不育系与保持系授粉过程中外源恢复基因的引入及其后代表现.作物学报.1987,13(2):123-127
    35 刘德璞,袁鹰,庄炳昌.外源DNA导入大豆变异后代的SOD同工酶分析.大豆科学.1991,10(3):194-198
    36 刘德璞,袁鹰,李大敬.外源DNA直接导入植物技术的研究及应用.吉林农业科学.1998,4:17-21
    37 刘萍,张立杰,马宏伟等.燕麦DNA导入普通小麦的初步研究.麦类作物学报.2000,20(4):6-11
    38 刘学春,彭清才,宋哲等.外源DNA导入小麦引起后代性状变异的研究.山东农业科学.2002,2:19-22
    39 卢庆善.高粱学.中国农业出版社,1999:71
    40 卢雄斌,龚祖埙.植物转基因方法及进展.生命科学.1998,10(3):125-131
    
    
    41 南相日,刘文萍.PEG介导Bt基因转化大豆原生质体获得转基因植株.大豆科学.1998,17(4):326-329
    42 倪万潮,张震林,郭三堆.转基因抗虫棉的培育.中国农业科学.1985,3:6-10
    43 朴亨茂,赵粉善,赵基洪等.农业分子育种研究进展之水稻与菰属间性状转移研究初报.中国农业科技出版社,1993:61-68
    44 朴铁夫,粟长兰,韩玉珠等.玉米DNA导入小麦诱发变异的研究.农业与技术.2002,22(2):78
    45 沈法富,于元杰,尹承佾.罗布麻DNA导入陆地棉引起耐盐变异的研究.见棉麦分子育种研究.四川科学技术出版社,1994
    46 沈法富,于元杰,张学坤等.罗布麻DNA导入棉花选育抗虫种质系.华北农学报.1994,14(4):34-38
    47 石太渊,张华,冯立军.PCR、RAPD技术在植物研究中的应用.国外农学——杂粮作物.1995,5:16-18
    48 田长思,王正询,陈韬等.抗菌肽D基因导入番茄及转基因植株的鉴定.遗传.2000,22(2):86-89
    49 万文举,邹冬生,彭克勤.论生物诱变——外源DNA导入的双重作用.湖南农学院学报.1992,18(4):886-891
    50 万文举,张福泉,董延瑜.玉米DNA导入水稻获得种质变异.湖南农业科学.1992,3:6-7
    51 王罡,杜娟,张艳华.用花粉管通道法将Bt杀虫基因导入玉米自交系的研究.玉米科学.2002,10(1):36-37
    52 王浩波,林茂,杨坤等.导入南瓜DNA选育抗枯萎病西瓜新种质的研究.西北农业.2002,11(1):24-27
    53 王黎明.外源DNA导入高梁及其后代的RAPD分子验证.中国农学通报.2002,18(3):19-21
    54 王文静,刘景德,任林昌.新疆大赖草DNA导入栽培稻引起性状变异.新疆农垦科技.1999,2:26-27
    55 王文静,任林昌,战勇.新疆甘草DNA导入大豆性状变异的研究初报.新疆农垦科技.2001,1:14-15
    56 王子霞,张茂银,杨克锐等.新疆大赖草DNA导入小麦后代之间“聚合效应”研究.新疆农业科学.2000,6:253-255
    57 王中仁.植物等位酶分析.科学出版社,1996:69-73
    58 魏亦勤,李红霞,叶兴国等.外源抗病基因导入小麦的应用研究.甘肃农业科技.2002,3:10-14
    59 翁坚,沈慰芳,王自芬等.外源DNA导入棉花的分子验证.生物化学与生物物理学学报.1984,16(3):325-326
    60 吴小月.外源DNA导入技术在棉种改良中的应用研究.见农业分子育种研究进展.中国农业科技出版社,1993
    
    
    61 夏光敏,向凤宁,周爱芬.小麦与高冰草属间体细胞杂交获可育杂种植株.植物学报.1999,41(4):349-352
    62 肖光辉,刘建雄,肖兰异等.瓠瓜枯萎病抗性导入西瓜的遗传研究与利用.湖南农大学报.2000,2:90-92
    63 肖海军.高粱籽粒的营养品质及其改良对策.辽宁农业科学.1989,5:55-57
    64 向平安,洪亚辉,董延瑜.高粱DNA导入水稻的RAPD分子验证.湖南农业大学学报.1999,25(1):6-8
    65 闫春吟,杨品海,杨世刚.外源DNA导入技术在棉花抗病育种上的应用.新疆农垦科技.2002,3:40-41
    66 闫新甫,刘文轩,王胜军等.抗白粉病大麦DNA导入普通小麦的研究.见农业分子育种研究进展.中国农业科技出版社,1993:69-75
    67 杨景成,于元杰,刘凤珍等.外源DNA导入普通小麦雄性不育变异的分子验证.核农学报.2000,6:371-374
    68 杨立国,石太渊.应用外源总DNA直接导入法改良高粱农艺和抗性性状.国外农学——杂粮作物.1996,1:34-36
    69 杨晓光,杨镇.高粱叶斑病抗性观察研究.辽宁农业科学.1993,4:38-40
    70 杨欣同,于元杰,尹承佾等.棉花异科外源DNA导入陆地棉后代的根尖细胞有丝分裂观察.见棉麦分子育种研究.四川科学技术出版社,1994
    71 杨欣同,程立,于元杰等.棉花异科属外源DNA导入陆地棉后代的花粉母细胞减数分裂观察.见棉麦分子育种研究.四川科学技术出版社,1994
    72 姚方印,周学标,刘理梅.外源DNA导入培育水稻白叶枯病种质材料的研究.山东农业科学.2002,1:14-15
    73 于洪欣,柳建军,冯兆礼等.通过花粉管途径将抗虫基因(CpTI)导入小麦的研究.山东农业科学.1999,1:5-8
    74 于元杰,尹承佾,杨欣同等.罗布麻DNA导入陆地棉引起性状变异的研究.见农业分子育种研究进展.中国农业科技出版社,1993
    75 于元杰,尹承佾,沈法福等.麦棉分子育种研究.四川科学技术出版社,1995
    76 曾君祉,王东江,吴有强等.用花粉管途径获得小麦转基因植株.中国科学(B辑).1993,23(3):256-262
    77 张孔恬,刘根齐.小麦恢复可育基因非配子融合的转移.遗传.1986,8(5):8-10
    78 章力建,陈乐玫等.超声波法直接导入外源基因——高效烟草转化系统的建立.中国农业科学.1990,24(2):83-89
    79 张茂银,刘庆昌,王子霞等.用花粉管通道法将新疆大赖草DNA导入普通小麦的研究.农业生物技术学报.2000,8(2):165-168
    80 张秀英,葛春民,贾继增.山羊草属五个基本基因组RAPD分析.植物学报.1999,41(4):393-397
    81 赵炳然.直接导入外源DNA利用植物远缘杂种优势若干基本问题的认识.杂交水稻.1998,13(6):1-4
    
    
