放线菌K5的种类鉴定及其对棉花枯萎病菌的拮抗和防病作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然许多地区种植的棉花为抗枯萎病品种,但病害仍较为严重。本论文从生物防治原理出发,研究对棉花枯萎病菌(Fusarium oxysporum f. sp. vasinfectum)具有拮抗作用的链霉菌,期望为棉花枯萎病的综合治理提供有效途径。
     取不同生态条件下的土样若干,用稀释分离法获得放线菌207株。以棉花枯萎病菌等多种病原菌为目标菌,抑菌带法测定,共筛选到32株具有拮抗活性的放线菌菌株,占所分离总数的15.46%。其中K5对棉花枯萎病菌的拮抗作用最强,抑菌带宽为8mm,同时对其他病菌也有一定的拮抗作用,如水稻稻瘟病菌(Pyricularia grisea)等。
     最有利于K5菌株拮抗作用发挥的培养条件是:利用大豆粉葡萄糖培养基,培养基pH为6.5-7.0,10%接种量,温度为28-31℃,120r/min振荡培养,时间为7d。
     K5培养滤液可以破坏枯萎病菌菌丝形态,使菌丝畸形、细胞壁破损、甚至细胞崩解。培养滤液处理9h即可见病菌菌丝细胞异常,17h出现细胞崩解。不同浓度培养滤液对病菌作用的差异表现在,高浓度可以缩短严重症状出现的时间。当培养滤液稀释100倍时,对菌丝形态仍具有破坏作用。培养滤液可抑制病菌菌丝生长、分生孢子的产生,最高抑制率分别达88.41%和77.45%;对分生孢子萌发和芽管生长的抑制率分别是98.62%和49.72%。随浓度下降,滤液的抑制作用减弱,但100倍稀释液对菌丝生长、产孢和分生孢子萌发仍具有一定的抑制作用。
     盆栽条件下,K5菌株的发酵滤液对棉花苗期枯萎病的防治效果达46.50%,与多菌灵浸种处理的防病效果相似。放线菌K5对棉苗不仅没有不良影响,反而有一定的促生作用,幼苗株高和鲜重均高于其他各处理。
     K5菌株可以产生基质内菌丝和气生菌丝,气生菌丝形成孢子长链,孢子椭圆形至球形,表面光滑。K5在高氏一号培养基上生长旺盛,气生菌丝灰红色,基质菌丝黄褐色,不产生可溶性色素;能较好利用麦芽糖、半乳糖,一般利用葡萄糖和鼠李糖,不能利用蔗糖、阿拉伯糖、果糖等;可以使明胶液化,牛奶胨化,淀粉水解;可以产生硫化氢和黑色素。以上培养性状、生理生化特征都与玫瑰产色链霉菌(Streptomyces roseochromogenus)相近。K5菌株16S rDNA序列测定,与玫瑰产色链霉菌的同源性高达99.63%,遗传距离为12.4。因此,认为K5菌株应该是玫瑰产色链霉菌(S. roseochromogenus)。
Although disease-resistant varieties of cotton were planted in many areas, Fusarium wilt of cotton occurred widely and severely. This paper studied a Streptomyces which has antagonism against Fusarium oxysporum f. sp. vasinfectum in order to provide an effective way for integrated management of Fusarium wilt of cotton.
     207 strains of actinomycetes were isolated from some soil samples collected from various areas with different ecology conditions. From them 32 strains of actinomycetes with antagonism against many pathogens such as F. oxysporum f. sp. vasinfectum were obtained by the inhibition zone method, which accounted for 15.46% of total strains. K5 strain exhibited the strongest antagonism against F. oxysporum f. sp. vasinfectum among all strains and the size of inhibition zone to pathogen was 8mm. Meanwhile, it also showed antagonistic effect on some other pathogenic fungi, such as Pyricularia grisea et al.
     The better culture conditons for K5 to exert its antagonism were listed as follows: The strains was cultured for 7 days at 28-31℃in the oybean and glucose medium, in which pH value was 6.5-7.0, 10% inoculation amount, and shaking at 120r/min.
     The culture filtrate of K5 revealed obvious damage and inhibitory effects on the mycelial morphology and growth of F. oxysporum f. sp. vasinfectum. When the pathogen was cultured in amended medium with K5’culture filtrate, it was observed by microscope that the hypha became abnormal, cell wall was destroied, which could lead to leakage protoplasm from the wound and even lysis of hypha . The mycelium cultured for 9h in above amended medium present non-normal, and for 17 hours the cells of mycelium were destroyed. There was some difference in mycelium treated by culture filtrate with different concentration. The hyphal cell lysis occurred soon at the high concentration of the culture filtrate. When the culture filtrate was diluted 100 times, the culture filtrate could also destroy the hypha. The culture filtrate could inhibit the growth of hypha and sporulation, the rates of inhibition were 88.41% and 77.45%, respectively; the inhibitory rates to conidial germination and growth of germ-tube were 98.62% and 49.72%, respectively. As the dilution of the filtrate was increased, the inhibitory effect on pathogen of the filtrate could decline. Although the culture filtrate was diluted 100 times, it still showed inhibition to the growth of hypha, sporulation and conidial germination.
