纳米TiO_2可控制备及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米TiO_2因其具有粒径小、比表面积大、分散性好、实际应用中无二次污染等优点而备受关注,纳米TiO_2的制备、性能及应用成为国内外学者研究的热点。本文研究了水热(溶剂热)制备条件对纳米TiO_2微观结构的影响及其在光照射下对有毒有机污染物降解的催化特性,探讨了其制备条件对纳米TiO_2晶型、形貌的影响,比较了不同条件下制备TiO_2的催化性能,分析了TiO_2的光谱学性质,并通过跟踪分析不同光催化体系过程中主要活性物种·OH和H2O_2的变化,探讨了光催化反应作用机理。
     1利用溶剂法在不同溶剂介质(水,NaOH溶液、乙醇、OP乳化剂、二乙醇胺)条件下制备了纳米TiO_2。考察了以不同溶剂及溶剂比例,NaOH溶液浓度、温度等条件下对TiO_2晶体微观结构的影响,通过在紫外光照射下对有机染料的光催化降解性能试验,分析了不同微观结构纳米TiO_2的光谱学特性。
     2低温溶剂制备了TiO_2粉末,X射线衍射仪(XRD)、比表面积及孔径分析仪(BET)和透射电镜(TEM)对TiO_2进行了初步表征。表明:纳米TiO_2主要为锐钛矿相(含板钛矿相(121)),比表面积为106.2m2/g。在紫外光(λ≤387nm)照射条件下,以有机染料罗丹明B(rhodamine B, RhB)和无色小分子2,4-二氯苯酚(2,4- dichlorophenol , 2,4-DCP)的光催化降解试验为探针反应,研究了催化剂的催化活性。表明低温(50℃)下制备的TiO_2粉末具有较高光催化活性,对RhB和2,4-DCP有较好的降解效果。通过紫外-可见光谱(UV-vis)、红外光谱(FTIR)和总有机碳(TOC)测定,发现TiO_2/UV体系能使RhB和2,4-DCP发生有效的降解,反应5h后RhB和7h后2,4-DCP的矿化率分别达到81.2%和86.8%。同时,采用辣根过氧化物酶(POD)、N,N-二乙基对苯二胺(DPD)分光光度法和苯甲酸荧光光度法分别测定了在降解过程中H2O_2和羟基自由基(·OH)的变化,表明TiO_2光催化机理涉及到·OH历程。
     3以无定形TiO_2沉淀为前驱体,在水热条件下制备了含板钛矿型TiO_2纳米颗粒,考察了水热反应的温度和时间等因素对含板钛矿型TiO_2光催化活性的影响。采用XRD、TEM对制备的TiO_2进行初步表征,并结合光催化(λ≤387 nm)降解有机染料的光活性探针反应,结果表明水热温度为150℃,时间为24 h时可制得具有较高光催化活性含板钛矿的纳米TiO_2。光催化试验中研究了染料酸性桃红(Sulforhodmine B,SRB)的褪色及降解情况,并对中间产物H2O_2和·OH进行跟踪测定,表明含板钛矿型TiO_2的光催化主要涉及·OH氧化历程。
     4以正辛胺(n-octyl amine, OA)为模板通过溶胶—沉淀法制备了TiO_2@SiO_2纳米球,通过TEM、XRD、电化学性能及有机染料酸性桃红(Sulforhodamine B, SRB)、罗丹明B(rhodamine B, RhB)的光催化探针反应,探讨了TiO_2@SiO_2纳米球制备过程中酸度及煅烧温度对其形貌、晶型及光催化性能的影响。结果表明:在反应温度50℃、1mol/L HCl的介质条件和550℃煅烧温度的条件下制得的TiO_2@SiO_2粉末主要为比电容最高,分散度好的锐钛矿型纳米球;试验通过自旋共振(Electron Spin Resonance, ESR)、分光光度法、红外光谱及总有机碳分析探讨了该催化剂在紫外光下催化降解有机染料SRB及RhB及小分子2,4-DCP的光催化反应特性、矿化氧化效果及降解机理。实验表明:其光催化效果与商业P25相近,对有机污染物有较好的矿化效果,降解过程主要涉及·OH氧化机理。
     5以钛酸四丁酯和硝酸铈以及碘等为原料,利用溶胶-凝胶法,于450℃温度下煅烧制备了不同掺杂比例的TiO_2催化剂。采用XPS、XRD、TEM以及TG等对催化剂进行了表征及光学性质的测试。结果表明:共掺杂后TiO_2的禁带宽度从3.03eV降低到2.51eV,TiO_2纳米尺寸为13nm左右,主要为锐钛矿相,碘和铈元素掺杂到TiO_2晶格间,催化剂均有良好的热稳定性,热失重小于2%。以降解RhB为探针反应,对碘铈共掺杂纳米TiO_2进行了优化,并对光催化反应体系中氧化物种进行跟踪测定,发现掺杂后可见光下TiO_2降解动力学常数提高了6倍,且光催化过程涉及穴氧化机制。
Nano-TiO_2 particle has drawn more and more people's attention owing to the smaller particle size, the larger surface area, good dispersion and no pollution properties. Preparation and development of nano-TiO_2 has become a central issue of the material science and nanotechnology both here and abroad. This paper was studied the low-temperature hydrothermal (solvent-thermal ) under the micro-structure of nano-TiO_2, as well as its application in light irradiation degradation of organic pollutants, and analyzed the spectral properties of TiO_2 and photocatalytic mechanism.
