城市轨道交通混合式牵引供电装置关键技术与性能优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牵引供电系统是城市轨道交通的核心系统之一。当前城轨牵引供电系统存在的主要问题是:列车再生制动能量无法回馈、非高峰时段功率因数偏低。由24脉波整流器机组和PWM整流器机组构成的混合式牵引供电装置是解决上述两个问题的优选方案。本文从提高城轨供电系统供电品质的角度,详细阐述了混合式牵引供电装置交直流侧的技术需求,进而重点围绕交流侧谐波电流抑制与稳定性分析、直流侧电压谐波抑制以及低直流电压条件下装置的容量提升等三个关键问题进行了深入研究。
     首先,围绕混合式牵引供电装置的交流侧谐波抑制策略和系统稳定性进行研究:针对交流侧的谐波抑制问题,通过深入分析各元件的取值配合对网侧滤波器多个约束条件的影响,提出了一种基于多约束条件寻优的网侧滤波器参数设计与优化方法,实现了网侧滤波器的参数取值优化;针对网侧滤波器的谐振问题,基于PWM整流器电流环的离散化控制模型,研究了控制器参数调谐对系统稳定性和动静态性能的作用规律,分析了阻尼电阻、谐振频率、网侧附加阻抗及附加时延环节对系统稳定性的影响,给出了提高系统稳定性和动态响应速度的改进方案。
     其次,通过深入分析混合式牵引供电装置的直流侧谐波特性,依据其直流侧小信号模型,提出了基于滤波电感取值优化的直流电压谐波抑制策略,提高了电压平稳度,减小了电压谐波:深入讨论了电网电压畸变和变压器移相误差等非理想因素对24脉波整流器直流电压特性的影响,提出了一种简单、新颖且物理意义清晰的电压谐波算法;推导了混合式牵引供电装置的直流侧小信号模型,提出了滤波电感的取值优化原则,并结合具体算例进行了说明。
     再次,针对现有控制策略下,PWM整流器机组无法在低直流电压条件下正常工作的问题,引入了有功、无功协调控制策略,提升了同等硬件条件下装置的有功输出能力,改善了装置功率突变时的动态性能和供电网络的功率因数:提出了改进型有功、无功协调控制策略,在不改变既有系统硬件参数的情况下,实现了低直流电压条件下装置输出功率的提升和性能的改进;通过交流网压幅值的优化设计和提出的优化型有功、无功协调控制策略,在改进型策略的优势之外,可进一步提升新设计PWM整流器的有功输出和无功补偿能力。
     论文各章均包含仿真和实验验证,用以证明理论分析的正确性。此外,兆瓦级混合式牵引供电装置已经成功应用于北京地铁十号线二期工程,文中给出了实际应用效果,验证了对城轨供电系统各组成部分负荷特性分析的有效性,展示了混合式牵引供电装置对城轨牵引供电系统供电品质的改善效果和装置投入运营后的节能效果。
Traction power system is one of the core systems for urban rail transit. Now the main problems of traction power system are the regeneration energy absorption and low power factor at night. Hybrid traction power equipment composed of24-pulse rectifier and PWM rectifier seems to be the best solution. In this dissertation, for the purpose of power supply quality improvement, technical requirement of hybrid traction power equipment is described. And then AC harmonic current suppression strategy and stability analysis, DC harmonic voltage suppression strategy and the capacity improvement with low DC voltage are investigated in detail.
     Firstly, AC harmonic current suppression strategy of hybrid traction power equipment and its stability analysis are investigated:for the AC harmonic current suppression, the corporating criteria of LCL filter's component is analyzed, then the design and optimization method of grid side filter to obtain optimum result is proposed; for the resonance problem of the filter, based on the PWM rectifier's current control model in Z-domain, the action law of controller's parameter-tuning for stability and dynamic performance is summarized, and the influence of damping resistor, resonant frequency, additional grid side inductor and additional delay is analyzed, then the solution is proposed.
     Secondly, the dc voltage spectrum of24-pulse phase-shifting traction rectifier under non-ideal conditions is analyzed, and based on the small-signal model of hybrid traction power system's DC side, the DC harmonic voltage suppression strategy is proposed, which is mainly about the optimization value of the dc filtering inductor to eliminate the problem of resonance:the problems caused by negative-sequence voltages and the error of phase shifting are discussed, a novel method was proposed to solve the value of DC harmonic voltage; the small-signal model of hybrid traction power system's DC side is derived, optimization method of dc filtering inductor is introduced, the examples to explain this method is also given.