     The results of pot tests showed that the control effect of the ferment filtration of K5 on seedling Fusarium wilt of cotton was 46.50%, which resembled those of chemical fungicide carbendazim. Not only K5 had no any damage on cotton seedlings, but also it could promote the cottons’growth, the seedling height and weight were significantly higher than that of control plants.
     K5 could produce substrate mycelia and aerial mycelia. The aerial mycelia formed catenarian spore-filaments, the shape of spore was oval or round and the surface of spore was smooth. K5 grew well in Gause’s No.1 medium, the color of aerial mycelia was grey-red and the color of substrate mycelia was filemot, and there was no soluble pigment. K5 could well make good use of maltose, galactose, the ability of using glucose and rhamnose was moderate while it could not use sucrose, arabinose and fructose. Some physiology phenomena of the strain such as gelatin liquefaction, milk peptonization, starch hydrolysis, and melanin-like substance production could be observed. Its characteristics of morphology, physiology and biochemics were similar to those of Streptomyces roseochromogenus. K5’s 16S rDNA sequences analysis were achieved, the overall similarity value between K5 and S. Roseochromogenus was 99.63% and the hereditary distance was 12.4. According to above experiment, the strain K5 was identified to be S. roseochromogenus.
引文
[1] 何旭平, 潘光照, 张敏健, 等. 国外棉花枯萎病研究进展[J]. 中国棉花, 1999, 26(5): 4-5
    [2] 潘光照, 何旭平, 张敏健, 等. 我国棉花枯萎病研究进展[J]. 中国棉花, 1999, 26(3): 9-10
    [3] 朱薇玲, 缪礼鸿, 刘晓红, 等. 棉花枯萎病菌的拮抗细菌筛选[J]. 武汉工业学院学报, 2006, 25(2): 7-9
    [4] Abbasi P A, Al-Dahmani J, Sahin F, et al. Effect of compost amendments on disease severity and yield of tomato in conventional and organic production systems[J]. Plant Disease, 2002, 86: 156-161
    [5] Jacobsen B. Role of plant pathology in integrated pest management[J]. Phytopathology, 1997, 35:373-391
    [6] Baker R., Elad Y, et al. The controlled experiment in the scientific method with special emphasis on biological control[J]. Phytopathology, 1984, 74 (8): 1019-1021
    [7] Biological Control Work Group. Alternative paradigms for commercializing biological control: Workshop whitepaper. Online. Rutgers Workshop Organizing Committee and Experimental Station Committee on Policy. 1998
    [8] Shadamanova N, Karimov Kn, shankulova. Effectiveness of Trichoderma against complex infectious background[J]. Khlopkovodstvo, 1981, (5): 27-28
    [9] Sivan A, I Chet. Biological control of Fusarium spp. in cotton, wheat and muskmelon by Trichoderma harzianum[J]. Phytopathology, 1986, (116): 39-47
    [10] 袁虹霞, 李洪连, 王振跃, 等. 利用土壤拮抗性微生物防治棉花枯萎病[J]. 中国生物防治, 1998, 14(4): 156-158
    [11] 于文善, 吴 昊, 郭玉人, 等. 木霉对苗木土传病原真菌的拮抗作用[J]. 林业科技, 1997, 22(6): 31-33
    [12] 曹 君, 高智谋, 潘月敏, 等. 枯草芽孢杆菌 BS 菌株和哈茨木霉 TH-1 菌株对棉花枯黄萎病菌的拮抗作用[J]. 植物病理学报, 2005, 36(5):170-172
    [13] 徐 同, 钟静萍, 李德萍. 木霉对土传病原真菌的拮抗作用[J]. 植物病理学报, 1993, 23(1): 63-66
    [14] Yang Hetong, Tang Wenhua, Maarten Ryder, et al. Mode of action of Trichoderma spp.againstFusarium oxysporum f. sp. vasirfectum and Verticillium dahliae[J], Shangdong Science, 2005, 18(3): 9-15
    [15] 惠有为, 孙 勇, 潘亚妮, 等. 木霉在植物真菌病害防治上的作用[J]. 西北农业学报, 2003, 12(3): 96-99
    [16] Sivasithamparam K and Ghisalbert E I.Secondary metabolism in Trichoderma and Glicladium [A] Tricoderma and Gliocladium. Vol 1:Basic biology, taxonomy and genetics[C]. London: Taylor& Francis Ltd,1998,139-190
