低强度脉冲超声波对兔膝骨性关节炎的软骨修复作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究低强度脉冲超声波(Low intensity pulsed ultrasound, LIPUS)对体外培养兔膝关节软骨细胞增殖、软骨细胞中金属蛋白酶-13(matrix metalloproteinase,MMP-13)及Ⅱ型胶原的影响,探讨LIPUS对软骨细胞活性的促进作用及机制。
     方法:选用6只1月龄的新西兰白兔膝关节软骨进行体外培养,体外培养每只兔的软骨细胞传至第二代后,均分为对照组与4个LIPUS照射组,LIPUS强度分别是20 mW /cm~2、30 mW /cm~2、40 mW /cm~2、50 mW /cm~2,每天照射20min,连续10天。每天进行细胞计数;分别在第0天、5天及第10天收集细胞,提取软骨细胞全蛋白及RNA,采用Western-blot技术、qRT-PCR技术检测软骨细胞中MMP-13、Ⅱ型胶原的含量。
     结果:1.软骨细胞计数:与对照组相比,各LIPUS照射组软骨细胞数均明显增高(P<0.05),其中40 mW /cm~2组软骨细胞数最高,与其他各照射组比较有显著性差异(P<0.05); 2. MMP-13含量检测:细胞培养5天和10天后,各组MMP-13含量均较第0天明显升高(P<0.05),但各照射组MMP-13含量均较其对照组显著降低(P<0.05),其中40 mW /cm~2组MMP-13含量最低(P<0.05); 3.Ⅱ型胶原表达量检测:细胞培养5天和10天后,各组Ⅱ型胶原表达量均较0天显著降低(P<0.05)。但各照射组Ⅱ型胶原表达量均显著高于对照组(P<0.05)。其中40 mW /cm~2组Ⅱ型胶原表达量最高(P<0.05); 4. MMP-13与Ⅱ型胶原相关性:分析各组细胞培养0天、5天和10天的MMP-13与Ⅱ型胶原含量,两者呈负相关(r=-0.757, P <0.05)。
     结论:不同强度的LIPUS照射可促进体外培养兔软骨细胞的活性,其作用与软骨细胞增殖、MMP-13、Ⅱ型胶原的表达变化相关。
     目的:通过对兔膝早、中期骨性关节炎进行LIPUS干预,观察低强度脉冲超声(low-intensity pulsed ultrasound,LIPUS)对兔早中期OA关节软骨损伤、软骨细胞增殖及PI3K信号转导通路的影响,并探讨其相关的作用机制。
     方法:36只健康雄性新西兰兔平均分成6组,早期对照组(early control,EC组),早期OA组(early OA, EO组),早期治疗组(early treatment,ET组),中期对照组(medium-term control,MC组),中期OA组(medium-term OA,MO组)和中期治疗组(medium-term treatment,MT组)。对EO、ET、MO及MT组兔右膝关节行前交叉韧带切断(Anterior Cruciate Ligament Transection,ACLT)术,ET组术后第三天、MT组术后第5周行LIPUS治疗,频率为3MHz,照射强度为40mW/cm~2,每次20min,每天1次,6天/周,持续6周。治疗6周后,取兔右侧膝关节行大体组织学观察,进行改良Mankin评分;应用蛋白质印迹(western-blot)法检测关节软骨细胞增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)及磷脂酰肌醇-3激酶(phosphatidylinositol-3-kinase,PI3K)含量。
     结果:1.组织病理学检查:EO组关节软骨表面不规则、甲苯胺蓝染色减少、裂隙形成,与EC组相比,Mankin评分显著升高(P <0.01);MO组关节软骨损伤明显,Mankin评分较MC组显著升高(P<0.01)。与EO组相比,ET组组织病理学改变程度轻,Mankin评分显著降低(P<0.01);而MT组Mankin评分较MO组无显著降低(P >0.05)。2. PCNA检测:EO组PCNA较EC组显著升高(P <0.01),ET组PCNA较EO组显著升高(P <0.01);与EO组相比,MO、MT组PCNA均无升高(P >0.05)。3. PI3K检测: EO组PI3K与EC组相比,无显著增高(P >0.05);ET组PI3K较EO组显著升高(P <0.01);而MT组PCNA较MO组无明显升高(P >0.05)。
     结论:研究提示LIPUS早期干预更有利于促进兔骨关节炎软骨修复,其作用机制与LIPUS促进了软骨细胞增殖,并激活PI3K信号转导通路密切相关。
    
     目的:研究LIPUS对兔膝OA早期关节软骨Ⅱ型胶原、MMP-13及MAPKs信号通路的影响,探讨在OA早期应用LIPUS延缓关节软骨退变的作用机制。方法:新西兰白兔18只,随机分为照射组(operation plus LIPUS,O+L组)、假照射组(operation without LIPUS,O-L组)和假手术组( sham operation, SO组),每组6只。O+L组,右膝接受ACLT术,术后第3天起进行LIPUS照射,频率为3MHz,照射强度为40mW/cm~2,每次20min,每天1次,6天/周,持续6周。O-L组,手术及照射方案与O+L组一致,但无超声输出。SO组仅行关节囊切开术。治疗6周后将兔处死,取兔右侧膝关节行大体组织学观察,进行改良Mankin评分;应用蛋白质印迹法(Western-blot)检测Ⅱ型胶原蛋白、基质金属蛋白酶13(matrix metalloproteinase-13,MMP-13)及细胞外信号调节激酶1/2 (extracellular signal-regulated kinase1/2,ERK1/2)、丝裂原活化蛋白激酶38(Mitogen-activated protein kinase38,p38)、C6N末端激酶(c-Jun N-terminal kinase,JNK)的表达。
     结果:1.关节软骨Mankin评分:与SO组相比, O+L组、O-L组显著高于SO组(P<0.05,P<0.01);与O+L组相比,O-L组显著增高(P<0.05)。2.Ⅱ型胶原检测:与SO组相比,O+L组、O-L组Ⅱ型胶原均有降低,但O-L组下降更为明显(P<0.05);O+L组与O-L组相比无显著性差异(P >0.05)。3. MMP-13检测:与SO组相比,O+L组、O-L组均有增高(P<0.05,P<0.01),但O-L组增高更为明显;与O+L组相比,O-L组MMP-13显著增高(P<0.05)。4.磷酸化ERK1/2、p38、JNK检测:与SO组相比,O+L组、O-L组磷酸化ERK1/2、p38均有增高(P<0.05,P<0.01),但O-L组增高更为明显;与O+L组相比,O-L组磷酸化ERK1/2、p38显著增高(P<0.05,P<0.05)。在O+L组、O-L组、SO组之间,磷酸化JNK均无显著性差异。