     Thirdly, for the problem that PWM rectifier can't work properly with traditional control scheme when the DC voltage is low, the active and reactive power unified control scheme is proposed to increase the capacity, improve the dynamic performance and power factor. The improved active and reactive power unified control scheme is introduced for the existing equipment; while through the optimized design of grid side voltage and optimized active and reactive power unified control scheme, the new equipment could further improve the capacity of active and reactive power.
     The validity of theoretical analysis is proven by simulations and experimental results in each chapter. Besides, megawatt hybrid traction power equipment has also been used successfully in subway Line10of Beijing, application effect is also shown to prove the equipment's advantages at last.
引文
[1]维基百科.《伦敦地铁》2012:http://zh. wikipedia.org/wiki
    [2]维基百科.《世界城市轨道交通列表》2012:http://zh.wikipedia.org/wiki
    [3]维基百科.《世界城市轨道交通长度列表》2012:http://zh.wikipedia.org/wiki
    [4]陆然.城市轨道交通变电站中的无功补偿分析.天津电力技术,2011,(2):31~33
    [5]周方圆,黄燕艳,龙礼兰等.地铁供电系统无功特性分析与补偿设计.大功率变流技术,2011(4):9~12,69
    [6]孙才勤.地铁供电系统谐波无功功率的综合治理方案.城市轨道交通,2009(5):4003
    [7]马琪.国产地铁车辆制动系统[J].都市快轨交通,2004,17:102~110
    [8]赵立峰,张发明.北京地铁5号线再生电能吸收装置.现代城市轨道交通,2008(1):6-8
    [9]叶芹禄,周伟志.浅析城市轨道交通列车再生制动能源的转化和利用方案.铁道勘察与设计,2009(3):60-63
    [10]王彦峥,苏鹏程.城市轨道交通再生电能的吸收与利用分析.2007(6):42-45
    [11]曾建军,林知明,郭万岭.地铁再生制动能量吸收装置.城市轨道交通,2008(6):44-47
    [12]李鲲鹏,张庆生.广州地铁4号线地面制动电阻的设计.机车电传动,2005(5):43-46,53
    [13]赵荣华,杨中平,郑琼林.城轨列车设置地面制动电阻的仿真研究.城市轨道交通研究,2008,11(9):58-62
    [14]赵立峰,张发明.北京地铁5号线再生电能吸收装置.现代城市轨道交通,2008(1):6-8
    [15]蒋启龙,连级三.飞轮储能在地铁系统中的应用.变流技术与电力牵引,2007(4):13-17,51
    [16]张云太.利用车辆再生电能_建设持续发展地铁.交通世界,2011(16):154-157
    [17]张钢.城市轨道交通能馈式牵引供电变流系统关键技术研究[博士学位论文].北京:北京交通大学,2010
    [18]李建民,王睿,基于APF的城市轨道交通再生能源利用及谐波治理研究.电测与仪表,2010.47(2):p.40.-44.
    [19]许爱国,谢少军.城市轨道交通牵引供电PWM变流器的研究.电力电子技术,2009,43(12):7-9
    [20]张志学,何多昌,张铁军等.城市轨道交通牵引供电系统采用PWM回馈电能方案研究.铁路技术创新,2011(5):22-25
    [21]张志学,何多昌,张铁军等.城市轨道交通牵引供电系统的技术发展展望.机车电传动,2012(1):43-46
    [22]冯江华,张志学.轨道电力牵引中高效友好的电能利用.机车电传动,2012(5):5-9
    [23]许爱国.城市轨道交通再生制动能量利用技术研究[博士学位论文].南京:南京航空航天大学,2009
    [24]蔚蓝,师蔚,吴国祥.城市轨道交通直流牵引供电电源的研究.电力电子技术,2008.42(9):50-51,60
    [25]Suzuki T. DC power-supply system with inverting substations for traction systems using regenerative brakes. Electric Power Applications, IEEE Proceedings Electric Power Applications,1982,129(1):18-26.