    [17] 王玉菊, 祈红英, 郭坚华. 植物土传病害的微生物防治研究进展[J]. 世界农业, 1995, (1): 37-39
    [18] Savin A. The possible role of competition between Trichoderma harzinum and Fusarium oxysporum on rhizosphere colonization[J]. Phytopathology, 1989, 79(2): 198-203
    [19] 王 芊. 木霉菌在生物防治上的应用及拮抗机制[J]. 黑龙江农业科学 2001, (1): 41-43
    [20] Dal Soglio F K, Bertagnelli B L. Production of chitinolytic enzymes and endoglucanase in the soybean rhizosphere in the presence of Trichoderma harzianum and Rhizoctonia solani[J]. Biological Control , 1998, 12, 111-117
    [21] Srinivasam U, Staines H J. Chitinase and laminarinase production in liquid culture by Trichoderma spp and their role in biocontrol of wood decay fungi[J]. International Biodeterioration & Biodegradation , 1995, 337-353
    [22] 杨合同. [博士论文] [D] 北京: 中国农业大学, 1998
    [23] 杨合同, 唐文华, M.Ryder. 木霉菌与植物病害的生物防治[J]. 山东科学, 1999, 14(2): 7-20
    [24] 王未名, 陈建爱, 孙永堂, 等. 六种土传病原真菌被木霉抑制作用机理的初步研究[J]. 中国生物防治, 1999, 15(3): 142-143
    [25] Bailey B A, Lumsden R D. Trichoderma and Gliodadium[J]. Phytopathology, 1998, 2: 185-204
    [26] Howell C R, Hansori L E, Stipanovie R D, et al. Induction of terpenoid synthesis in cotton roots by seed treatment with Trichoderma virens [J]. Phytopathology, 1999, 89: 248- 252
    [27] 于晓丹, 李 刚, 张彩霞, 等. 木霉生防机制的研究进展[J]. 杂粮作物, 2004, 24(6): 359-360
    [28] Howel1 C R, Hanson L E, Stipanovic R D, et al. Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens[J].Phytopathology, 2000 , 90 : 24-252
    [29] 郭润芳, 刘晓光, 高克祥, 等. 拮抗木霉菌在生物防治中的应用与研究进展[J]. 中国生物防治, 2002, 18(4): 180-184
    [30] Di Pietro, Lorito M, Hayes C K, et al. Biological control mechanism of microorganism[J]. Phytopathology, 1993, 83: 308- 313
    [31] 张世平. 棉花枯黄萎病生物防治新途径[J].中国棉花, 1996, 23(7): 4-6
    [32] 刘 波, 朱育菁, 周涵韬, 等. 农作物枯萎病的研究进展[J]. 厦门大学学报(自然科学版), 2004, 43(8): 48-57
    [33] 李 敏, 刘润进, 李晓林. 大田条件下丛枝菌根真菌对西瓜生长和枯萎病的影响[J]. 植物病理学报, 2004, 34(5): 472-473
    [34] 郝晓娟, 刘 波, 谢关林, 等. 植物枯萎病生物防治研究进展[J]. 中国农学通报, 2005, 21(7): 319-322, 337
    [35] 王明祖, 周华众, 付艳平, 等. 36-1 菌对植物病原真菌的拮抗性[J]. 中国生物防治, 1996, 12(1): 20-23
    [36] 齐东梅, 梁启美, 惠 明, 等. 棉花枯萎、黄萎病拮抗芽孢杆菌的抗菌蛋白特性[J]. 微生物学通报, 2005, 32(4): 42-46
    [37] 梁启美, 齐东梅, 贾 洁, 等. 棉花黄、枯萎病拮抗菌的筛选及抗菌蛋白 B110-a 的初步鉴定[J]. 植物保护, 2005, 31(5): 25-28
    [38] 朱薇玲, 缪礼鸿, 刘晓红, 等. 芽孢杆菌 B15 对棉花枯萎病菌的拮抗性能[J]. 武汉工业学院学报, 2006, 25(3): 8-10
    [39] 朱薇玲, 缪礼鸿, 刘晓红, 等. 芽孢杆菌 B15 及其代谢产物对棉花枯萎病菌的抑菌效果[J]. 湖北农业科学, 2006, 45(5): 604-606
    [40] 孔 建, 王文夕, 赵白鸽, 等. 枯草芽孢杆菌 B-903 菌株的研究 Ⅱ . 对植物病原菌的抑制作用和防治试验[J]. 中国生物防治, 1999, 15(4): 157-161
    [41] 李爱平, 张永祥. 益微工程菌防治棉花枯黄萎病初探[J]. 中国生物防治, 1995, (4): 185
    [42] Fuchs J, Defago G. Protection of tomatoes against Fusarium oxysporum f.sp lycopersici by combining a non-pathogenic Fusarium with different bacteria in untreated soil[J]. Phytopathology, 1991, 8: 51-56
    [43] Lemanceau P, Alabouvette C. Biological control of fusarium diseases by fliorescent Pseudomomas and non pathogenic Fusarium[J]. Crop Protection, 1991, 10: 279-286
    [44] Boer M de, et al. Control of Fusarium wilt of radish by combining Pseudoonas putida strains that have different disease-suppressive mechanisms[J]. Phytopathology, 2003, 93(59): 626-632
    [45] 李湘民, 华菊玲, 宋爱芝. 棉花苗期病害拮抗菌的筛选[J]. 江西农业学报, 1994, 6(2): 118-121
    [46] 陈三凤, 李季伦. 作物根际和叶围中产几丁质酶微生物的分布及其抑制真菌作用[J]. 生物防治通报, 1994, 10(2): 58-61
