双齿围沙蚕消化道降油细菌的分离鉴定及菌群多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双齿围沙蚕(Pernereis aibuhitensis)隶属于环节动物门、多毛纲,是重要的海洋沉积食性无脊椎动物,其迁徙距离短,在我国河口沉积物和沿海滩涂有着广泛的地理分布。双齿围沙蚕能够蓄积大量环境中的有机污染物并通过自身的生物转化作用代谢和分解污染物,沙蚕也可以改善养殖水体底质,减轻和修复环境污染,是海洋沉积环境早期污染生态风险评价的指示生物和生态毒理学研究中重要的模式生物。本研究通过微生物分离培养的方法定向筛选出双齿围沙蚕消化道共栖石油降解菌,并通过DGGE的方法分析了所分离石油降解菌在双齿围沙蚕消化道的分布情况及其肠道共栖菌群多样性。
     实验将采自辽宁盘锦地区的双齿围沙蚕置于实验室无菌海水暂养24h后,将提取的沙蚕消化道样品匀浆后稀释用平板法涂布于2216E固体平板培养基,25℃培养24-48小时,根据不同菌落形态挑取单菌落进行纯化,共分离获得7株不同菌落形态的菌株,其中3株菌可在以柴油为唯一碳源的平板培养基中生长,编号分别为SC11-1、SC11-2、SC11-3,同样条件下SC11-3菌株生长状态最好,作为实验菌株。通过形态学、生理生化特性以及16SrDNA序列比对的方法对该菌株进行鉴定并测定其生长特性;同时测定添加不同葡萄糖浓度该菌株对柴油的降解性能;为进一步揭示以双齿围沙蚕为代表的多毛类消化道微生物菌群结构和分布相关生物学特征,阐明海洋底栖动物对持久性有机污染物的生物利用性和耐受性机理,实验分别从5条双齿围沙蚕消化道提取微生物基因组总DNA,通过细菌16SrDNA通用引物341F/534R进行了细菌V3高变异区的PCR扩增,再将PCR产物(约230bp)进行变性梯度凝胶电泳(DGGE),从而获得双齿围沙蚕消化道共栖细菌群落特征的DGGE条带;分别对DGGE图谱中公共条带的序列进行测序比对,分析其消化道的细菌多样性特征。结果显示:菌株SC11-3经过在25℃振荡培养(150rpm/min)15天后,对柴油的原始降解率约为40%;SC11-3菌株为革兰氏阴性菌、杆状,生理生化特征与游海假交替单胞菌(Peudoalteromonas haloplanktis)相符,16SrDNA同源性为100%;SC11-3菌株最适生长温度和pH分别为25℃和pH8,适宜NaCl浓度在1-3%之间;添加不同浓度的葡萄糖后,其降解效率有显著提高,葡萄糖添加量达到4g/L时,可降解柴油50mg以上,继续增加葡萄糖浓度,对降解率有抑制作用;通过对指纹图谱的半定量分析发现,双齿围沙蚕消化道共栖细菌菌群多样性丰富,优势条带明显,不同双齿围沙蚕个体间既存在着共同的细菌种属,也有各自特异的种属,DGGE图谱分析结果显示5条沙蚕肠道样品扩增条带数分别为22、21、18、18、19,其中样品间存在共同的优势条带,但优势条带含量存在个体间的差异;公共条带测序有下列十种细菌:假交替单胞菌属(Pseudoalteromonas sp.)未培养假交替单胞菌(Uncultured Pseudoalteromonas sp.),伊丽莎白菌属(Elizabethkingiasp.),产丙酸菌属(Uncultured Propionigenium sp.),未培养细菌(Unculturedbacterium),杆菌属(Bacterium),未培养假交替单胞(Uncultured Pseudoalteromonassp.),交替单胞菌科(Alteromonadaceae bacterium),未培养γ-变形菌纲(Unculturedγ-proteobacterium),假交替单胞菌属(Pseudoalteromonas sp.),其中产丙酸菌属(Propionigenium sp.)和假交替单胞菌属(Pseudoalteromonas sp.)分别为5条双齿围沙蚕肠道样品中的优势菌。
Polychaetes are important model organisms of marine invertebrates in estuarine sediments witha wide geographical distribution. Considering their short-distance migration characteristic,polychaetes are known to accumulate significant amounts of organic matter from theenvironment and steady-state body burdens are a function of biotransformation and eliminationprocesses. In the present study, methods of microbial cultivation were used to isolate thepetroleum-degrading bacteria in the digestive tract of Perinereis aibuhitensis (Polychaete),furthermore, DGGE was also played to analyse the distribution of isolated bacteria and theintestinal microbial diversity.