    82 赵姝华,张波.RAPD标记技术的实用性及稳定性探讨.国外农学——杂粮作物,1999,19(4):13-15
    83 郑国昌,王耀芝.花粉母细胞中染色质穿壁转移现象的普遍性与一致性.植物学报,1956,5(4):363-373
    84 周光宇,翁坚,龚蓁蓁.农业分子育种——授粉后外源DNA导入植物的技术.中国农业科学.1988,21(3):1-6
    85 周光宇.从生物化学的角度探讨远缘杂交的理论.中国农业科学.1978,2:16-20
    86 周光宇.农业分子育种研究进展.中国农业科学技术出版社,1993:1-246
    87 周光宇,龚蓁蓁,王自芬等.远缘杂交的分子基础——DNA片段杂交假说的一个论证.遗传学报.1979,6(4):405-413
    88 周建林,李达模,李宗道.外源DNA直接导入植物的分子育种技术概述.农业现代化研究.1996,17(4):237-239
    89 朱培坤.高等植物纲间杂交的探索.世界科学.1986,1:1-5
    90 朱生伟,黄国存,孙敬三.外源DNA直接导入受体植物的研究进展.植物学通报.2000,17(1):11-16
    91 朱生伟,徐仲,张寒霜等.用浸种法导入外源DNA转化烤烟遗传性状变异初探.华北农学报.2001,16(1):73-77
    92 朱新产,廖祥儒,付增光.导入外源DNA对小麦基因表达的影响.西北植物学报,1999,19(4):41-45
    93 朱新产,廖祥儒,付增光.导入大赖草DNA小麦后代的变异性状分析.西北农大学报.2000,1:6-10
    94 朱新产,陈耀峰,付增光.豌豆DNA导入小麦对籽粒蛋白构成的影响.莱阳农学院学报.2002,19(2):79-82
    95 朱新产,陈耀峰,付增光.外源基因导入小麦引起的生化特性变化 麦类作物学报.2002,22(3):17-20
    96 朱秀英,陈璋.生物工程应用于作物育种的试验研究.Ⅱ:外源DNA处理蚕豆的细胞学和同工酶的若干效应.福建农学院学报.1988,17(1):15-25
    97 Adela, Lorz H, Schell J, Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature, 1987, 325:274-276
    98 Binelli G, Gianfranceschi L, Pe M E, Taramino G. Busso C, Stenhonse J, Ottaviano E. Similarity of maize and sorghum genomes as revealed by maize RFLP probes. Theor. Appl. Genet. 1992, (84):10-16
    99 Birch RG, R Bower, AR Elliott, P BAM otier, T Franks, et al. Expression of foreign genes in sugarcane. In Proc. Int. Soc. Sugarcane Technol. Congr, Cartegena, Sept. 1996, 22nd, 2:368-373
    100 Bird CR, CJS Smith, JA Ray, et al. The tomato polgalacturonase gene and ripening-specific expression in transgenic plants. Plant Mol. Biol. 1988, 11:651462
    101 Bower R, AR Elliott, BAM Potier and RG Birch. High-efficiency,
    
    microprojectile-mediated cotransformation of sugarcane, using visible or selectable markers. Mol, Breed. 1996, 2:239-249
    102 Chittenden LM, Schertz KF, Lin YR, Wing RA, Paterson AH. Detailed RFLP map of sorghum bicolor ×S. propinquum, suitable for high-density mapping, suggests ancestral duplication of sorghum chro-mosomes or chromosomal segments. Theor. Appl. Genet. 1994, (87):925-933
    103 Christou P. Morphological description of transgenic soybqan chimdras created by the delivery, integration and expression of foreign DNA using electric discharge particle acceleration. Annals of Botany. 1990, 66:379-386
    104 Christou P. Soybean transformation by electric discharge particle acceleration. Physiol. Plant. 1990, 79:210-212
    105 De Block M, Herrera-Estrellu L, Van Montagu M et al. Expression of foreign genes in regenerated plants and their progeny. EMBO J. 1984, 3:1681-1689
    106 Dekeyser RA, Claes B, De Rycke, RMU, Caplan AB. Transient gene expression in intact and organized rice tissue. The Plant Cell. 1990, 2:591-602
    107 De Wet, JMJ, Chapaman GR, Mantel SH et al. The experimental Manipulation of ovules tissue, published by Longman Inc Y N. 1983, pp 197