     结论:OA早期应用LIPUS可减轻关节软骨的损伤程度,其作用与LIPUS干预后关节软骨中MMP-13、p38、ERK1/2表达下调有关。
Objective:To study the effects of low intensity pulsed ultrasound (LIPUS) on chondrocytes proliferation and MMP-13 and typeⅡcollagen of chondrocytes of rabbit’s knee in vitro and discuss the effect and Mechanism of LIPUS to chondrocytes activity.
     Methods: The chondrocytes were obtained from knee joints of six one-month old rabbits. Each rabbit’s chondrocytes were divided into 5 groups: control group and four LIPUS groups with the intensity of LIPUS is 20 mW /cm2, 30 mW /cm2, 40 mW /cm2, 50 mW /cm2 respectively. During the second cultured generation, the chondrocytes were irradiated by LIPUS for 20 minutes and cells were counted each day for 10 days. On the 0, 5th and 10th day, chondrocytes were collected and their protein and RNA were extracted for test of MMP-13 and typeⅡcollagen content with Western-blot and qRT-PCR technique.
     Result: 1.Contrasting with control groups, the chondrocytes number were higher in each LIPUS groups(p<0.05) and the numbers were significantly higher in the 40 mW /cm2 group (p<0.05). 2. MMP-13 contents were higher in the 5th day and 10th day than in the 0 day(p<0.05). After irradiated 5 days and 10 days, the contents of MMP-13 in each LIPUS group were remarkable lower than control group(p<0.05) and 40 mW /cm2 group was the lowest (p<0.05). 3. After cultured 5 days and 10 days, typeⅡcollagen contents were lower than the 0 day(p<0.05). The contents of typeⅡcollagen in each LIPUS groups were remarkable higher than control groups(p<0.05) and 40 mW /cm2 group was the highest (p<0.05). 4. There was significantly negative correlation between MMP-13 and typeⅡcollagen (r=-0.757,p<0.05).
     Conclusion: The 4 kinds of intensity of LIPUS could promote the chondrocyte activities of rabbit’s knee and the effect is related to the chondrocyte proliferation and changes of MMP-13 and typeⅡcollagen content in chondrocytes.
     Objective: This study was designed to establish rabbit knee OA models by Anterior Cruciate Ligament Transection (ACLT) surgery, and observed the effect of LIPUS irradiation on articular cartilage repair, chondrocytes proliferation and PI3K signal transduction pathway.
     Method: Thirty-six healthy New Zealand rabbits were divided into six groups: early control group (EC group), early OA group (EO group), early treatment group (ET group), medium-term control group (MC group), medium-term OA group (MO group) and medium-term treatment group (MT group). ACLT was performed in EO, ET, MO and MT groups. Animals in ET group received LIPUS irradiation 3 days after surgery, while the fifth week after surgery in MT group. Six weeks after irradiation, the rabbits were sacrificed respectively and observed for knee gross microscopy with Modified Mankin score, proliferating cell nuclear antigen (PCNA) and phosphatidylinositol-3-kinase (PI3K) with Western-blot technique.