    [47] 何建清, 吴云锋, 袁耀锋. 西藏色季拉山土壤拮抗放线菌的筛选[J]. 西北农林科技大学学报(自然科学版), 2005, 33(8): 187-189
    [48] 张克诚, 李研学, 贾恩宽, 等. 拮抗链霉菌 S-5 对棉花病害的防治作用[J]. 中国农学通报, 2002, 18(2): 26-29
    [49] 宗兆锋, 卫亚红, 高 利, 等. 几丁质降解放线菌对棉花枯、黄萎病的作用[J]. 西北农林科技大学学报(自然科学版), 2003, 31(6): 63-65
    [50] 张 升, 缨卫国, 努尔孜亚, 等. 新型生物制剂对棉花黄、枯萎的病田间防治研究[J]. 石河子大学学报(自然科学版), 2004(22): 71-73
    [51] 王永卫, 卢国政, 卢凤超, 等. 生物制剂 9.5%克黄枯防治棉花枯、黄萎病效果好[J]. 中国棉花, 2004, (2): 33-34
    [52] 熊桂和, 胡江湖, 蒋善友, 等. 新克黄枯防治棉花枯萎病效果[J]. 安徽农学通报, 2005, 11(1): 59
    [53] Yang Hetong, Tang Wenhua, Maarten Ryder, et al. Efficacy of isolates and formulation of Trichioderma spp. against cotton fungal diseases[J]. Shangdong Science, 2005, 18(3): 85-90
    [54] 董合忠, 李维江, 刘 锐, 等.植物诱导抗病性及其在棉花防治中的利用[J]. 山东农业科学, 2002(2): 42-46
    [55] Howell C R. Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens[J]. Phytopathology, 2000, 90: 248-252
    [56] 吴洵耻, 史维泽, 刘俊展, 等. 番茄尖孢镰刀菌诱导棉花抗枯萎病的效果—诱导棉花抗黄枯萎病研究之三[J]. 植物病理学报, 1993, 23(2): 225-229
    [57] 缪卫国, 田逢秀. 两种益微菌对枯萎病菌抑制能力的离体和活体测定[J]. 中国生物防治, 1998, 14(1): 32-34
    [58] 闫春吟, 杨品海, 杨世刚. 外源 DNA 导入技术在棉花抗病育种上的应用[J]. 新疆农垦科技, 2002, (3): 41-42
    [59] 乐锦华, 祝建波, 崔百明, 等. 利用目的基因转化技术培育棉花抗病新品种[J]. 石河子大学学报, 2002, 6 (3): 173-178
    [60] 程红梅, 简桂良, 倪万潮, 等. 转几丁质酶和 β-l,3-葡聚糖酶基因提高棉花对枯萎病和黄萎病的抗性[J]. 中国农业科学, 2005, 38(6): 1160-1161
    [61] 余宏章. 防治棉花枯萎病的新技术—施用生物有机复合肥[J]. 江西棉花, 1997, 2: 31
    [62] 徐瑞富, 刘鸣韬, 陈守峰. 植物病害生物防治中存在的问题及对策[J]. 河南职技师院学报, 1999, 27(2): 23-25
    [63] 阮继生, 刘志恒, 梁丽糯, 等. 放线菌研究与应用[M]. 科学出版社, 1990
    [64] 高宣亮. 药物的发现[M]. 人民卫生出版社, 北京, 1997
    [65] Collins M D. In:Chimical Methods in Bacterial Systematics(eds.)Goodfellow
    [66] Carl S, Wiesel M. Mycophenolate mofetil[MMF]for prevention of kindney transplant rejection. A new irnrnunosuppressive agent, international mycophenolatemofetil study group[J]. Urologe A, 1998, 37(3): 282
    [67] Hardt I H, Steinmeta H. New natural epothilones from sporangium cellulosum, strains Soce 90/B2 and Soce 90/DB:isolation, structure, elucidation and SAR studies.[J]. J Nat prod, 2001, 64(7): 847
    [68] Wessjohann L. Epothilones, promising natural products with taxol-like activity[J]. Angew Chem Int Ed Engl, 1997, 36: 715
    [69] Austin B. A probiotic strain of Vibrio alginolyticus effective in reducing disease caused by Acromnas salmonicida, Vibrio anguillarum and Vibrio ordalii[J]. Journal of Disease, 1995, 18: 93-96
    [70] Ensign J C. lntroduction to the Actinomycetes. In The Prokaryotes, Second Edition Vol.1, 22-25
    [71] 来航线, 朱铭莪, 薛泉宏, 等. 西藏索马地区土壤放线菌的初步鉴定[J]. 西北农业大学学报, 1998, 26(2): 80-83
    [72] 来航线, 朱铭莪, 袁胜君. 喜玛拉雅山中部林地土壤中放线菌的鉴定[J]. 西北农业大学学报, 1998, 26(6): 36-39
    [73] 徐丽华, 杨宇容, 郭光远, 等. 云南若干地区放线菌区系及资源考察: Ⅷ . 滇中高原放线菌资源[J]. 微生物学报, 1991, 18(6): 336-339
    [74] 徐丽华, 姜成林. 云南若干地区放线菌区系及资源考察: Ⅸ . 滇西和滇东北地区[J]. 微生物学报, 1995, 35(1): 58-64
    [75] 徐丽华, 姜成林. 云南若干地区放线菌区系及资源考察: Ⅹ . 滇东南地区[J]. 微生物学报, 1996, 36(1): 48-52
    [76] 金 湘, 孟晓江, 李玉国, 等. 吐鲁番盆地稀有放线菌的研究[J]. 新疆农业科学, 1994, (6): 271-273
    [77] 薛泉宏, 谭志远, 朱铭莪, 等. 西藏土壤放线性菌的初步研究[J]. 西北农业大学学报, 1999, 27(1): 28-32
    [78] 崔庆锋, 王黎明, 刘志恒, 等. 酸性土壤中嗜酸稀有放线菌的多样性研究[J]. 微生物学报, 2004, 44(5): 571-575
    [79] 苏 雪, 张 辉, 冯克宽. 榆中县北山干旱地区不同作物根际放线菌的分离与鉴定[J]. 西北师范大学学报(自然科学版), 2005, 41(3): 67-70, 74
    [80] 罗红丽, 黄 英, 王黎明, 等. 西藏地区土壤放线菌种群多样性及拮抗活性研究[J]. 微生物学报, 2005, 45(5): 724-727
    [81] 马萍, 张玲琪, 魏蓉城, 等. 西双版纳橡胶、咖啡和胡椒根际放线菌的抗菌作用研究[J]. 云南大学学报(自然科学版), 1995, 17(3): 229-233