    108 Down RE, AMR Gatehouse, WDO Hamilton, et al. Snowdrop lectin inhibits development and decreases fecundity of the glasshouse potato aphid (Aulacorthum solani) when administered in vitro and via transgenic plants both in laboratory and glasshouse trials. Journal of Insect Physiology. 1996, 42:1035-1045
    109 Eichholtz DA, GS Rogers, RB Horsch, et al. Expression of mouse dihydrofolate reductase gene confers methotrexate resistance in transgenic petunia plants. Somatic Cell Mol. Genet. 1987, 13:67-76
    110 Francis, K. et al, Preliminary results about sorghum seed tannin inheritance. Sorghum Newsletters. 1984, (27):103
    111 FuKuoka H, T Ogawa, M Matsuoka, Y Ohkawa and H Yano. Direct gene delivery into isolated microspores of plants. Plant Cell Rep. 1998, 17:323-328
    112 Gale MD, Genetic maps of hexaploid wheat, proc. 8th. Interm, Wheat Genet Sgmp, Beijing. 1993, 29-31
    113 Gooke RJ, Gel electrophoresis for the identification of plant variety. Journul of chromatography A. 1995, 698:281-289
    114 Graner A, Jaboor A, Schondelmaier J, Construction of an RFLP map of harley. Theor Appl Genet. 1991, 83(2):250-256
    115 Hamilton CM, A Frary, C Lewis and SD Tanksley. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl. Acad. Sci. USA. 1996, 93:9975-9979
    116 Hayes HK, Lmmer FR, Smith DC. 植物育种学.庄巧生等.第二版 .农业出版
    
    社.1962:111-122
    117 Herrera-Estrella L, M De Block, E Messens, JP Hemalsteens, M Van Montagu and J Schell. Chimeric genes as dominant selectable markers in plant cells. EMBO J. 1983, 2: 987-995
    118 Hess D. Investigations on into- and interspecific transfer of anthocyanin genes using pollen as a vector. Pfanzenphysiol. 1980, 98: 321-327
    119 Hess D, et al, Transformation experiments by pipetting. Agrobacterium into the spikelets of wheat(Triticum aestivum L.) Plant Sci. 1990, 72: 233-244
    120 Hinchee MAW, DV Conner-Ward, CA Newell, RE McDonnell, SJ Sato, CS Gasser, DA Fisschoff, DB Re, RT Fraley and RB Horsch. Production of transgentic soybean plants using Agrobacterium-mediated DNA transfer. BIO/TECHNOL. 1988, 6: 915-922
    121 Horsch RB, RT Fraley, SG Rogers, et al. Inheritance of functional foreign genes in plants. Science. 1984, 223: 496-498
    122 Ishida Y, H Saito, S Ohta, et al, High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat. Biotechnol. 1996, 14: 745-750
    123 Jones JDG, FM Carland, P Maliga and HK Dooner. Visual detection of transposition of the maize element Activator (Ac) in tobacco seedlings. Science. 1989, 244: 204-207
    124 Junhi Y, Guhung J. DNA uptake by imbibition and expression of a foreign gene. Physiologisa Plantarum. 1995, 94: 453-459
    125 Kartha KK, K Pahl, NL Leung et al. Plany regeneration from meristems of grain legumes: soybean, cowpean, peanut, chickpea and bean. Can J. Bot. 1981, 59: 1671-1679
    126 Keim P, Bearis WD, Schupp J M, RFLP analysis of soybean breeding populations, 1. Genetic structure differences due to inbreeding methods. Crop Sci, 1994, 34: 55-61