    [26]中国国家标准化委员会.GB/T 10411-2005城市轨道交通直流牵引供电系统.2005
    [27]中国国家标准化委员会.GB/T 14549-93电能质量公共电网谐波.1993
    [28]陈丹.城市轨道交通新型供电系统的建模、仿真及控制策略研究[硕士学位论文].北 京:北京交通大学,2007
    [29]师睿.新型直流牵引供电系统可靠性技术的研究[硕士学位论文].北京:北京交通大学,2008
    [30]谢萌.大功率PWM整流器并联控制策略研究[硕士学位论文].北京:北京交通大学,2008
    [31]苏劫.城市轨道交通能馈式牵引供电系统的应用研究[硕士学位论文].北京:北京交通大学,2009
    [32]罗荣娅.城市轨道交通新型供电系统监控试验平台设计[硕士学位论文].北京:北京交通大学,2009
    [33]王磊.城市轨道交通能馈式牵引供电系统故障诊断及保护方法研究[博士学位论文].北京:北京交通大学,2010
    [34]孔嵩.地铁能馈式牵引供电变流系统谐波分析及抑制研究[硕士学位论文].北京:北京交通大学,2011
    [35]郭红卫.城市轨道交通新型牵引供电系统保护研究[硕士学位论文].北京:北京交通大学,2011
    [36]冯艳艳.孙才勤.城市轨道交通混合逆变装置的应用.城市轨道交通,2011(1):110-112
    [37]余龙.地铁1500 V混合型制动能量吸收装置.城市轨道交通,2010(6):44-47
    [38]张志学,王晓保.轨道交通直流牵引供电系统中AC/DC变流器的技术性能评估.变流技术与电力牵引,2008(5):16-20,48
    [39]李建民,张志军.基于外延三角形接线的24脉波整流变压器分析.城市轨道交通研究.2008(11):33-36
    [40]王念同,魏雪亮.24脉波牵引整流变压器的联结组.变压器,2002.39(6):9-12
    [41]韩瑾.24脉波牵引整流变压器联结组的变换.变压器,2007.44(1):5-8
    [42]钱章福.24脉波整流和移相整流变压器网侧绕组匝数和电流的确定.变压器,2001.38(9):8-12
    [43]王念同,魏雪亮.24脉波牵引整流变压器移相角的计算与测量.变压器,2005,42(9):8-10
    [44]马化盛,张波,易颂文等.二十四脉波整流器四种结构形式的分析.华南理工大学学报,2003.31(4):61-65
    [45]马化盛,张波,邹文新.变压器漏抗取代并联整流器平衡电抗器的分析.机车电传动,2001(6):30-32,36
    [46]王念同,章波.24脉波牵引整流系统的均衡电流分析.变压器,2006.43(8):10-17
    [47]魏雪亮,张宏,史建华.轴向双分裂式12相24脉波移相牵引整流变压器的参数计算.变压器,1999.36(5):1-8
    [48]Busses Alfred, Holtz Joachim. Multiloop control of a unity power factor fast switching AC to DC converter. Proc. Power Electr. Specialist Conf,1982:171-179
    [49]DIXON, W.J. and B.T. OOI, Indirect Current Control of a Unity Power Factor Sinusoidal Current Boost Type Three-Phase Rectifier. IEEE Transactions on Industrial Electronics,1988. 35(4):508-515
    [50]song, W.R., B.S. Dewan, and R.G. Slemon, Analysis of an ac to dc voltage source converter using PWM with phase and amplitude control. IEEE Transactions on Industrial Applications, 1991.27(2):355-364
    [51]Mao H., D. Boroyevich, and F.C.Y. Lee, Novel Reduced-Order Small-Signal Model of a Three-Phase PWM Rectifier and Its Application in Control Design and System Analysis. IEEE Transactions on Power Electronics,1998.13(3):511,521
    [52]Burgos, R.P., E.P. Wiechmann and J. Holtz, Complex State-Space Modeling and Nonlinear Control of Active Front-End Converters. IEEE Transactions on Industrial Electronics,2005. 52(2):363-377
    [53]Yin Bo, Ramesh Oruganti, Sanjib Kumar Panda. A Simple Single-Input-Single-Output (SISO) Model for a Three-Phase PWM Rectifier. IEEE Transactions on Power Electronics,2009. 24(3):620-631
    [54]张崇巍,张兴.PWM整流器及其控制.北京:机械工业出版社,2003.