     Result: Toluidine blue stain showed in ET group, the surface of articular cartilage were regular, normally stained and chondrocytes proliferation were observed. While in MT group, the surface of articular cartilage were irregular, TBS was reduced significantly, and the number of chondrocytes was decreased. Total Mankin score was significantly increased in EO group (EO vs. EC group, P <0.01) and reduced in ET group (ET vs. EO group, P <0.01). Total Mankin score in MO group was significantly higher than that in MC group (P <0.01). However, total Mankin score in MT group didn’t significantly decrease compared with that in MO group (P >0.05). Western blot analysis showed that PCNA in EO group was significantly increased as compared with EC group (P <0.01), PCNA in ET group was significantly higher than that in EO group (P <0.01). PCNA in MO group and MT group was not significantly increased compared with that in MC group (P >0.05). PCNA in ET group was significantly increased as compared with that in MT group (P <0.01). Western blot analysis showed that phosphorylation of PI3K (p-PI3K) in EO group didn’t significantly increase as compared with EC group (P >0.05). Phosphorylation of PI3K in ET group was significantly higher than that in EO group (P <0.01). There was no significant difference in PI3K phosphorylation between MT group and MO group (P >0.05).
     Conclusion: Early LIPUS intervention is beneficial to articular cartilage repair through promotion of chondrocytes proliferation in OA. The mechanism of action is closely associated with the effect of LIPUS in PI3K signal transduction pathway.
     Objective: This study was designed to observed the effect of LIPUS irradiation on typeⅡcollagen, matrix metalloproteinase-13(MMP-13), mitogen-activated protein kinases(MAPKs) signal transduction pathway and articular cartilage repair on rabbits models in early stage of OA progression.
     Method: 18 healthy New Zealand rabbits were divided randomly into three groups: treat group (O+L group), control group (O+L group) and sham operation group (SO group), 6 in each group. In O+L group and O-L group, Surgical ACLT was performed in the right knee of rabbits. 3 days after surgery, all of the rabbits were received LIPUS irradiation, and sacrificed respectively 6 week later. Modified Mankin score, typeⅡcollagen, MMP-13 and MAPKs were observed.
     Result: Modified Mankin score: compared with SO group, O+L group, O-L group were significant high (P<0.05,P<0.01); and compared with O+L group score in O-L group was also significant high (P<0.05). Western-blot analysis: typeⅡc ollagen in O+L group and O-L group were significant lower than that in SO group (P<0.05), but no difference between O+L group and O-L group. Compared with SO group, MMP -13 in both O+L and O-L group were significant high and compared with O+L group, MMP-13 in O-L was significant high (P<0.05). Compared with SO group, p-ERK1/2 and p-p38 in both O+L and O-L group were significant high, and higher in O-L group (P<0.01); compared with O+L group, p-ERK1/2, p-p38 in O-L group was significant high (P<0.05); p-JNK showed no difference in all three groups.
     Conclusion: Early LIPUS intervention relieved damage in articular cartilage of OA. The mechanism may closely associate with the effect of LIPUS reducing MMP-13, p38 and ERK1/2 contents of articular cartilage.
引文
1. Pelletier J, Martel-Pelletier J, Howell D. Etiopathogenesis of osteoarthritis. Arthritis & alliedconditions: a textbook of rheumatology. 14th ed. .Baltimore: Lippin- cott Williams & Wilkins. 2000:2195–2245
    2. Nuki G. Role of mechanical factors in the aetiology, pathogenesis and pro- gression of osteoarthritis. In: Reginster JY, Pelletier JP, Martel-Pelletier J, Henrotin Y, editors. Osteoarthritis: clinical and experimental aspects. Berlin: Springer-Verlag. 1999:101–114
    3.王晶,肖明德.性激素与骨关节炎.中华骨科杂志.2001, 21(1):50-52
    4. Pelletier JP, Martel-Pelletier J, Abramson SB. Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum. 2001, 44(6):1237-1247
    5. Cheung PP, Gossec L, Dougados M. What are the best markers for disease progression in osteoarthritis (OA)? Best Practice & Research Clinical Rheumatology. 2010, (24):81-92
    6. Bramono DS, Richmond JC, Weitzel PP, Kaplan DL, Altman GH. Matrix metalloproteinases and their clinical applications in orthopaedics. Clin Orthop Relat Res. 2004, (428):272-285