     In the present study, the Perinereis aibuhitensis were collected from the shoreline of Panjin(Liaoning Province, China) and transformed to the laboratory. After being starved for24hours,the gut samples of5healthy worms were removed and the diluted homogenate was daubed onsolid2216E agar plate media. Then incubated at25℃for24-48h,7strains were eventuallyselected and purified according to different colony morphology and3of them can grow on themineral medium supplemented with diesel oil as a sole source of carbon, number SC11-1、SC11-2、SC11-3. and SC11-3strain was selected as the test strain for its relatively good growth.After determining degradation efficiency quantitatively by UV spectrophotometry, strain SC11-3was selected as the test strain for its relatively good growth and degradation ability. Detailedanalysis of morphological, biochemical and16S rDNA sequence were used to identify the isolateand its growth characteristics were determined, meanwhile the oil-degrading efficiency was alsostudied associated with different concentrations of glucose. Moreover, in order to further revealthe intestinal microflora structure-distribution related biological characteristics of Pernereisaibuhitensis presented as polychaetes, stating the bioavailability and tolerability mechanisms ofpersistent organic pollutants of marine sedimentary inverabrates, the total genomic DNA wasisolated from gut samples of5healthy Perinereis aibuhitensis, respectively. Then the V3regionof the16S rRNA genes (approximately230bp) was amplified with specific primers set ofGC-341f/534r. The DGGE band profiles of immobilized bacteria in the digestive tract ofPerinereis aibuhitensis were finally generated. The results indicate: strain SC11-3wasGram-negative, rod shaped and16S rRNA sequencing showed that strain SC11-3was closelyrelated to Peudoalteromonas haloplanktis, and the homology was100%. The experimentalresults of growing characteristics showed the optimum growth temperature and pH of strainSC11-3was25℃and8, respectively; the adaptive NaCl concentration was in the range of1-3%.After being oscillation incubated (150rpm/min) at25℃for15days, about40%diesel oil wasinitially consumed by SC11-3strain. The degrading efficiency of strain SC11-3was significantlyenhanced when adding glucose to a specific concentration of0.4g/L, and the degradation of diesel achieved more than50mg. But as more glucose was added, the degradation efficiency
     dropped. The semi-quantitative analysis of DGGE map showed that22,21,18,18,19bandswere generated in5gut samples, respectively and the common predominant band was found, butthe relative content of each predominant band was different. The sequencing and blast results ofthe DGGE common bands are listed as follows: Pseudoalteromonas sp., UnculturedPseudoalteromonas sp., Elizabethkingia sp., Uncultured Propionigenium sp., Unculturedbacterium, Bacterium, Uncultured Pseudoalteromonas sp., Alteromonadaceae bacterium,Uncultured γ-proteobacterium, Pseudoalteromonas sp. and the results indicate thatPropionigenium sp. is the predominant intestinal microflora in the5samples, respectively andPseudoalteromonas sp. is widely distributed in the digestive tract of Perinereis aibuhitensis.
引文
[1]Yang. H., Wang. J., Zhou. Y., et al. Comparision of efficieneies of different culture systems in the shallowsea along Yantai[J].Fish China.2000.24140–145.
    [2]高菲.刺参营养成分、食物来源及消化生理的季节变化[D].北京:中国科学院研究生院,2008:44–52.
    [3]Tannock, G.,1999. A Fresh Look at the Intestinal Microflora. Horizon Scientific Press,pp.5–14.
    [4]Luesch H,Moore RE,Paul vJ,et a1.Isolation of dolastatin10from the marine cyanobacterium Symplocaspecies VP642and total stereochemistry and biological evaluation of its analogue symplostatin1[J].J NatProd.2001,64(7):907-910.
    [5]Schupp P,Eder C,Proksch P,et a1.1999.Staurosporined erivatives from the Ascidican Eudistomatoealensis and its predatory flatworm Pseudoceros sp[J].Z Nat Prod,62(7),959-962
    [6]王斌,陈营,毛远菊,等.微生态调节剂对鲤生长及肠道菌群的影响[J].中国微生态学杂志,1996,(8):32-35.
    [7]刘小刚,周洪琪,华雪铭,等.微生态制剂对异育银鲫消化酶活性的影响[J].水产学报,2002,(26):448-452.
    [8]郭海勇,吴静,许磊,等.16S rRNA基因序列在动物消化道细菌鉴定中的应用研究.2008,36(17):7152-7154.
    [9]葛莉莉,鱼类肠道菌群的研究概况.水利渔业.2006.26(4)17–20.
    [10]Knapp, B.A., Seeber, J., Podmirseg, S.M., Rief, A., Meyer, E. H.,2008. Insam Molecular fingerprintinganalysis of the gut microbiota of Cylindroiulus fulviceps (Diplopoda). Pedobiologia.52,325-336.