    [55]Yukihiko Sato, Tomotsugu Ishizuka, Kazuyoshi Nezu. A New Control Strategy for Voltage-Type PWM Rectifiers to Realize Zero Steady-State Control Error in Input Current. IEEE Transactions on Industrial Applications,1998.34(3):480~486
    [56]Gerwich H. Bode, Poh Chiang Loh, Michael John Newman. An Improved Robust Predictive Current Regulation Algorithm. IEEE Transactions on Industrial Applications,2005.41(6): 1720~1733
    [57]Yu Fang, Yan Xing. Design and Analysis of Three-Phase Reversible High-Power-Factor Correction Based on Predictive Current Controller. IEEE Transactions on Industrial Electronics,2008.55(12):4391~4397
    [58]B.-D.Min, J.-H.Youm and B.-H.Kwon. SVM-based hysteresis current controller for threephase. IEE Proc.-Electr. Power Appl.,1999.146(2):225~230
    [59]A.N. Tiwari, P. Agawal and S.P. Srivastava. Modified hysteresis controlled PWM rectifier. IEE Proc.-Electr. Power Appl.,2003.150(4):389~396
    [60]J. L. Duarte, A. van Zwam, C. Wijnands, and A. Vandenput Reference Frames Fit for Controlling PWM Rectifiers. IEEE Transactions on Industrial Electronics,1999.46(3): 628~630
    [61]Mariusz Malinowski, Marian P. Kazmierkowski, Steffan Hansen. Virtual-Flux-Based Direct Power Control of Three-Phase PWM Rectifiers. IEEE Transactions on Industrial Applications, 2001.37(4):1019~1027
    [62]Mariusz Malinowski, Marek Jasin'ski, Marian P. Kazmierkowski. Simple Direct Power Control of Three-Phase PWM Rectifier Using Space-Vector Modulation. IEEE Transactions on Industrial Electronics,2004.51(2):447~454
    [63]Abdelouahab Bouafia, Jean-Paul Gaubert, Fateh Krim. Predictive Direct Power Control of Three-Phase Pulsewidth Modulation (PWM) Rectifier Using Space-Vector Modulation. IEEE Transactions on Power Electronics,2010.25(1):228~236
    [64]Suttichai Saetieo, David A. Torrey. Fuzzy Logic Control of a Space-Vector PWM Current Regulator for Three-Phase Power Converters. IEEE Transactions on Power Electronics,1998. 13(3):419~426
    [65]Abdelouahab Bouafia, Fateh Krim, Jean-Paul Gaubert. Fuzzy-Logic-Based Switching State Selection for Direct Power Control of Three-Phase PWM Rectifier. IEEE Transactions on Industrial Electronics,2009.56(6):1984~1992
    [66]Lijun Hang, SenSen Liu, Gang Yan, Bo Qu, and Zheng-yu LU. An Improved Deadbeat Scheme With Fuzzy Controller for the Grid-side Three-Phase PWM Boost Rectifier. IEEE Transactions on Power Electronics,2011.26(4):1184~1191
    [67]Karel Jezernik. VSS Control of Unity Power Factor. IEEE Transactions on Industrial Electronics,1999.46(2):325~332
    [68]J. Fernando Silva. Sliding-Mode Control of Boost-Type Unity-Power-Factor PWM Rectifiers. IEEE Transactions on Industrial Electronics,1999.46(3):594~603
    [69]T.-S. Lee. Nonlinear state feedback control design for three-phase PWM boost rectifiers using extended linearisation. IEE Proc.-Electr. Power Appl.,2003.150(5):546~554
    [70]王念同,魏雪亮,城市轨道交通24脉波牵引整流变电站网侧谐波电流的分析.变压器,2003.40(1):1-7
    [71]钱长生,齐嘉瞻,李国新,王恬平,曹斌.24脉波整流变压器电流的谐波计算分析.变压器,2007.44(12):1-7,47
    [72]王乃永,官澜,李静等.地铁牵引供电系统对公网谐波影响仿真研究,陕西电力,2010(4):p.30-33.