    127 Keim P, Schup TM, Trais S E. A high density soybean genetic map bassed on RFLP marks. Crop Sci. 1997, 37(2): 537-543
    128 Kumar V, B Jones and MR Davey. Transformation by Agrobacterium rhizogenes and regeneration of transgenic shoots of the wild soybean Glycine argyrea. Plant Cell Rep. 1991, 10: 135-138
    129 Laparra H, M Burrus, R Hunold, et al. Expression of foreign genes in sunflower: evaluation of three gene transfer methods. Euphytica. 1995, 85: 63-74
    130 Leon AJ, Use of RFLP markers for genetic linkage analysis foil percentage in sunflower seed. Crop Sci. 1995, 35(2): 558-564
    131 Li Z, A Hayashimoto and N Murai. A sulfonylurea herbicide resistance gene from Arabidopsis thaliana as a new selectable marker fof production of fertile transgenic rice plants. Plant Physiol. 1992, 100: 662-668
    132 Liu MN, RS Torisky, KP Mcallister, S Avdiushko, D Hildebrand and GB Collins. Somatic embryo cycling-Evaluation of a novel tranformation and assay system for
    
    seed-specific genes expression in soybean. Plant Cell, Tissue and Organ Culture. 1996, 47:33-42
    133 Lulsdorf MM, H Rempel, JA Jackson, SD Baliski and SLA Hobbs. Optimizing the production of tansformed pea (Pisum sativum L.) callus using disarmed Agrobacterium tumefaciens strains. Plant Cell Rep. 1991, 9:479-483
    134 Luo Zhongxun, Wu Ray, A simple method for the transformation of rice via the pollen-tube pathway. Plant Mol. Bio. Rep. 1988, 6(3):165-174
    135 Maheswaran G, M Welander, JF Hutchinson, MW Graham and D Richards. Transformation of apple rootstock M26 with Agrobacterium tumefaciens. J. Plant Physiol. 1992, 139:560-568
    136 Maughan PJ, R Philip, M-J Cho, JM Widholm and LO Vodkin. Biolistic transformation, expression and inheritace of bovine B-casein in soybean (Glycine max). In Vitro Cell. Dev. Biol. 1999, 35P:344-349
    137 McCabe DE and BJ Martinell. Transformation of elite cotton cultivars by particle bombardment of meristems. Biotechnology. 1993, 11:596-598
    138 McCormac, et al, The use of visual marker genes as cell-specific reporters of Agrobacterium-med T-DNA delivery to wheat (Triticum aestivum L.) and barley (Hordeum vulgate L.). Euphytica, 1998, v. 99, n, 1, p.17
    139 Mansur LM, Determing the likage of quantitative trait loci to RFLP markers using extreme phenotypes of recombinant inbreds of soybean. Theor Appl Genet. 1993, 86(8):914-918
    140 Meyer P. Variation of transgene expression in plants. Euphytica. 1995, 85:359-366
    141 Neuhaus G and G Spangenberg. Plant transformation by microinjection techniques. Physiol. Plant. 1990, 79:213-217
    142 Neuhaus, et al. High-Level expression of a tobacco chitinase gene in Nicotians sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Plant Mol. Biol. 1991, 16:141-151
    143 Ohta Y. High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc Natl Acad Sci USA. 1986, 83:715-719