    [82] 黎循航, 刘姝, 涂国全, 等. 链霉菌 702 所产生物活性物质抑菌活性的初步研究[J]. 江西农业大学学报(自然科学版), 2002, 24(6): 829-832
    [83] 安德荣, 慕小倩, 刘翠娟, 等. 土壤拮抗放线菌的分离和筛选[J]. 微生物学杂志, 2002, 22(5): 1-3
    [84] 张 波, 吴文君, 宗兆锋. 放线菌 Z139 菌株的分离、鉴定及其生物活性[J]. 西北农林科技大学学报(自然科学版), 2005, 33(8): 69-72
    [85] 庄敬华, 孙国良, 高增贵, 等. 番茄灰霉病生物防治菌株的筛选[J]. 沈阳农业大学学报,2005-02, 36(1): 33-36
    [86] 谷祖敏, 苏 州, 刘宏伟, 等. 番茄灰霉病菌拮抗放线菌的分离和筛选[J]. 辽宁农业科学, 2004(3): 1-2
    [87] 段学辉, 冷桂华, 曾文兵, 等.紫黑吸水链霉菌 Streptomyces violaceoniger-hygroscopicus 发酵代谢产物对几种常见果蔬病原菌的拮抗活性[J]. 江西农业大学学报, 2004, 26(2): 266-269
    [88] 邢 鲲, 韩巨才, 刘慧平, 等. 辣椒内生放线菌的分离、鉴定和拮抗作用[J]. 安徽农业科学, 2005, 33(5): 777-778
    [89] 杨秀芳, 刘伟成, 卢彩鸽, 等. 拮抗放线菌 A03 的生防作用及其分类鉴定[J]. 植物保护学报, 2007, 34(1): 73-77
    [90] 田小卫, 龙建友, 白红进, 等. 一株放线菌次生代谢产物抗菌活性的初步研究[J]. 植物保护, 2004, 30(2): 51-54
    [91] 陈 丽, 安德荣, 白 萍, 等. 拮抗放线菌 S930-6 发酵液精提物对几种作物病害的防治效果[J]. 农药, 2004, 43(3): 120-122
    [92] 张亚平, 李国英. 北疆棉花根际微生物对棉花立枯病拮抗作用的研究[J]. 石河子大学学报(自然科学版), 1998, 1(4): 8-11
    [93] 魏艳敏, 刘大群, 田世民, 等. 链霉菌(Streptomyces spp.)对几种蔬菜病原菌的拮抗作用[J]. 河北农业大学学报, 2000, 23(3): 65-68
    [94] 方羽生, 杨卫华, 张洪玲, 等. 放线菌对 4 种病原真菌的拮抗作用初探[J]. 广东农业科学, 2001, (5): 39-41
    [95] 祁碧菽, 杨文香, 刘大群. 链霉菌对玉米弯孢霉菌抑制作用的初步研究[J]. 河北农业大学学报, 2000, 23(3): 76-79
    [96] 王继栋, 魏孝义, 朱西儒, 等. 荔枝霜疫霉拮抗菌株链霉菌 sp.SC120 抗真菌活性代谢物的研究[J]. 中国抗生素杂志, 2002, 27(5): 257-259, 297
    [97] 李 毅, 王国平, 张克诚. 拮抗放线菌LJ50和MJ52的分离与初步鉴定[J]. 湖南农业大学学报(自然科学版), 2005, 31(3): 310-313
    [98] 乔宏萍, 黄丽丽, 王伟伟, 等. 小麦全蚀病生防放线菌的分离和筛选[J]. 西南农林科技大学学报(自然科学版), 2005, 33(8): 1-4
    [99] 马 艳, 常志州, 黄红英, 等. 堆肥中蔬菜土传病害生防菌党的筛选及评价[J]. 江苏农业学报, 2005, 21(3): 243-244
    [100] 胡 俊, 刘正坪, 周洪友, 等. 向日葵菌核病生防放线菌的分离筛选及拮抗作用的初探[J]. 华北农学报, 2006, 21(1): 96-99
    [101] 宋永燕, 李 平, 郑爱萍, 等. 抗稻瘟病拮抗菌 D-2 的鉴定及其活性代谢物的研究[J]. 植物病理学报, 2005, 35(4): 352-358
    [102] 王 燕, 宗兆锋, 程联社, 等. 放线菌在植物病害生物防治中的应用[J]. 杨凌职业技术学院学报, 2005, 4(3): 21-23
    [103] Hatsu M, Sasaki T, Miyadoh S, et al. SF 2487, a new polyether antibiotic produced by Actinomadura[J]. Antibiot Tokyo, 1990, 43(3): 259-66
    [104] Iwami M, Kiyoto S, Nishikava M, et al. New antitumor antibiotics, FR-900405 and Fr-900406.I. Taxonomy of the producing strains[J]. Antibiot-Tokyo, 1985, 38(7): 835-839
    [105] Ligon J M, Hill D S, Hammer P E, et al. Natural procucts with antifungal activity from Pseudomonas biocontrol bacteria[J]. Pest Man Sci, 2000, 56: 688-695
    [106] 尹萃耘. 我国利用抗生素防治农作物病害的进展[J]. 中国生物防治的进展, 1984
    [107] Manulis S D, Zutra F, Kleitman I, et al. Streptomycin resistance of Erwinia amylovora in Israel and occurrence of fire blight in pear orchards in the autumn[J]. Acta Hort. 1999, 489: 85-87
    [108] Manulis S D, Zutra F, Kleitman O, et al. Distribution of streptomycin-resistance strains of Erwinia amylovora in Israel and occurrence of blossom blight in the autumn[J]. Phytoparasitica, 1998, 26: 223-230
    [109] Kim B S, Moon S S, Hwang B K. Structure elucidation and antifungal activity of an anthracycline antibiotic, daunomycin, isolated from actinomadura roseola[J]. Agric Food Chem, 2000, 48: 1875-1881
    [110] Kim B S, Moon S S, Hwang B K. Isolation, identification and antifungal activity of a macrolide antibiotic, oligomycin A, produced by Streptomyces libani[J]. Can. J. Bot. 1999, 77: 850-858
    [111] 陈琦冈, 楮洪标, 孙 秋, 等. 放线菌 YIM30997 发酵特性及其活性组分提取方法的初步研究[J]. 云南大学学报(自然科学版), 2003, 25(增刊): 15-17
    [112] Chiou C S, Jones. Nucleotide, sequence analysis of a transposon(Tn5393)carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria[J]. Bacteriol, 1993, 175: 732-740