    [73]陶乃彬,李建民,徐彦.城市轨道交通供电系统网侧谐波研究.郑州铁路职业技术学院学报,2012.22(2):3-6
    [74]李建民,尹传贵.城市轨道交通牵引供电系统谐波分析.城市轨道交通研究,2004(6):46-49
    [75]IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, IEEE Std.519-1992, May 10,1992
    [76]史伟伟,蒋全,胡敏强等.三相电压PWM整流器的稳态分析和主电路设计.电气自动化,2002.24(1):33-39
    [77]王久和,张金龙,李华德.电压型PWM整流器直接功率控制系统主电路参数设计.北京科技大学学报,2006.28(11):1091-1095
    [78]李守蓉,田铭兴.三相SVPWM整流器主电路参数的设计.电气传动自动化,2009.31(4):43-47
    [79]M. Liserre, F. Blaabjerg, and S. Hansen, "Design and control of an LCL filter-based three-phase active rectifier," IEEE Transactions on Industrial Applications. 2005,41(5):1281-1291
    [80]Jalili K, Bernet S. Design of LCL Filters of Active-Front-End Two-Level Voltage-Source Converters. IEEE Transactions on Industrial Electronics.2009,56(5):1674~1689
    [81]Rockhill A A, Liserre M, et al. Grid-Filter Design For a Multimegawatt Medium-Voltage Voltage-Source Inverter. IEEE Transactions on Industrial Electronics.2011,58(4):1205~1217
    [82]Liserre M, Blaabjerg F, Aquila A D. Step-by-step design procedure for a grid-connected three-phase PWM Voltage Source Converter. INT.J. Electron,2004,91(8):445~460
    [83]Qiang Z W, Zhu C G Comparison of Active and Passive Damping Methods for Application in High Power Active Power Filter with LCL-filter. In Sustainable Power Generation and Supply, 2009,1~6
    [84]Wang T C, Ye Z, Sinha G, et al. Output Filter Design for a Grid-interconnected Three-phase Inverter. In Power Electronics Specialist Conference,2003. PESC '03.2003 IEEE 34th Annual,2003,779~784
    [85]Dannehl J, Fuchs W F, Steffan H, et al. Investigation of Active Damping Approaches for PI-Based Current Control of Grid-Connected Pulse Width Modulation Converters With LCL Filters. IEEE Transactions on Industrial Applications.,2010,46(4):1509~1517
    [86]Liu F, Zhou Y, Duan S, et al. Parameter Design of a Two-Current-Loop Controller Used in a Grid-Connected Inverter System With LCL Filter. IEEE Transactions on Industrial Electronics. 2009,56(11):4483~4491
    [87]Joerg Dannehl, Friedrich Wilhelm Fuchs, THogersen P B. PI State Space Current Control of Grid-Connected PWM Converters With LCL Filters. IEEE Transactions on Industrial Electronics.2010,25(9):2320~2330
    [88]Dannehl J, Liserre M, Fuchs W F. Filter-Based Active Damping of Voltage Source Converters With LCL Filter. IEEE Transactions on Industrial Electronics.2011,58(8):3623~3633
    [89]Ricchiuto D, Liserre M, Kerekes T, et al. Robustness Analysis of Active Damping Methods for an Inverter connected to the grid with an LCL-Filter. In Energy Conversion Congress and Exposition (ECCE),2011
    [90]李建林,张仲超.组合变流器载波相移空间向量调制(CPS—SVM)技术.高电压技术,2003,29(1):18-20
    [91]张仲超,张劲东.特大功率组合变流器的相移SPWM技术.电工技术学报,1997,12(2):27-31
    [92]Saeedifard M., Bakhshai A., Joos G. Low switching frequency space vector modulators for high power multimodule converters. IEEE Transactions on Power Electronics,2005, 20(6):1310-1318
    [93]李建林,王立乔,刘兆桑等.一种新型的组合变流器错时采样空间矢量调制技术分析.中国电机工程学报,2004,24(1):142-146
    [94]Maswood, A., S. Wei, and M.A. Rahman. A Flexible Way to Generate PWM-SHE Switching Patterns Using Genetic Algorithm.2001
    [95]Nomura, J., A. Kataoka, and K. Inagaki. Development of a Hybrid Inverter and a Hybrid Converter for an electric railway.2007
    [96]龚孟荣,等效24脉波整流机组原理分析.铁道勘察与设计,2008(4):62-64
    [97]Pozzobon P. Transient and Steady-State Short-Circuit Currents in Rectifiers for DC Traction Supply. IEEE Transactions on Vehicular Technology,1998.47(4):1390-1404
    [98]李良威,李群湛,刘炜.24脉波整流器外特性仿真及其在城市轨道交通中的应用.城市轨道交通研究,2007(10):52-55