    144 Pandey, K. K., Sexual Transfer of Specific Genes without Gametic Fusion, Nature, 1975, 256(5515):310-313
    145 Paul Christou, Tameria L. Ford, Matt Kofron. Produetion of transgenic rice (Oryga Sativa L.) Plants from agronomically important indica and japonica varieties via electric discharge particle acceliration of exogenous DNA into immature zygotic embryos. Bio/Technology, 1991, 9:91-96
    146 Peach Caand J Velten. Transgene expression variability (position effect) of CAT and GUS reporter genes drivenby linked divergent T-DNA promoters. Plant Mol. Biol. 1991, 17:49-60
    
    
    147 Peri A, O Lotan, M Abu-Abied, et al. Establishment of an Agrobacterium mediated transformation system for grape: the role of antioxidants during grape-Agrobacterium interactions. Nat. Biotechnol. 1996, 14:624-628
    148 Peterson L, Genetic diversity among wild and cultivated barley as revealed by RFLP. Theor Appl Genet. 1989, 6:679-681
    149 Raiber S, Schroder G, Schroder J. Molecular and enzymatic charaterization of two stibene synthases from eastern white pine. FEBS Lett. 1995, 361:299-302
    150 Reddy P. Appels R, Analysis of a genomic DNA segment carrying the wheat high-molecular-weight(HMW) glutenin Bx17 subunit and its use as an RELP marker. Theor. Appl. Genet. 1993, 85:616-624
    151 Sarfatti M, Katan J, Fluhr R, A RFLP marker in tomato linked to the Fusarium oxysporum resistance gene 12. Theor Appl Genet, 1989, 78(5):755-759
    152 Schroeder HE, AH Schotz, T Wardley-Richardson, D Spencer and T JV Higgins. Transformation and regeneration of two cultivars of pea (Pisum sativum L.) Plant Physiol. 1993, 101:751-757
    153 Shaw DM, RB Horsch, HJ Klee, et al. Engineering herbicide tolerance in transgenic plants. Science. 1986, 233:478-481
    154 Shoemaker RC, LA Amberger, RG Palmer, L Oglesby and JP Ranch. Effect of 2, 4-dichlorophenoxyacetic acid concentration on somatic embryogenesis and heritable variation in soybean [Glycine max(L.) Merr.]. In Vitro Cell. Dev. Biol. 1991, 27p:84-88
    155 Simmonds J, et al. Regeneration of Triticum aestivum apical explants after microinjection of germ line progenitor cells with DNA. Psysiologia Plantarum. 1992, 85:197-206
    156 Song Y C, The physical location of 14 RFLP makers in rice. Theor Appl Genet. 1995, 90(1):113-119
    157 Sugita M and W Gruissem. Developmental, organ-specific, and light-dependent expression of the tomato ribulose-1, 5-bisphosphate carboxylase small subunit gene family. Proc. Natl. Acad. Sci. USA. 1987, 84:7104-7108
    158 Sun GL, Fahima T, Kord AB, Identification of molecular markers linked to the Yr 15 stripe rust resistance gene of wheat originated in wild emmer wheat, Triticum dicoccoises. Theor Appl Genet. 1997, 95:622-628
    159 Tofer R, Gronenborn B, Jeff Schell, Hans-Henning Steinbiss. Uptake and transient expression of chimeric genes in seed derived embryos. The plant cell. 1989, 1:133-139