    [11]Gatesoupe F J, R Lesel. An environmental approach to intestinal microflora in fish [J]. CohieraAgricultures,1998,7(1):29-35.
    [12]Moss, S.M., LeaMaster, B.R., Sweeney, J.N.,2000. Relative abundance and species composition ofgram-negative, aerobic bacteria associated with the gut of juvenile white shrimp Litopenaeus vannamei rearedin oligotrophic well water and eutrophic pond water. Journal of the World Aquaculture Society31,255–263.
    [13]Oxley, A.P.A., Shipton,W., Owens, L., McKay, D.,2002. Bacterial flora from the gut of thewild and cultured banana prawn, Penaeus merguiensis. Journal of Applied Microbiology93,214–223.
    [14]高菲,孙慧玲,许强,等.刺参消化道内含物细菌群落组成的PCR-DGGE分析.[J].中国水产科学.2010,17(4),672-679.
    [15]E. Blanchart, A. Albrecht, J. Alegre, A. Duboisset, B. Pashanasi, P. Lavelle, et al., Effects of earthwormson soil structure and physical properties, in: P. Lavelle, L. Brussaard, P. Hen-drix (Eds.), Earthwormmanagement in tropical agroecosystems, CAB International, Wallingford, UK,1999, pp.139–162.
    [16]H. Siepel, E.M. de Ruiter-Dukman, Feeding guilds of oribatidmites based on their carbohydrase activities,Soil Biol. Biochem.25(11)(1993)1491-1497.
    [17]C. Lattaud, B.G. Zhang, S. Locati, C. Rouland, P. Lavelle, Activities of the digestive enzymes in the gutand in tissue culture of a tropical geophagous earthworm, Polypheretima elongata (Megascolecidae), Soil Biol.Biochem.29(3e4)(1997)335-339.
    [18]A.D. Pokarzhevskii, I. Sikora, S.A. Gordienko, Amino-acid resources in the food of saprophages, Dokl.Acad. Nauk SSSR277(1984)253-256.
    [19]L. Sampedro, R. Jeannotte, J.K.Whalen, Trophic transfer of fatty acids fromthe gut microbiota to theearthworm Lumbricus terrestris L., in: Abstracts the8th International Symposium on Earthworm Ecology,4-9September2006, Krakow, Poland, p.134.
    [20]J.M. Anderson, D.E. Bignell,1980. Bacteria in the food, gut contents and faeces of the litter-feedingmillipede Glomeris marginata (Villers). Soil Biol. Biochem.12,251–254.
    [21]Ineson, P., Anderson, J.M.,1985. Aerobically isolated bacteria associated with the gut and faeces of thelitter feeding macroarthropods Oniscus asellus and Glomeris marginata. Soil Biol. Biochem.17,843–849.
    [22]Byzov, B.A., Kurakov, A.V., Tretyakova, E.B., Thanh, V.N., Luu, N.D.T., Rabinovich, Y.M.,1998.Principles of the digestion of microorganisms in the gut of soil millipedes: specificity and possiblemechanisms. Appl. Soil Ecol.9,145–151.
    [23]Byzov, B.A., Thanh, V.N., Babjeva, I.P.,1993. Interrelationsips between yeasts and soil diplopods. SoilBiol. Biochem.25,1119–1126.
    [24]Marialigeti, K., Contreras, E., Barabas, G., Heydrich, M.,Szabo, I.M.,1985. True intestinal actinomycetesof millipedes (diplopoda). J. Invertebr. Pathol.45,120–121.
    [25]Byzov, B.A., Chernjakovskaya, T.F., Zenova, G.M., Dobrovolskaya, T.G.,1996. Bacterial communitiesassociated with soil diplopods. Pedobiologia40,67–79.
    [26]J.N. Parle, A microbiological study of earthworms casts, J. Gen. Microbiol.31(1963)13-22.
    [27]R.G.D. Hanlon, Some factors influencing microbial growth on soil animal faeces, Pedobiologia21(3/4)(1981)257-263.
    [28]F. Scho¨nholzer, D. Hanh, J. Zeyer, Origins and fate of fungi and bacteria in the gut of Lumbricus terrestrisL. studied by image analysis, FEMS Microbiol. Ecol.28(3)(1999)235-248.
    [29]Byzov, B.A., Khomyakov, N. V., Kharin, S.A., Kurakov, A.V.,2007. Fate of soil bacteria and fungi in thegut of earthworms. European Journal of Soil Biology43, S149-S156
    [30]B.A. Knapp., S.M. Podmirseg., J. Seeber., E.Meyer., H. Insam.2009. Diet-related composition of the gutmicrobiota of Lumbricus rubellus as revealed by a molecular fingerprinting technique and cloning. SoilBiology&Biochemistry.41,2299–2307.