    7. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metallo- proteinases: structure, function, and biochemistry. Circ Res. 2003, 92(8):827-839
    8. Beier F, Loeser RF. Biology and pathology of Rho GTPase, PI-3 kinase-Akt, and MAP kinase signaling pathways in chondrocytes. J Cell Biochem. 2010, 110(3):573-580
    9. Yin W, Park JI, Loeser RF. Oxidative Stress Inhibits Insulin-like Growth Factor-I Induction of Chondrocyte Proteoglycan Synthesis through Differential Regulation of Phosphatidylinositol 3-Kinase-Akt and MEK-ERK MAPK Signaling Pathways. J Biol Chem. 2009, 284(46):31972-31981
    10. Choi BH, Choi MH, Kwak MG, Min BH, Woo ZH, Park SR. Mechanotransduction pathways of low-intensity ultrasound in C-28/I2 human chondrocyte cell line. Proc Inst Mech Eng H. 2007, 221(5):527-535
    11. Takeuchi R, Ryo A, Komitsu N, Mikuni-Takagaki Y, Fukui A, Takagi Y, Shiraishi T, Morishita S, Yamazaki Y, Kumagai K, Aoki I, Saito T. Low-intensity pulsed ultrasound activates the phosphatidylinositol 3 kinase/Akt pathway and stimulates the growth of chondrocytes in three-dimensional cultures: a basic science study. Arthritis Res Ther. 2008, 10(4):R77
    12. Nuri Cetin, MD,Aydan Aytar, PT, MSc,Ayce Atalay, MD, et al. Comparing Hot Pack, Short-Wave Diathermy, Ultrasound, and TENS on Isokinetic Strength, Pain, and Functional Status of Women with Osteoarthritic Knees. American Journal of Physical Medicine & Rehabilitation, 2008, (6):443-451
    13. Parvizi J, Wu CC, Lewallen DG, Greenleaf JF, Bolander ME. Low-intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression. J Orthop Res. 1999, 17(4):488-494
    14. Yang KH, Parvizi J, Wang SJ, Lewallen DG, Kinnick RR, Greenleaf JF, Bolander ME. Exposure to low-intensity ultrasound increases aggrecan gene expression in a rat femur fracture model. J Orthop Res. 1996, 14(5):802-809
    15. Nishikori T, Ochi M, Uchio Y, Maniwa S, Kataoka H, Kawasaki K, Katsube K, Kuriwaka M. Effects of low-intensity pulsed ultrasound on proliferation and chondroitin sulfate synthesis of cultured chondrocytes embedded in Atelocollagen gel. J Biomed Mater Res. 2002, 59(2):201-206
    16. Zhang ZJ, Huckle J, Francomano CA, Spencer RG. The effects of pulsed low-intensity ultrasound on chondrocyte viability, proliferation, gene expression and matrix production. Ultrasound Med Biol. 2003, 29(11):1645-1651
    17.杨瑞甫,胡蕴玉,吴银松,黄鲁豫,吕荣,白建平.兔骨关节炎两种动物模型的比较.中国矫形外科杂志. 2006, 14(19):1497-1499
    18. Reginato AM, Olsen BR. The role of structural genes in the pathogenesis of osteoarthritic disorders. Arthritis Res. 2002, 4(6):337-345
    19. Martel-Pelletier J. Pathophysiology of osteoarthritis. Osteoarthritis Cartilage. 1998, 6(6):374-376
    20. Goldring MB. The role of the chondrocyte in osteoarthritis. Arthritis Rheum. 2000, 43(9):1916-1926
    21. Blanco Garcia FJ. Catabolic events in osteoarthritic cartilage. Osteoarthritis Cartilage. 1999, 7(3):308-309
    22. Freemont AJ, Hampson V, Tilman R, Goupille P, Taiwo Y, Hoyland JA. Gene expression of matrix metalloproteinases 1, 3, and 9 by chondrocytes in osteoarthritic human knee articular cartilage is zone and grade specific. Ann Rheum Dis. 1997, 56(9):542-549
    23. Fernandes JC, Martel-Pelletier J, Lascau-Coman V, Moldovan F, Jovanovic D, Raynauld JP, Pelletier JP. Collagenase-1 and collagenase-3 synthesis in normal and early experimental osteoarthritic canine cartilage: an immunohistochemical study. J Rheumatol. 1998, 25(8):1585-1594
    24. Iwashina T, Mochida J, Miyazaki T, Watanabe T, Iwabuchi S, Ando K, Hotta T, Sakai D. Low-intensity pulsed ultrasound stimulates cell proliferation and proteoglycan production in rabbit intervertebral disc cells cultured in alginate. Biomaterials. 2006, 27(3):354-361
    25. Choi BH, Woo JI, Min BH, Park SR. Low-intensity ultrasound stimulates the viability and matrix gene expression of human articular chondrocytes in alginate bead culture. J Biomed Mater Res A. 2006, 79(4):858-864
    26.袁亚江,梅晰凡,高蔚然,张赫.SD大鼠肋软骨细胞的原代培养和去分化现象的观察.辽宁医学院学报.2009, 30(5):396-399
    27.潘思年,杜敏联,马华梅,李燕虹.大鼠胫骨生长板软骨细胞的体外培养及鉴定.中山大学学报(医学科学版).2009, 30(4S):1-5
    28.许宏权,黄向莹,陈晓洁,王传家,纪影畅.猪关节软骨细胞体外培养及其形成糖胺多糖能力的实验研究.实用医技杂志.2006, 5(13):1622-1623
    29.叶蕻芝,李西海,梁文娜,刘献祥,吴明霞.软骨细胞体外分离培养与鉴定的实验研究.福建中医学院学报.2008, 18(6):32-37
    30.郝鹏,李胜富,裴福兴,龙丹.成年兔关节软骨创伤模型中软骨细胞的分离及体外培养观察. WEST CHINA MEDICAL JOURNAL. 2007, 22(1):108-110