     1 Nano-TiO_2 was prepared in the different solvents of H2O, NaOH, CH3CH2OH, OP emulsifier and diethanolamine. The effects of solvent and temperature on the microstructure of TiO_2 were investigated. Morevover, the degradation of organic dyes under ultraviolet light by nano-TiO_2 and the spectroscopy properties of nano-TiO_2 with various structures were analysed.
     2 TiO_2 particles were prepared under low temperature by solvothermal method. XRD, BET surface area and pore size analyzer and TEM were carried out to characterise TiO_2. The results showed that the cannular frame of TiO_2 was mainly anatase phase with the existence of brookite phase (121) and specific surface area was 106.2m2/g. The photocatalytic degradation of organic dye rhodamine B (RhB) and colorless small molecule 2,4-DCP under UV (λ≤387nm) were used as probe reactions to evaluate the photocatalytic activity of TiO_2. It was indicated that TiO_2 prepared under low temperature (50℃) showed good photocatalytic activity in the degradation of RhB and 2,4-DCP in view of the analysis of UV-visible spectroscopy, infrared spectroscopy (FTIR) and total organic carbon. In the TiO_2/UV system, the mineralized rates of RhB and 2,4-DCP were 81.2% (5h later) and 86.8% (7h later), respectively. The concentration of H2O_2 was determined using horseradish peroxidase (POD) and N, N-diethyl-p-phenylenediamine (DPD) spectrophotometry. The content of·OH was detected by fluorescence spectrophotometry of benzoic acid. The experiment indicated that photocatalytic degradation of TiO_2 mainly involved·OH mechanism.
     3 Brookite titania particles were prepared from a precursor of TiO_2 by hydrothermal method. The effects of the reaction temperature and the reaction time on the photocatalytic activity of the brookite titania were studied. The TiO_2 samples were characterized by XRD and TEM. Photocatalytic degradation of organic dye under UV light (λ≤387 nm) was used as the probe reaction to evaluate the properties of the optimum TiO_2. It was indicated that TiO_2 prepared under 150℃for 24h with the existence of brookite phase had a high photocatalytic activity. The discoloration and degradation of sulforhodamin B (SRB) were tracked, and the produced intermediate H2O_2 and·OH were determined during the photocatalytic experiments. It was indicated that photocatalytic degradation of brookite TiO_2 mainly involved the·OH mechanism. Brookite TiO_2 also exhibited the potential of application in photocatalysis.
     4 TiO_2@SiO_2 nanosphere powders were prepared using n-octylamine as a template by the sol-precipitation method. The effects of reaction acidity and calcination temperature on morphology, crystal and photoelectric properties of TiO_2@SiO_2 nanosphere powders were researched through XRD, TEM, electrochemical properties and photocatalytic degradation which used organic dyes as probe reaction. It was indicated that TiO_2@SiO_2 nanosphere powders prepared at the condition of reaction temperature 50℃, medium 1mol/L of HCl and calcination temperature 550℃were mostly anatase nanospheres with the highest dispersity and specific capacitance. The photocatalytic degradation properties of organic dyes and small molecules, the effect of mineralization and the mechanism of degradation were studied by Electron Spin Resonance (ESR), Spectrophotometry, IR and TOC. It was indicated that the photocatalytic effect of TiO_2@SiO_2 nanosphere powders were similar to that of business P25 and the photocatalytic process mainly involved·OH mechanism.
     5 Titania of different doping amounts was prepared by sol-gel method, which used tetrabutyl titanate, cerium nitrate and iodine as materials and were calcined at 450℃. XPS, XRD, TEM and thermal gravimetric analysis (TG) were carried out to characterise the optical properties of the catalysts. It was indicated that the band gap of doped-TiO_2 decreased from 3.03eV to 2.51eV and the size of it was 13nm. The doped-TiO_2 which was mainly anatase with iodine and Ce doped in the crystal lattice of TiO_2 had good thermal stability and TG was less than 2%. Nano-TiO_2 doped with iodine and cerium had been optimized in the degradation of RhB and the oxidizing species in photocatalytic reaction system was measured. It was found that the degradation rate of doped TiO_2 raised to six times under visible light, and photocatalytic mechanism referred to the hole oxidation.