    [31]牛宇峰,田相利,杜宗军,等.投饵与不投饵池塘刺参肠道异养菌区系比较.安徽农业科学.2009.37(27)13113–13117.
    [32]Liu, H.D., Wang, L., Liu, M., Wang, B.J., Jiang, K.Y., Ma, S.S., Li, Q.F.,2011. The intestinal microbialdiversity in Chinese shrimp (Fenneropenaeus chinensis) as determined by PCR–DGGE and clone libraryanalyses. Aquaculture. doi:10.1016/j.aquaculture.2011.04.008.
    [33]Harris, J.M.,1993. The presence, nature, and role of gut microflora in aquatic invertebrates: a synthesis.Microbial Ecology25,195–231
    [34]Yasuda, K., Kitao, T.,1980. Bacterial flora in the digestive tract of prawns, Penaeus japonicus Bate.Aquaculture19,229–234.
    [35]Harris, J., Seiderer, L., Lucas, M.,1991. Gut microflora of two saltmarsh detritivore thalassinid prawns,Upogebia africana and Callianassa kraussi.Microbial Ecology21,277–296.
    [36]Holzapfel, W., Haberer, P., Snel, J., Schillinger, U.,1998. Overview of gut flora and probiotics.International Journal of Food Microbiology41,85–101.
    [37]Wilson, K., Blitchington, R.,1996. Human colonic biota studied by ribosomal DNA sequence analysis.Applied and Environmental Microbiology62,2273–2278.
    [38]Amann, R., Ludwig, W., Schleifer, K.,1995. Phylogenetic identification and in situ detection of individualmicrobial cells without cultivation. Microbiology and Molecular Biology Reviews59,143–169.
    [39]Muyzer, G., de Waal, E.C., Uitterlinden, A.G.,1993. Profiling of complex microbial populations bydenaturing gradient gel electrophoresis analyses of polymerase chain reaction-amplified genes for16S rRNA.Appl. Environ. Microbiol.59,695–700.
    [40]Liu, W.-T., Marsh, T.L., Cheng, H., Forney, L.J.,1997. Characterisation of microbial diversity bydetermining terminal restriction length polymorphisms of genes encoding16S rDNA. Appl. Environ.Microbiol.63,4516–4522.
    [41]Schwieger, F., Tebbe, C.C.,1998. A new approach to utilize PCR-single-strand conformationpolymorphismfor16S rRNA gene-based microbial community analysis. Appl. Environ. Microbiol.64,4870–4876.
    [42]徐晓静,文思远,韩毅.应用基因芯片方法检测几种肠道菌.华北农学报.2006.21(6)182–183.
    [43]Vanhoutte, T., Huys, G., De Brandt, E., Swings, J.,2004. Temporal stability analysis of the microbiota inhuman feces by denaturing gradient gel electrophoresis using universal and group-specific16S rRNA geneprimers. FEMS Microbiol. Ecol.48,437–446.
    [44]Simpson, J.M., McCracken, V.J., White, B.A., Gaskins, H.R., Mackie, R.I.,1999. Application ofdenaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota. J. Microbiol.Methods36,167–179.
    [45]Reeson, A.F., Jankovic, T., Kasper, M.L., Rogers, S., Austin, A.D.,2003. Application of16S rDNA-DGGEto examine the microbial ecology associated with a social wasp Vespula germanica. Insect Mol. Biol.12,85–91.
    [46]Tanaka, H., Aoyagi, H., Shina, S., Dodo, Y., Yoshimura, T., Nakamura, R., Uchiyama, H.,2006. Influenceof the diet components on the symbiotic micro-organisms community in hindgut of Coptotermes formosanusShiraki. Appl. Microbiol. Biotechnol.71,907–917.
    [47]李可俊,管卫兵,徐晋麟,等. PCR-DGGE对长江河口八种野生鱼类肠道菌群多样性的比较研究[J].中国微生态学杂志,2007,l9(3):268-272.
    [48]Nocker, A., Burr, M., Camper, A.K.,2007. Genotypic microbial community profiling: a critical technicalreview. Microb. Ecol.54,276–289.
    [49]Schabereiter-Gurtner, C., Pinar, G., Lubitz, W., Rolleke, S.,2001. An advanced molecular strategy toidentify bacterial communities on art objects. J. Microbiol. Methods45,77–87.
    [50]Liang, Z., Drijber, R.A., Lee, D.J., Dwiekat, I.M., Harris, S.D., Wedin, D.A.,2008. A DGGE-cloningmethod to characterize arbuscular mycorrhizal community structure in soil. Soil Biology and Biochemistry40,956–966.