    31. Blain EJ. Mechanical regulation of matrix metalloproteinases. Front Biosci. 2007, 12:507-527
    32. Michael JW, Schluter-Brust KU, Eysel P. The epidemiology, etiology, diagnosis, and treatment of osteoarthritis of the knee. Dtsch Arztebl Int. 2010, 107(9):152-162
    33. Malizos KN, Hantes ME, Protopappas V, Papachristos A. Low-intensity pulsed ultrasound for bone healing: an overview. Injury. 2006, 37 Suppl 1:S56-62
    34. Parvizi J, Parpura V, Greenleaf JF, Bolander ME. Calcium signaling is required for ultrasound-stimulated aggrecan synthesis by rat chondrocytes. J Orthop Res. 2002, 20(1):51-57
    35. Cook SD, Salkeld SL, Popich-Patron LS, Ryaby JP, Jones DG, Barrack RL. Improved cartilage repair after treatment with low-intensity pulsed ultrasound. Clin Orthop Relat Res. 2001, (391 Suppl):S231-423
    36. Jean YH, Wen ZH, Chang YC, Hsieh SP, Lin JD, Tang CC, Chen WF, Chou AK, Wong CS. Increase in excitatory amino acid concentration and transporters expression in osteoarthritic knees of anterior cruciate ligament transected rabbits. Osteoarthritis Cartilage. 2008, 16(12):1442-1449
    37. Gurkan I, Ranganathan A, Yang X, Horton WE Jr, Todman M, Huckle J, Pleshko N, Spencer RG. Modification of osteoarthritis in the guinea pig with pulsed low-intensity ultrasound treatment. Osteoarthritis Cartilage. 2010, 18(5):724-733
    38. Bendele AM, Hulman JF. Spontaneous cartilage degeneration in guinea pigs. Arthritis Rheum. 1988, 31(4):561-565
    39. Bendele AM, White SL, Hulman JF. Osteoarthrosis in guinea pigs: histopathologic and scanning electron microscopic features. Lab Anim Sci. 1989, 39(2):115-121
    40. Salminen H, Per?l? M, Lorenzo P, Saxne T, Heineg?rd D, S??m?nen AM, Vuorio E. Up-regulation of cartilage oligomeric matrix protein at the onset of articular cartilage degeneration in a transgenic mouse model of osteoarthritis. Arthritis Rheum. 2000, 43(8):1742-1748
    41. Saamanen AK, Salminen HJ, Dean PB, De Crombrugghe B, Vuorio EI, Metsaranta MP. Osteoarthritis-like lesions in transgenic mice harboring a small deletion mutation in typeⅡcollagen gene. Osteoarthritis Cartilage. 2000, 8(4):248-257
    42. Huang MH, Ding HJ, Chai CY, Huang YF, Yang RC. Effects of sonication on articular cartilage in experimental osteoarthritis. J Rheumatol. 1997, 24(10):1978- 1984
    43. Lindhorst E, Vail TP, Guilak F, Wang H, Setton LA, Vilim V, Kraus VB. Longitudinal characterization of synovial fluid biomarkers in the canine meniscectomy model of osteoarthritis. J Orthop Res. 2000, 18(2):269-280
    44. Marshall KW, Chan AD. Arthroscopic anterior cruciate ligament transection induces canine osteoarthritis. J Rheumatol. 1996, 23(2):338-343
    45. Visco DM, Hill MA, Widmer WR, Johnstone B, Myers SL. Experimental osteoarthritis in dogs: a comparison of the Pond-Nuki and medial arthrotomy methods. Osteoarthritis Cartilage. 1996, 4(1):9-22
    46. Colombo C, Butler M, O'Byrne E, Hickman L, Swartzendruber D, Selwyn M, Steinetz B. A new model of osteoarthritis in rabbits. I. Development of knee joint pathology following lateral meniscectomy and section of the fibular collateral and sesamoid ligaments. Arthritis Rheum. 1983, 26(7):875-886
    47. Kapadia RD, Stroup GB, Badger AM, Koller B, Levin JM, Coatney RW, Dodds RA, Liang X, Lark MW, Gowen M. Applications of micro-CT and MR microscopy to study pre-clinical models of osteoporosis and osteoarthritis. Technol Health Care. 1998, 6(5-6):361-372
    48. Sah RL, Yang AS, Chen AC, Hant JJ, Halili RB, Yoshioka M, Amiel D, Coutts RD. Physical properties of rabbit articular cartilage after transection of the anterior cruciate ligament. J Orthop Res. 1997, 15(2):197-203
    49. Batiste DL, Kirkley A, Laverty S, Thain LM, Spouge AR, Holdsworth DW. Ex vivo characterization of articular cartilage and bone lesions in a rabbit ACL transection model of osteoarthritis using MRI and micro-CT. Osteoarthritis Cartilage. 2004, 12(12):986-996
    50. Boulocher C, Duclos ME, Arnault F, Roualdes O, Fau D, Hartmann DJ, Roger T, Vignon E, Viguier E. Knee joint ultrasonography of the ACLT rabbit experimental model of osteoarthritis: relevance and effectiveness in detecting meniscal lesions. Osteoarthritis Cartilage. 2008, 16(4):470-479
    51. J W. The Law of Bone Remodeling (Das Gesetz der Transformation der Knochen). English translation by Maquet P, Furlong R. Berlin, Springer Verlag. 1982.