    160 Toriyana K, Arimoto Y, Uchimiya H, Hinata K, Transgenic rice plants after direct gene transfer into protoplast. Bio/Technology. 1998, 6:1072-1074
    161 Trick HN and JJ Finer. Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max(L.) Merrill] embryogenic suspension culture tissue. Plant Cell Rep. 1998, 17:482488
    
    
    162 Ulian EC, Smith RH, Gould JH. Transformation plants via the apex, In Vitro. In Vitro. 1988, 24(9):951-954
    163 Vasil V, et al. Stably transformed callus lines from microprojectile bombardment of cell suspension cultures of wheat. Bio/Technology. 1991, 9:743-747
    164 Vasil V, et al. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embtyogeneic callus. Bio/Technology. 1992, 10:667-674
    165 Vasil V, et al. Rapid production of transgenic wheat obtained by microprojectile bombardment of regenerable embrygenic calls. Bio/Technol. 1993, 11(2):1553-1558
    166 Vierling RA, Nguyen, Use of RAPD markers to determine the genetic diversity of dipoid, wheat genotypes. Theoe Appl Genet. 1993, 84(7-8):835-838
    167 Vierling RA, Genetic diversity among elite sorghum lines revealed by restriction fragment length polymorphisms and random amplified polymorphic DNAs. Theor Appl Genet. 1994, 87(7):816-820
    168 Welsh J, Honeycutt RJ, Mcdelland M, Parentage determination in maize hybrids usine the arbitrarily primed polymerase chain reaction. Theor Appl Genet. 1991, 82(4):573-576
    169 Welsh J, Michael McClelland. Figerprinting genomes using PCR with arbitrary primers. Nucleic Research. 1990, 18(22):7213-7218
    170 Williams JCK, Kubelic AR, Livak KJ et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Research. 1990, 18(22):6531-6535
    171 Woodruff et al, Inheritance of tannin content in sorghum. The J. of Heredity, 1982, (73):214-218
    172 Yoshikawa M, Tsuda M, Takeuchi Y, Resistance to fugal disease in transgenic tobacco plants expressing the phytoalexin elicitor-releasing factor, beta-1 3-glucanase from soybean. Naturwissenschaften. 1993, 809:417-420
    173 Yu LX, Nguyen. Genetic variation detected with RAPD markers among upland and lowland rice cultivars (Oryza sativa L). Theor Appl Genet, 1992, 87(6):668-672
    174 Yu ZH, Mackill DJ, Bonman JM, et al. Tagging gene for blast resistance in rice via linkage to RFLP markers. Theor. Appl. Genet. 1991, 81:417-476
    175 Zhou GY, Zeng YS, Yuan W X et al. The molecular basis of remote bybridization-evidence of sorghum DNA intergrated into rice genome. Scientia Sinica, Ⅹ Ⅹ Ⅳ . 1981, 5:701-709
    176 Zhou GY, Weng J. Yishen Zhen, Junqi Huang, Introduction of exogenous DNA into cotton embryos. Methods in Enzymology. 1983, 101:433-448
    177 Zupan JR and Zambryski. Transfer of T-DNA from Agrobacterium to the plant cell. Plant, Physiol. 1995, 107:1041-1047

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700