    [51]Talas R M. Diversity of Microbial communities. In: Marshall K C ed. Advances in Microbial Ecology. Vo l.Plenum. New York,1984,1-47.
    [52]McSweeney. C. S., Palmer. B., Bunch. R., et a1.Effect of the tropical forage calliandra on micmbialprotein synthesis and ecology in the rumen. Joumal of Applied Micmbiology,2001(90):78-88.
    [53]任伟成,王崇明,李赞.荧光实时定量技术及其在水产养殖研究中的应用[J]海洋水产研究2007,28(6):97-103.
    [54]王忠发,邵俊斌,沃健儿,等.实时荧光定量快速检测白斑综合征病毒的方法研究[J]中国卫生检验杂志115(6):663-665.
    [55]Dhar A K, Roux M M, Klimpel K R. Detection and quantification of infectious hypodermal andhematopoietic necrosis virus and white spot virus in shrimp using real-time quantitative PCR and SYBR Greenchemistry. J Clin Microbiol.2001Aug;39(8):2835-45.
    [56]Kathy T.N., Lightner, D.V. Development of real-time PCR assays for detection of white spot syndromevirus, yellow head virus, Taura syndrome virus, and infectious hypodermal and hematopoietic necrosis virus inpenaeid shrimp. Department of Veterinary Science and Microbiology, University of Arizona,2001,Tucson,1-19.
    [57]张惠文,张倩茹,周启星,等.分子微生物生态学及其研究进展[J].应用生态学报,2003,14(2):286-292.
    [58]Llobet2Brossa E,Rossello2Mora R, Amann R I. Microbial community composition of Wadden Seasediments as revealed by fluorescence in situ hybridization[J]. Appl Environ Microbiol,1998,64:2692-2696.
    [59]Alfrider A,Pernthaler J,Amann R,et al.Community analysis of the bacterial assemblages in the wintercover and pelagic layers of a high mountain lake by in situ hybridization[J]. Appl Environ Microbiol,1996,62:2138-2144.
    [60]Kenzaka T,Yamaguchi N,Tani K,et al. rRNA-targeted fluorescent in situ hybridization analysis ofbacterial community structure in river water[J].Microbiology,1998,144:2085-2093.
    [61]Weiss P,Schweitzer B,Amann R,et al. Indentification in situ and dynamics of bacteria on limneticorganic aggregates (lake snow)[J]. Appl Environ Microbiol,1996,62:1998-2005.
    [62]Felske A,Akkermans A D L,De Vos WM. In situ detection of an uncultured predominant Bacillus in dutchgrassland soil [J]. Appl Environ Microbiol,1998,64:4588-4590.
    [63]Macnaughton S J,Booth T,Embley T M,et al. Physical stabilization and confocal microscopy of bacteriaon roots using16S rRNA targeted fluorescent labeled oligonucleotide probes[J]. J Microbiol Methods,1996,26:279-285.
    [64]邢德峰,任南琪,李建政.荧光原位杂交在环境微生物学中的应用及进展[J]环境科学研究2002,3(16):55-58.
    [65]M.G. Paoletti, Invertebrate biodiversity as bioindicators of sustainable landscapes, Elsevier, Amsterdam,1999.
    [66]P. Lavelle., T. Deca ns., M. Aubert., S. Barot., M. Blouin., F. Bureau., P. Margerie., P. Mora., J.-P. Rossi.Soil invertebrates and ecosystem services. European Journal of Soil Biology42(2006) S3–S15.
    [67]K. TAJIMA, R. I. AMINOV., T. NAGAMINE., H. MATSUI., M. NAKAMURA., Y. BENNO.2001.Diet-Dependent Shifts in the Bacterial Population of the Rumen Revealed with Real-Time PCR. AmericanSociety for Microbiology.2766–2774.
    [68]陈尧.2003.中国近海石油污染现状及防治[J].工业安全与环保,29(11):20—23
    [69]Guo C L, Dang Z, Wong Y S, et al.2010. Biodegradation ability and dioxgenase genes ofPAH-degrading Sphingomonas and Mycobacterium strains isolated from mangrove sediments [J]. InternationalBiodeterioration&Biodegradation64:419—426
    [70]VAN HAMME J D,WARD O P.Physical and metabolic interactions of Pseudomonas sp. strain JA5-B45and Rhodococcus sp.strain F9一D79during growth on crude oil and effect of a chemical surfactant on them[J].Appl Environ Microbiol,2001,67(10):4874-4879。
    [71]DEBORAFI D R,JOANNA M,CERNIGLIA C E.Utilization of mixttires of polycyclic aromatichydrocarbons by baeteria isolated from contaminated sediment[J].FEMS Microbiol Ecol,2002,41(1):1-7.