    52.孔璐.低剂量脉冲式超声波的生物学效应研究概况.中国公共卫生.2002, 18(12):1515-1516
    53. Korstjens CM, van der Rijt RH, Albers GH, Semeins CM, Klein-Nulend J. Low-intensity pulsed ultrasound affects human articular chondrocytes in vitro. Med Biol Eng Comput. 2008, 46(12):1263-1270
    54. Huang MH, Yang RC, Ding HJ, Chai CY. Ultrasound effect on level of stress proteins and arthritic histology in experimental arthritis. Arch Phys Med Rehabil. 1999, 80(5):551-556
    55. Mitchell PG, Magna HA, Reeves LM, Lopresti-Morrow LL, Yocum SA, Rosner PJ, Geoghegan KF, Hambor JE. Cloning, expression, and typeⅡcollagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest. 1996, 97(3):761-768
    56. Kn?uper V, Will H, López-Otin C, Smith B, Atkinson SJ, Stanton H, Hembry RM, Murphy G. Cellular mechanisms for human procollagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme. J Biol Chem. 1996, 271(29):17124-17131
    57. Billinghurst RC, Dahlberg L, Ionescu M, Reiner A, Bourne R, Rorabeck C, Mitchell P, Hambor J, Diekmann O, Tschesche H, Chen J, Van Wart H, Poole AR. Enhanced cleavage of typeⅡcollagen by collagenases in osteoarthritic articular cartilage. J Clin Invest. 1997, 99(7):1534-1545
    58. Mengshol JA, Vincenti MP, Coon CI, Barchowsky A, Brinckerhoff CE. Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor kappaB: differential regulation of collagenase 1 and collagenase 3. Arthritis Rheum. 2000, 43(4):801-811
    59. Ho LJ, Lin LC, Hung LF, Wang SJ, Lee CH, Chang DM, Lai JH, Tai TY. Retinoic acid blocks pro-inflammatory cytokine-induced matrix metalloproteinase production by down-regulating JNK-AP-1 signaling in human chondrocytes. Biochem Pharmacol. 2005, 70(2):200-208
    60. Rossa C, Jr., Liu M, Patil C, Kirkwood KL. MKK3/6-p38 MAPK negatively regulates murine MMP-13 gene expression induced by IL-1beta and TNF-alpha in immortalized periodontal ligament fibroblasts. Matrix Biol. 2005, 24(7):478-488
    61.杨丰建,俞永林,乔健,夏军,任志伟,王静.兔骨关节炎模型的建立以及关节炎软骨组织中MMP-1/-13的表达.复旦学报(医学版).2007, 34(4):563-567
    62. Takaishi H, Kimura T, Dalal S, Okada Y, D'Armiento J. Joint diseases and matrix metalloproteinases: a role for MMP-13. Curr Pharm Biotechnol. 2008, 9(1):47-54.
    63. Reboul P, Pelletier JP, Tardif G, Cloutier JM, Martel-Pelletier J. The new collagenase, collagenase-3, is expressed and synthesized by human chondrocytes but not by synoviocytes. A role in osteoarthritis. J Clin Invest. 1996, 97(9):2011-2019.