    [113] Chiou C S, Jones. Expression and identification of the strA-strB gene pair from strentnrnvcin-resistance Erwinia amylovora[J]. Gene , 1995, 152: 47-51
    [114] Chiou C S, Jones. Molecular analysis of high-leve1Streptomycin resistance in Erwinia amylovora[J]. Phytopathology ,1995, 85: 324-328
    [115] Jones A L, Norelli, G R Ehret. Detection of streptomycin-resistance Pseudomonus syringae pv. papulans in Michigan apple orchards[J]. Plant Dis, 1991, 75: 529-531
    [116] Pohronezny K, M L Sommerfeld, R N Raid. Streptomycin resistance and copper tolerance among strains of Pseudomonas cichorii in celery seedbeds[J]. Plant Disease, 1994, 78: 150-153
    [117] Thomson S V, S C Gouk, J L Vanneste, et al. The presence of streptomycin resistant strains of Erwinia amylovora in New Zealand[J]. Acta Hortic, 1993, 338: 223-225
    [118] 赵 蕾, 宋家华, 杨合同, 等. 一种农用拮抗链霉菌的初步研究[J]. 中国生物防治, 1998, 14(1): 18-20
    [119] 李东平. [硕士论文] [M] 陕西: 西北农林科技大学, 2005
    [120] 姜 钰, 董怀玉, 徐秀德, 等. 放线菌在植病生防中的研究进展[J]. 杂粮作物, 2005, 25(5): 329-331
    [121] Kortemaa H, Pennanen T, Smolander A, et al. Distribution of Antagonistic Streptomyces griseoviridis in Rhizosphere and Non-rhizosphere Sand [J]. Phytopathology, 1997, 145: 137-143
    [122] 徐长伦, 董平, 马合木提, 等. 防治哈密瓜疫霉病抗生素产生菌的鉴定[J]. 微生物学通报, 1994, 21(6): 350-352
    [123] 杨石嶂 侯芳玉. 不吸水链霉菌代谢产物体内外抗致病真菌作用的观察[J]. 吉林农业科学, 1998, (l): 93-96
    [124] Nair M G, Chandra A, Thorogcod D L. Gopalamicin, an antifungal mactodiolide produced by soil actinomycetes[J] Agric Food Chem, 1994, 42: 2308-2310
    [125] EL-Tarabily K A, Soliman M H, Nassar A H, et al. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes[J]. Plant Pathology, 2000, 49: 573-583
    [126] G D Inglis, L M Kawchuk. Comparative degradation of comycete, ascomycete and basidiomycete cell walls by mycoparasitic and biocontrol fungi[J]. Microbiol , 2002, 48: 60-70
    [127] Goodfellow M, Pirouz T. Numerical classification of sporoactinomycetes containing mesodiaminopimelic acid in the cell wall[J]. Gen Microbiol, 1982, 128: 503-527
    [128] K A El-Tarahily, M H Soliman. Biological control of Sclerotinia minor using a chitinolytic bacterium and sctinomycetes[J]. Plant Pathology , 2000, 49: 573-583
    [129] 宗兆锋. [硕士论文][M]陕西: 西北农林科技大学, 2003
    [130] Van Arsdall R T, Frantz C. Potential role of farmer cooperatives in reducing pest risk: Final report. Online. National Council of Farmer Cooperative. US EPA, Pesticide Environmental Stewardship Program. 2001
    [131] Paulo SR Coelho, Anuj Kumar, Michael Snyder. Genome-wide mutant collections:toolboxes for functional genomics[J]. Microbiol, 2000, 3: 309-315
    [132] Woese C R. Bacterial evolution[J]. Microbiol Rev, 1987, 51: 221-271
    [133] Woese C R, Kandler O, Wheelis M. Towards a natural system of organisms: Proposal of the domains Archea, Bacteria, and Eucarya[J]. Proc Natl Acad Sci, 1990(87): 4576-4579
    [134] Stackebrandt E, Rainey F A, Ward-Rainey N L. Proposal for a new hierarchic classification system, Actinobacteria classis nov[J]. Syst Bacteriol, 1997(47): 479-491
    [135] 阮继生. 阮继生论文选集[M]. 2005.
    [136] Gao B, Gupta R S . Conserved indels in protein sequences that are characteristic of the phylum Actinobacteria[J]. Syst Evol Microbiol , 2005(55): 2401-2412