    [72]徐金兰等.高效石油降解菌的筛选及石油污染土壤生物修复特性的研究[J].环境科学学报,2007,27(4):622-628.
    [73]张秀霞等.固定化原油降解菌的制备及其性能研究[J].环境工程学报,2010,4(3):659-664.
    [74]周常义等.一株海洋石油降解菌的分离鉴定及特性研究[J].集美大学学报(自然科版),2007,14(1):20-24.
    [75]Yakimov M M et al.Thalassolituus oleivorans gen.nov.,sp.nov.,a novel marinebacterium that obligatelyutilizes hydrocarbons[J]. Int J Syst Evol Microbiol,2004,54:141–148.
    [76]Coulon F et al.Effects of temperature and biostimulation on oil-degrading microbial communities intemperate estuarine waters[J].Environ Microbiol,2007,9:177–186.
    [77]宋雪英,宋玉芳,孙铁珩,等.2004.矿物油污染土壤中芳烃组分的生物降解与微生物生长动态[J].环境科学,25(3):115-119
    [78]谢鲲鹏,周集体,曲媛媛,等.2009.一株耐盐原油降解菌的分离鉴定及其降解特性研究[J].海洋环境科学,28(6):680-683
    [79]邵宗泽,许晔,马迎飞,等.2004.2株海洋石油降解细菌的降解能力[J].环境科学,(5):133-137
    [80]张月梅,祖国仁,那广水,等.2010.北极耐冷石油降解菌的筛选、鉴定及其碳源利用广谱性[J].海洋环境科学,29(2):216-220
    [81]朱鹏,郑丽,林晶,等.抗菌和细胞毒活性海洋细菌的筛选及其次生代谢基因证据[J].微生物学报,2007,47(2):228–234.
    [82]Radwan S S, Al-Hasan R H, Salamah S, et al.2002. Bioremediation of oily sea water by bacteriaimmobilized in biofilms coating macroalgae[J]. International Biodeterioration&Biodegradation50:55-59
    [83]M O BENKA COKER,J A EKUNDAYO. Applicability of evaluating the ability of microbes isolatedfrom an oil spill site to degrade oi[lJ]. Environmental Monitoring and Assessment.1997,45(3):259-272.
    [84]丁明宇,黄健,李永祺.海洋微生物降解石油的研究[J].环境科学学报,2001,21(1):84-88.
    [85]R MARGESIN,F SCHINNER. Effect of temperature on oil degradation by a psychrotrophic yeast inliquid culture and in soil [J].FEMS Microbiology Ecology,1997,24:243-249.
    [86]Pérez-de-Mora A, Engel M, Schloter M. Abundance and diversity of n-alkane-degrading bacteria in aforest soil co-contaminated with hydrocarbons and metals: a molecular study on alkB homologous genes [J]Microb Ecol.2011Nov;62(4):959-72.
    [87]Feng L, Wang W, Cheng J,et al.Genome and proteome of long-chain alkane degrading Geobacillusthermodenitrificans NG80-2isolated from a deep-subsurface oil reservoir[J] Proc Natl Acad Sci U S A.2007Mar27;104(13):5602-7.
    [88]杨丽芹,蒋继辉.微生物对石油烃类的降解机理[J].油气田环境保护,2011,21(2):24-26.
    [89]李会爽,周磊,柳青,等.石油污染物生物降解的机理研究[J]安徽理工大学学报(自然科学版),2011,31(3):68-71.
    [90]黎霞,承磊,邓宇,等.石油烃厌氧生物降解研究进展[J]应用与环境生物学报2008,14(2):283-289.
    [91]Kniemeyer O, Heider J. Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme [J]. Journal of Biological Chemistry,2001,276:21-23.