    64. Pearle AD, Warren RF, Rodeo SA. Basic science of articular cartilage and osteoarthritis. Clin Sports Med. 2005, 24(1):1-12
    65. Stoop R, Buma P, van der Kraan PM, Hollander AP, Clark Billinghurst R, Robin Poole A, van den Berg WB. Differences in typeⅡcollagen degradation between peripheral and central cartilage of rat stifle joints after cranial cruciate ligament transection. Arthritis Rheum. 2000, 43(9):2121-2131
    66. Hollander AP, Heathfield TF, Webber C, Iwata Y, Bourne R, Rorabeck C, Poole AR. Increased damage to typeⅡcollagen in osteoarthritic articular cartilage detected by a new immunoassay. J Clin Invest. 1994, 93(4):1722-1732
    67. Dahlberg L, Billinghurst RC, Manner P, Nelson F, Webb G, Ionescu M, Reiner A, Tanzer M, Zukor D, Chen J, van Wart HE, Poole AR. Selective enhancement of collagenase-mediated cleavage of resident typeⅡcollagen in cultured osteoarthritic cartilage and arrest with a synthetic inhibitor that spares collagenase 1 (matrixmetalloproteinase 1). Arthritis Rheum. 2000, 43(3):673-682
    68. Bluteau G, Gouttenoire J, Conrozier T, Mathieu P, Vignon E, Richard M, et al. Differential gene expression analysis in a rabbit model of osteoarthritis induced by anterior cruciate ligament (ACL) section. Biorheology. 2002, 39(1-2):247-258
    69. Blaney Davidson EN, Remst DF, Vitters EL, van Beuningen HM, Blom AB, Goumans MJ, van den Berg WB, van der Kraan PM. Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice. J Immunol. 2009, 182(12): 7937-7945
    70. Zhang M, Zhou Q, Liang QQ, Li CG, Holz JD, Tang D, Sheu TJ, Li TF, Shi Q, Wang YJ. IGF-1 regulation of typeⅡcollagen and MMP-13 expression in rat endplate chondrocytes via distinct signaling pathways. Osteoarthritis Cartilage. 2009, 17(1):100-106
    71. Ahmed S, Wang N, Hafeez BB, Cheruvu VK, Haqqi TM. Punica granatum L. extract inhibits IL-1beta-induced expression of matrix metalloproteinases by inhibiting the activation of MAP kinases and NF-kappaB in human chondrocytes in vitro. J Nutr. 2005, 135(9):2096-2102
    72. Joos H, Albrecht W, Laufer S, Brenner RE. Differential effects of p38MAP kinase inhibitors on the expression of inflammation-associated genes in primary, interleukin-1beta-stimulated human chondrocytes. Br J Pharmacol. 2010, 160(5):1252-1262
    1. Pelletier JP MJ, Howell DS. Etiopathogenesis of osteoarthritis. Arthritis & allied conditions: a textbook of rheumatology. 14th ed. Baltimore: Lippincott Williams & Wilkins. 2000. 2195-2245
    2.中华医学会骨科学分会.骨关节炎诊治指南(2007年版).中华骨科杂志, 2007, 27(10): 793-796
    3.刘健,赵文海.对骨性关节炎发病机制的研究概况.辽宁中医药大学学报, 2008, 10(2): 80-82
    4. Malizos KN, Hantes ME, Protopappas V, Papachristos A. Low-intensity pulsed ultrasound for bone healing: an overview. Injury. 2006. 37 Suppl 1: S56-62
    5.汪方,王秋根.低强度脉冲式超声对关节软骨再生作用研究进展.国外医学(骨科学分册), 2004,25(6): 369-371
    6.乔志恒,范维铭.物理治疗学全书.北京:科学技术文献出版社2001.787-818
    7. Welch V, Brosseau L, Peterson J, Shea B, Tugwell P, Wells G. Therapeutic ultrasound for osteoarthritis of the knee. Cochrane Database Syst Rev. 2001. (3): CD003132
    8. Jamtvedt G, Dahm KT, Holm I, Flottorp S. Physical therapy interventions for patients with osteoarthritis of the knee: an overview of systematic reviews. Phys Ther. 2008. 88(1): 123-136
    9. Brosseau L, Casimiro L, Robinson V, Milne S, Shea B, Judd M, Wells G, Tugwell P. Therapeutic ultrasound for treating patellofemoral pain syndrome. Cochrane Database Syst Rev. 2001. (4): CD003375
    10. Gam AN, Johannsen F. Ultrasound therapy in musculoskeletal disorders: a meta-analysis. Pain. 1995. 63(1): 85-91
    11. Cook SD, Salkeld SL, Popich-Patron LS, Ryaby JP, Jones DG, Barrack RL. Improved cartilage repair after treatment with low-intensity pulsed ultrasound. Clin Orthop Relat Res. 2001. (391 Suppl): S231-243
    12. Azuma Y, Ito M, Harada Y, Takagi H, Ohta T, Jingushi S. Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J Bone Miner Res. 2001. 16(4): 671-80
    13.王群.膝骨性关节炎的研究进展.上海医学. 1997. (09): 557-559
    14. Parvizi J, Wu CC, Lewallen DG, Greenleaf JF, Bolander ME. Low-intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression. J Orthop Res. 1999. 17(4): 488-494