    [137] Ahn C, stiles M E. Plasmid-associated bacteriocin production by a strain of Camobacterium piscicola from meat[J]. Applied and Environmental Microbiology, 1990, 56(8): 2503-2510
    [138] Yan Xun-chu. Taxonomy and Identification of Actinomycetes[M]. Beijing:Science Press,1992: 1- 40
    [139] Diecz A, Uarhews J. Definitive comparison of the Streptomyces hygroscopicuS-like complex [C]. International Symposium on Taxonomy(eds.) Prauser H, Jena, 1968, 173-177
    [140] 中科院微生物所放线菌分类组. 链霉菌鉴定手册[M]. 北京. 科学出版社, 1975
    [141] GoodfellowM, William S T, Mordaraki M. Introduction to and importance of Actinomyces [A].In: The Biology of The Actinomyces Goodfellow M, William S T, Academic Press:1984, 1-5
    [142] 伯杰. 细菌鉴定手册(第八版). 北京:科学出版社, 1990
    [143] Actionmycetes. Zpl. Bakt. Suppl. Gustav Ficher Verlag Stuttgart. New York, 1981, 11:111-116
    [144] 张利平, 陈冠平. 放线菌化学分类的现状及发展趋势[J]. 微生物学报, 1997, 24(5): 310-312
    [145] Wayne L G, D J Brenner, R R Colwee1. Report of the Ad Htoc Committee on Reconciliation of Approaches to Bacteriol Systematics[J]. Int. J. Syst. Bacterial, 1987, 37: 463-464
    [146] Hill L R. An index to deoxyribonucleic acid base composition of bacterial species[J]. Gen. Microbiol, 1966, 44: 419-437
    [147] Denhardt D T. A membrane-filter technique for the detection of complemantary DNA[J]. Biochem Res Comm., 1966, 23: 641-646
    [148] Blenner D J, G R Fanning, A V Rake, et a1. Batch produce for themal elution of DNA from hydroxyapatite[J]. Ana1 Biochem., 1969, 38: 447-459
    [149] De Ley J, H Cattoir, A Reynaerts. The quantitative meaturement of DNA hybridization from renaturation retes[J]. Eur. J. Biechem, 1970, 12: 133-142
    [150] De Ley J.Reexamination of the association betwen melting point, buoyant density,and chemical base composition deoxyribonucleic acid[J]. Bacteriol, 1970, 101: 737-754
    [151] Woose C R. Bacterial evolution[J]. Microbio1. Rev., 1987, 51: 221-271
    [152] Fanning G R, Rake A V et al. Anal Biochem[J], 1969, 28: 447-459
    [153] Both B, G Krupp, E Stackebrandt. Direct sequencing of double-stranded polymersae chain reaction-amplified 16SrDNA[J]. Ana1 Biochem, 1991, 199: 216-2l8
    [154] Lane D J, B Pace, G J Olsen, et a1. Rapid dittermination of 16S ribosotbal RNA sequence for phylogenetic analysis[J]. Proc. Natl. Acad. Sci. USA. 1985, 82: 6955-6959
    [155] Fox G E, K R Pechman, C R Woose. Comparative cataloging of 16S ribosomal RNA sequencing in bacterial systematies[J]. Methods Microbiol, 1987, 19: 406-458
    [156] Zhang z, T Kudo, Y Nakajinta, et a1. Clarification of the relationship between the members of the family Thermomonosporaceae on the basis of 16S rDNA, 16S-23S rRNA internal transcribed spacer and 23S rDNA sequences and chemotaxonomic analyses[J]. Evol Microbio1. 2001, 51: 373-383
    [157] Yoon H J, S T Lee, Y H Park. Genetic analyses of the genus Nocardioides and related taxa based on 16S-23S rDNA internally transcribed spacer sequences[J ]. Bacterial, 1998, 48: 641-650
    [158] 焦振泉, 刘秀梅. 细菌分类与鉴定的新热点: 16S-23S rDNA 间区[J]. 微生物学通报, 2001, 28(1): 85-89
    [159] Ludwig W, Schleifer K H. Bacterial phulogeny based on16S and 23S rRNA sequence analysis[J]. Microbio1, 1994, 15: 155-173
    [160] Zabeau, M., P. Vos. 1993. Selective restriction fragment amplification: a general method for DNA fingerprinting. European patiint office publishing company.