    [92]Rabus R, Wilkes H, BehrendsA,et al. Anaerobic initial reaction of n2alkanes in a denitrifying bacterium:Evidence for (1-methylpentyl) succinate as initial p roduct and for involvement of an organic radical inn-hexane metabolism. J B acteriol,2001,183(5):1707-1715
    [93]So C M, Phelp s C D, Young L Y. Anaerobic transformation of alkanes to fatty acids by a sulfate-reducingbacterium, strain Hxd3. Appl Environ Microbiol,2003,69(7):3892-3900
    [94]Rabus R, Heider J. Initial reactions of anaerobic metabolism of alkyl-benzenes in denitrifying andsulfate-reducing bacteria. Arch Microbiol,1998,170(5):377-384
    [95]Chakraborty R, Coates JD. Hydroxylation and carboxylation-Two crucial steps of anaerobic benzenedegradation by Dechloromonas strain RCB. Appl Environ M icrobiol,2005,71(9):5427-5432
    [96]Michael K, Johann H, Judith A,et al. Genes involved in the anaerobic degradation of toluene in adenitrifying bacterium, strain EbN1. A rch M icrobiol,2004,181(3):182-194
    [97]Staci RK, Harry RB, Tina CL,et al. Biochemical and genetic evidence of benzylsuccinate synthaseintoluene-degrading, ferric iron-reducing Geobacter metallireducens Biodegradation,2002,13(2):149-154
    [98]Winderl C, Schaefer S, Lueders T. Detection of anaerobic toluene andhydrocarbon degraders incontaminated aquifers using benzylsuccinate synthase (bssA) genes as a functional marker. Environ Microbiol,2007,9(4):1035-1046
    [99]Meckenstock R U. Fermentative toluene degradation in anaerobic defined syntrophic cocultures. FEMSMicrobiol Lett,1999,177(1):67-73
    [100]沈国英,施并章.海洋生态学(第二版)[M]科学出版社2002
    [101]东秀珠,蔡妙英等.常见细菌系统鉴定手册[M].2001.
    [102]Nicky B. Buller. Bacteria from Fish and Other Aquatic Animals: A Practical Identification Manual [M].
    [103]CLAUDINE M, EVELYNE K, GéRALDINE P, et al. Coping with cold: The genome of the versatilemarine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125[J]. Genome Research,2005,15:1325–1335.
    [104]ANTONELLO M, IRENE R K, IMMACOLATA C, et al. Structure and flexibility in cold-adapted ironsuperoxide dismutases: The case of the enzyme isolated from Pseudoalteromonas haloplanktis[J]. Journal ofStructural Biology,2010,172:343–352.
    [105]ROBERTA R, DANIELA G, ALESSIA R, et al. Cold-adapted bacteria and the globin case study in theAntarctic bacterium Pseudoalteromonas haloplanktis TAC125[J]. Marine Genomics,2010,3:125–131.
    [106]IMMACOLATA C, MARIA R R, FRANCESCA C, et al. Glutathionylation of the iron superoxidedismutase from the psychrophilic eubacterium Pseudoalteromonas haloplanktis[J]. Biochimica et BiophysicaActa,2008,1784:816–826.
    [107]Tittle P. C. et al. Use of alternative growth substrates to enhance PAH degradation. In: R. E. Hinchee(eds). Bioremediation of Recalcitrant Organics.1995,1-7
    [108]Jensen, H. L. Carbon nutrition of some microganisms decomposting halogen-substituted aliphatic acid.Acta. Agr. Scand.,1963,13:404~412
    [109]ANGELA V, GUIDO D M, SIMON A R, et al. Enhanced bioremediation of methyl tert-butyl ether(MTBE) by microbial consortia obtained from contaminated aquifer material[J]. Chemosphere,2009,75:149–155.
    [110]YIN Z, TIANGANG L, XIAOWEI W, et al. Influence of growth medium on cometabolic degradation ofpolycyclic aromatic hydrocarbons by Sphingomonas sp. strain PheB4[J]. Applied Microbiology andBiotechnology,2007,75:175–186.
    [111]巩宗强,李培军,王新等.芘在土壤中的共代谢降解研究[J].应用生态学报,2001,12(3):447–450.
    [112]李萍,刘俊新.废水中难降解性有机污染物的共代谢降解[J].环境污染治理技术与设备,2002,11(3):43–46.
    [113]SHEN J, BARTHA R. The priming effect of substrate addition in soil–based biodegradation tests[J].Applied and Environmental Microbiology,1996,62:1428–1430.
    [114]Bingemann C W, Varner J E, Martin W P. The effect of the addition of organic materials on thedecomposition of an organic soil[J]. Soil Science Society of American Proceedings,1953,17:34–38.
    [115]Kuzyakov Y, Friedel JK, Stahr K. Review of mechanisms and quantification of priming effects[J]. SoilBiology and Biochemistry,2000,32:1485–1498.
    [116]陈春梅,谢祖彬,朱建国.土壤有机碳激发效应研究进展[J].土壤(Soils),2006,38(4):359-36.
    [117]田胜艳,王娟,聂立红.两种N源对石油烃降解菌群降解柴油能力的影响[J].海洋环境科学,2009,28(1):26-29.
    [118]李宝明,姜瑞波.营养和环境条件对微生物菌群降解石油的影响[J].中国土壤与肥料,2008,(3):78–82.
    [119]J rgensen, A., Giessing, A.M.B., Rasmussen, L.J., Andersen, O.,2008. Biotransformation of polycyclicaromatic hydrocarbons in marine polychaetes. Mar. Environ. Res.65,171–186.