    15. Nishikori T, Ochi M, Uchio Y, Maniwa S, Kataoka H, Kawasaki K, Katsube K, Kuriwaka M. Effects of low-intensity pulsed ultrasound on proliferation and chondroitin sulfate synthesis of cultured chondrocytes embedded in Atelocollagen gel.J Biomed Mater Res. 2002. 59(2): 201-206
    16. Zhang ZJ, Huckle J, Francomano CA, Spencer RG. The effects of pulsed low-intensity ultrasound on chondrocyte viability, proliferation, gene expression and matrix production. Ultrasound Med Biol. 2003. 29(11): 1645-1651
    17. Korstjens CM, der Rijt RH v, Albers GH, Semeins CM, Klein-Nulend J. Low- intensity pulsed ultrasound affects human articular chondrocytes in vitro. Med Biol Eng Comput. 2008. 46(12): 1263-1270
    18. Naito K, Watari T, Muta T, Furuhata A, Iwase H, Igarashi M, Kurosawa H, Nagaoka I, Kaneko K. Low-intensity pulsed ultrasound (LIPUS) increases the articular cartilage typeⅡcollagen in a rat osteoarthritis model. J Orthop Res. 2010. 28(3): 361-369
    19. Tien YC, Lin SD, Chen CH, Lu CC, Su SJ, Chih TT. Effects of pulsed low- intensity ultrasound on human child chondrocytes. Ultrasound Med Biol. 2008. 34(7): 1174-1181
    20. Choi BH, Woo JI, Min BH, Park SR. Low-intensity ultrasound stimulates the viability and matrix gene expression of human articular chondrocytes in alginate bead culture. J Biomed Mater Res A. 2006. 79(4): 858-864
    21. Cook SD, Salkeld SL, Patron LP, Doughty ES, Jones DG. The effect of low-intensity pulsed ultrasound on autologous osteochondral plugs in a canine model. Am J Sports Med. 2008. 36(9): 1733-1741
    22. Jia XL, Chen WZ, Zhou K, Wang ZB. Effects of low-intensity pulsed ultrasound in repairing injured articular cartilage. Chin J Traumatol. 2005. 8(3): 175-178
    23. Gurkan I, Ranganathan A, Yang X, Horton WE Jr, Todman M, Huckle J, Pleshko N, Spencer RG. Modification of osteoarthritis in the guinea pig with pulsed low- intensity ultrasound treatment. Osteoarthritis Cartilage. 2010. 18(5): 724-733
    24. Mukai S, Ito H, Nakagawa Y, Akiyama H, Miyamoto M, Nakamura T. Trans-forming growth factor-beta1 mediates the effects of low-intensity pulsed ultrasound in chondrocytes. Ultrasound Med Biol. 2005. 31(12): 1713-1721
    25. Dodds RA, Merry K, Littlewood A, Gowen M. Expression of mRNA for IL1 beta, IL6 and TGF beta 1 in developing human bone and cartilage. J Histochem Cytochem. 1994. 42(6): 733-744
    26. Zhou S, Schmelz A, Seufferlein T, Li Y, Zhao J, Bachem MG. Molecular mecha- nisms of low intensity pulsed ultrasound in human skin fibroblasts. J Biol Chem. 2004. 279(52): 54463-54469
    27. Choi BH, Choi MH, Kwak MG, Min BH, Woo ZH, Park SR. Mechanotrans- duction pathways of low-intensity ultrasound in C-28/I2 human chondrocyte cell line. Proc Inst Mech Eng H. 2007. 221(5): 527-535
    28. Takeuchi R, Ryo A, Komitsu N, Mikuni-Takagaki Y, Fukui A, Takagi Y, Shiraishi T, Morishita S, Yamazaki Y, Kumagai K, Aoki I, Saito T. Low-intensity pulsed ultrasound activates the phosphatidylinositol 3 kinase/Akt pathway and stimulates the growth of chondrocytes in three-dimensional cultures: a basic science study. Arthritis Res Ther. 2008. 10(4): R77
    29. Parvizi J, Parpura V, Greenleaf JF, Bolander ME. Calcium signaling is required for ultrasound-stimulated aggrecan synthesis by rat chondrocytes. J Orthop Res. 2002. 20(1): 51-57
    30. Maylia E, Nokes LD. The use of ultrasonics in orthopaedics--a review. Technol Health Care. 1999. 7(1): 1-28
    31. Quinn TM, Grodzinsky AJ, Buschmann MD, Kim YJ, Hunziker EB. Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants. J Cell Sci. 1998. 111 ( Pt 5): 573-583
    32. Lee HJ, Choi BH, Min BH, Park SR. Low-intensity ultrasound inhibits apoptosis and enhances viability of human mesenchymal stem cells in three-dimensionalalginate culture during chondrogenic differentiation. Tissue Eng. 2007. 13(5): 1049-1057
    33. Weishaupt D, Schweitzer ME, Rawool NM, Nazarian LN, Morrison WB, Natale PM, Winder AA. Indirect MR arthrography of the knee: effects of low-intensity ultrasound on the diffusion rate of intravenously administered Gd-DTPA in healthy volunteers. Invest Radiol. 2001. 36(8): 493-499

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700