    [99]金钧,周帅,赵宏勋.城轨(地铁)24脉波牵引供电系统分析.大连交通大学学报,2011.32(3):76-79
    [100]计算机仿真.电网不平衡状态下24脉波整流系统仿真研究.计算机仿真,2012.29(2):314-318
    [101]Lennart Harnefors, Kai Pietilainen. Inverter DC_link Stabilizing Control with Improved Voltage Sag Ride Through Capability. EPE 2005-Dresden
    [102]Chen R., Q. Ge, L.S. jie. Implementation and Analysis of 3-phase Voltage Sourced Regenerative Rectifier. IPEMC2006.2006:1-7
    [103]Daniel Roiu, Radu Iustin Bojoi et al. New Stationary Frame Control Scheme for Three-Phase PWM Rectifiers Under Unbalanced Voltage Dips Conditions. IEEE Transactions on Industrial Applications,2010.46(1):268~277
    [104]Zixin Li, Yaohua Li, Ping Wang et al. Control of Three-Phase Boost-Type PWM Rectifier in Stationary Frame Under Unbalanced Input Voltage. IEEE Transactions on Power Electronics, 2010.25(10):2521~2530
    [105]Yi Tang, Poh Chiang Loh, Peng Wang et al. One-Cycle-Controlled Three-Phase PWM Rectifiers With Improved Regulation Under Unbalanced and Distorted Input-Voltage Conditions. IEEE Transactions on Power Electronics,2010.25(11):2786~2796
    [106]李元春.计算机控制系统.北京:高等教育出版社,2009
    [107]Dannehl. J., C. Wessels, and W.F. Fuchs. Limitations of Voltage-Oriented PI Current Control of Grid-Connected PWM Rectifiers With LCL Filters. IEEE Transactions on Industrial Electronics,2009.56(2):380-388
    [108]KAZMIERKOWSKI, M.P., R. KRISHNAN, and F. BLAABJERG. Control in Power Electronics:Selected Problems.2002:Academic Press.
    [109]Liserre, M., R. Teodorescu and F. Blaabjerg, Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values. IEEE TRANSACTIONS ON POWER ELECTRONICS,2006.21(1):263-272
    [110]Liserre. M., A. Dell'Aquila and F. Blaabjerg. Design and Control of a Three-phase Active Rectifier Under Non-ideal Operating Conditions, in Industry Applications Conference,2002. 37th IAS Annual Meeting.2002.1181-1188
    [111]Akagi H, Watanabe E H, Aredes M. Instantan-eous power theory and applications to power condi-tioning. Wiley-IEEE Press,2007
    [112]Moran, L.T., P.D. Ziogas and G. Joos, Analysis and Design of a Three-phase Synchronous Solid-state Var Compensator. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1989.25(4):598~608
    [113]Dixon, J.W. and D.V. B, stability analysis and performance characteristics of an open loop PWM var compensator, in Industry Applications Society Annual Meeting,1990., Conference Record of the 1990 IEEE.1990.1086~1091
    [114]Veas, R.D., W.J. Dixon and B.T. Ooi, A Novel Load Current Control Method for a Leading Power Factor Voltage Source PWM Rectifier. IEEE TRANSACTIONS ON POWER ELECTRONICS,1994.9(2):153-159
    [115]ZARGARI, R.N. and G. JOOS, A near unity power factor input stage with minimum control requirements for ac drive applications. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS,1995.31(5):1129-1135
    [116]Ghijselen, J.A.L., P.M.A. den Van Bossche and J.A.A. Melkebeek, Dynamic Control of a Fixed Pattern Rectifier. IEEE TRANSACTIONS ON POWER ELECTRONICS,2001.16(1): 118-124
    [117]Choi, J. and S. Sul, Fast Current Controller in Three-Phase ACDC Boost Converter Using-Axis Crosscoupling. IEEE TRANSACTIONS ON POWER ELECTRONICS,1998.13(1): 179~185
    [118]Neacsu, D.O., Current Control With Fast Transient for Three-Phase ACDC Boost Converters. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,2004.51(5):1117~1121
    [119]钟炎平,沈颂华.PWM整流器的一种快速电流控制策略.中国电机工程学报,2005.25(12):52-56
    [120]周克亮译.电力电子变换器PWM技术原理与实践.北京:北京邮电出版社,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700