    [120]Yuan X.T.,Chen A.H., Zhou Y.B. et al., The influence of cadmium on the antioxidant enzyme activities inpolychaete Perinereis aibuhitensis Grube (Annelida: Polychaeta). Chinese Journal of Oceanology andLimnology2010,28(4):849-855.
    [121]周一兵,陈雪,杨大佐,等.双齿围沙蚕CYP4基因的克隆及序列分析[J].大连海洋大学学报,2011,26(6):507-513.
    [122]李霞,宋贞坪,王福景,等.雌激素对双齿围沙蚕性比、生长和卵母细胞发育的影响[J].大连海洋大学学报,2011,2(2):97-101.
    [123]葛莉莉.鱼类肠道菌群的研究概况.水利渔业.2006.26(4)17-20.
    [124]闫志勇,毕春霞,辛晓妮,等。1株高产蛋白酶嗜麦芽寡养单胞菌的分离鉴定及其酶学活性的研究[J].微生物学杂志201030(5):7-11
    [125]闫志勇王斌宋旭霞,等。一株具有纤维蛋白溶解活性的海单胞菌的分离和鉴定[J].中国生物制品学杂志200720(10):717-732
    [126]代玉梅闰志勇王斌,等。沙蚕消化道产蛋白酶菌D2株的筛选及其酶学性质[J].中国生物制品学杂志200720(7):493-496
    [127]Baker, P.W., Harayama, S.,2004. An analysis of microorganisms in environments using denaturinggradient gel electrophoresis. Environmental Microbiology16,323–338.
    [128]Muyzer, G., De Waal, E.C., Uitterlinden, A.G.,1993. Profiling of complex microbial populations bydenaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for16SrRNA. Applied and Environment Microbiology59,695–700.
    [129]高菲,孙慧玲,许强,等.刺参消化道内含物细菌群落组成的PCR-DGGE分析.[J].中国水产科学.2010,17(4),672-679.
    [130]E. Blanchart, A. Albrecht, J. Alegre, et al. Effects of earthworms on soil structure and physical properties,in: P. Lavelle, L. Brussaard, P. Hendrix (Eds.), Earthworm management in tropical agroecosystems, CABInternational, Wallingford, UK,1999, pp.139–162.
    [131]Xiaozhen Mou, Shulei Sun, Robert A. Edwards, et al. Bacterial carbon processing by generalist species inthe coastal ocean[J]. Nature2007.451.708-711.
    [132]单红云,赫崇波,李晓冬,等.一种海绵动物对室内养殖海参危害的初步研究[J]水产科学2008.27(12):645-647.
    [133]Amann, R., Ludwig, W., Schleifer, K.,1995. Phylogenetic identification and in situ detection ofindividual microbial cells without cultivation. Microbiology and Molecular Biology Reviews59,143–169.
    [134]Holzapfel, W., Haberer, P., Snel, J., Schillinger, U.,1998. Overview of gut flora and probiotics.International Journal of Food Microbiology41,85–101.
    [135]Wilson, K., Blitchington, R.,1996. Human colonic biota studied by ribosomal DNA sequence analysis.Applied and Environmental Microbiology62,2273–2278.
    [136]Vanhoutte, T., Huys, G., De Brandt, E., et al.2004. Temporal stability analysis of the microbiota in humanfeces by denaturing gradient gel electrophoresis using universal and group-specific16S rRNA gene primers.FEMS Microbiol. Ecol.48,437–446.
    [137]Simpson, J.M., McCracken, V.J., White, B.A., et al.1999. Application of denaturant gradient gelelectrophoresis for the analysis of the porcine gastrointestinal microbiota. J. Microbiol. Methods36,167–179.
    [138]Reeson, A.F., Jankovic, T., Kasper, M.L., et al.,2003. Application of16S rDNA-DGGE to examine themicrobial ecology associated with a social wasp Vespula germanica. Insect Mol. Biol.12,85–91.
    [139]Tanaka, H., Aoyagi, H., Shina, S., et al.2006. Influence of the diet components on the symbioticmicro-organisms community in hindgut of Coptotermes formosanus Shiraki. Appl. Microbiol. Biotechnol.71,907–917.
    [140]李可俊,管卫兵,徐晋麟,等. PCR-DGGE对长江河口八种野生鱼类肠道菌群多样性的比较研究[J].中国微生态学杂志,2007,l9(3):268-272.
    [141]马悦欣,王颖,杨凤,等.应用PCR-DGGE技术研究四角蛤蜊的细菌多样性[J].大连海洋大学学报,2011,26(3):55-58.
    [142]闫志勇.双齿围沙蚕消化道菌群的分析及生物活性物质的研究[D].山东:青岛大学病原生物学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700