    [161] Williams J G K, A R Kubelik, K J Livak. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res, 1999, 18: 6531-6535
    [162] 马汇泉, 唐文华, 孙伟萍. 甜叶菊斑枯病生物防治拮抗菌株的筛选[J]. 山东理工大学学报(自然科学版), 2003, 17(2): 97-99
    [163] 程丽娟, 薛全宏. 微生物学实验技术[M]. 世界图书出版社, 西安, 2000
    [164] 中国科学院南京土壤研究所微生物研究室. 土壤微生物研究方法[M]. 科学出版社, 北京, 1985
    [165] 安德荣. 生物制药的原理及方法一抗生素的制备[M]. 北京. 中国科学文化出版社, 2002.
    [166] 宋晓妍, 刘训理, 邵宗泽, 等. 农用抗生素 S-921 摇瓶发酵条件的研究[J]. 山东农业大学学报(自然科学版), 2000, 31(3): 281-285
    [167] 王东昌. 链霉菌 S-10 菌株发酵条件的研究[J]. 吉林农业大学学报, 2001, 23(1): 35-39
    [168] 孟庆芳, 张 汀, 杨文香, 等. 拮抗链霉菌 S23 发酵条件的研究[J]. 中国生物防治, 2002, 18(2): 79-82
    [169] 何 红, 沈兆昌, 邱思鑫, 等. 内生拮抗枯草芽孢杆菌 BS-2 菌株的发酵条件[J]. 中国生物防治, 2004, 20(1): 38-41
    [170] 韩斯琴, 徐 梅, 白 震, 等. 番茄灰霉病菌拮抗菌 D2-4 发酵条件的研究[J]. 东北农业大学学报, 2004, 35(1): 93-98
    [171] 张 宇, 张 敏, 刘 铭, 等. 稻瘟病生防放线菌 A11 菌株的发酵条件研究[J]. 中国农学通报, 2005, 21(5): 330-331, 350
    [172] 刘大群, 杨文香, 祁碧菽, 等. 拮抗链霉菌 Men-myco-93-63 及其发酵液对棉花黄萎病菌生长的影响[J]. 河北农业大学学报, 1999, 22(4): 79-82
    [173] 阎逊初. 放线菌的分类和鉴定[M]. 北京: 科学出版社, 1992
    [174] 张纪中主编. 微生物分类学[M]. 上海: 复旦大学出版社, 1990
    [175] 姜成林, 徐丽华, 许宗雄. 放线菌分类学, 昆明: 云南大学出版社, 1995, 92-104
    [176] 胡宝兰, 郑 平, 武小鹰, 等. 一株氨氧化链霉菌的分类鉴定及其氨氧化特性的研究[J]. 微生物学报, 2005, 45(3): 321-324
    [177] 王振军, 刘玉霞, 刘新涛, 等. 用 16SrDNA 序列分析方法鉴定 4 个拮抗细菌[J]. 河南农业科学, 2006, (5): 59-61
    [178] Thompson J D , Higgins D G, Gibson T J. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions specific gap penalties and weight matrix choice [J]. Nucleic Acids Res, 1994, 22: 4673-4680
    [179] Saitou N, Nei M. The Neighbor-Joining method: a new method for reconstructing phylogenetic tree [J]. Mol Biol evol, 1987, 4: 406-425
    [180] 杨宇容, 徐丽华, 李启任, 等. 放线菌分离方法的研究[J]. 微生物学通报, 1995, 22(2): 88-91
    [181] 安德荣, 慕小倩, 赵文军, 等. 土壤放线菌分离中抑制剂的应用研究[J]. 微生物学杂志, 2002, 11(1): 106-108
    [182] Hayakawa M. Selective isolation method and distribution of soil actinomycetes[J]. Actinomycetologica, 1990, 4: 95
     [183] V Agnihothrudu, K Hohn, B Abel. Incidence of fungistatic organisms in the rhizosphere of pigeon-pea (Cajanus cajan) in relation to resistance and susceptibility to wilt caused by Fusarium udum Butler[J]. Natur wissenschaften, 1955, 12(42) : 373

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700