引文
[1] Tang Z L, Zhang J Y, Cheng Zhe, et al. Synthesis of nanosized rutile TiO2 powder at low temperature[J]. Mater. Chem. Phys., 2002, 77: 314-317
    [2] Zhang H Z, Finnegan M, Banfield J F. Preparing Single-Phase Nanocrystalline Anatase from Amorphous Titania with Particle Sizes Tailored by Temperature[J]. Nano. Lett., 2001, 1(2): 81-85
    [3] Pottier A, Chaneac C, Tronc E, et al. Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media[J]. J. Mater. Chem., 2001, 11: 1116- 1121
    [4]杨少凤,罗薇,朱燕超,等.单一板钛矿相TiO2微晶的制备[J].高等学校化学学报, 2003, 24(11):1933-1936
    [5] Wang Y W, Zhang L Z, Deng K J, et al. Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructures[J]. J. Phys. Chem. C., 2007, 111: 2709-2714
    [6]金春飞,景苏,忻新泉.低温固相法制备无机材料的方法.无机化学学报, 2002, 18(9): 859-870
    [7] Cozzoli P D, Andreas K, Horst W. Low temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods[J]. J. Am. Chem. Soc., 2003, 125: 14539-14548
    [8] Chen H Z, Chao P, Mang W. Characterization and Photoconductivity Study of TiOPc Nanoscale Particles Prepared by Liquid Phase Direct Reprecipitation[J]. Nano-Structured Mater., 1999, 11(4): 523-530
    [9] Nakayama N, Hayashi T. Preparation of TiO2 nanoparticles surface-modified by both carboxylic acid and amine: Dispersibility and stabilization in organic solvents [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects., 2008, 317: 543-550
    [10] David G T , Inti Z, Elena. New low-temperature preparation method of the TiO2 porous photoelectrode for dye-sensitized solar cells using UV irradiation[J]. Photochem. Photobio. A: Chem., 2005, 175:165-171
    [11]Chen X B, Mao S S. Titanium dioxide nanomaterials: synthesis, sroperties, modifications, and Applications[J]. Chem. Rev., 2007, 107: 2891-2959
    [12] Ryoji I, Takayuki F, Masato H, et al. Synthesis of nanosized TiO2 particles in reverse micelle systems and their photocatalytic activity for degradation of toluene in gas phase[J]. Journal of Molecular Catalysis A: Chem., 2006, 260: 247-254
    [13]牛新书,许亚杰,张学治,等.微乳液法制备纳米二氧化钛及其光催化活性[J].功能材料, 2003, 34(5): 548-552
    [14] Wen Baomei, Liu Chunyan, Liu Yun. Solvothermal synthesis of ultralong single-crystalline TiO2 nanowires[J]. New J. Chem., 2005, 29, 969-971
    [15]刘春燕.纳米光催化及光催化环境净化材料[M].北京:化学工业出版社, 2008
    [16] Park I S , Sun Y, Jeong S H. Highperformance titanium dioxide photocatalyst on ordered mesoporous carbon support[J]. Chem. Phys. Lett., 2008, 456:198-201
    [17] Dong X, Tao J, Li Y Y, et al. Oriented single crystalline TiO2 nano-pillar arrays directly grown on titanium substrate in tetramethylammonium hydroxide solution[J]. Appl. Surf. Sci., 2010, 256(8): 2532-2538
    [18] Choi W,Termin A,Hoffmann R. The role of metal-iondopants in quantum sized TiO2 ceorrelation between photoreactivily and charge-carrier recombination dynamics[J]. J. Phys. Chem., 1994, 98(51):13669-13679
    [19]籍宏伟,马万红,黄应平,等.可见光诱导TiO2光催化的研究进展[J].科学通报, 2003,48(21):2199-2204
    [20]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001
    [21]汤国虎,叶巧明,连红芳.无机纳米粉体研究现状[J].材料导报, 2003, 17(S):33-35
    [22]孙鹂.形貌可控表面修饰纳米级二氧化钛的合成与表征[D].吉林大学, 2007, 5
    [23]黄祥平.过渡金属纳米氧化物及其复合材料的可控制备、生长机理与性能研究[D].武汉大学, 2007.5
    [24]阎子峰.纳米催化技术[M].北京:化学工业出版社, 2003
    [25]马洪磊,薛成山.纳米半导体[M].北京:国防工业出版社, 2009
    [26] Tada H, Hattori A, Tokihisa Y, et al. A patterned-TiO2/SnO2 bilayer type photocatalyst[J]. J. Phys. Chem. B., 2000, 104(19): 4585-4587
    [27] Cho Y M,Choi W Y.Visible light-induced degradaTion of carbontetrachloride on dye-sensi Tized TiO2[J].Environ Sci Technol, 2001,35(5):966-970
    [28] Choi W, Termin A, Hoffmann M R. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier RecombinaTion Dynamics[J]. J. Phys. Chem., 1994, 98(51):13669-13679
    [29] Cao Y, Yang W, Zhang W, et al. Improved Photocataly Ticactivity of Sn4+ doped TiO2 Nanoparticulate Films prepared by plasma-enhanced chemical vapor deposiTion[J]. New J. Chem., 2004, 28(2):218-222
    [30] Hong X, Wang Z, Cai W, et al. Visible-Light-Aetivated NanoParticle Photocatalyst of Iodine-Doped Titanium Dioxide [J]. Chem. Mater., 2005, 17:1548-1552
    [31] Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis[J]. Chem. Rev., 1995, 95: 69-96
    [32] Fang Y F, Huang Y P, Liu D F, et al. Photocatalytic degradation of the dye sulforhodamine-B: A comparative study of different light sources[J]. J. Environ. Sci., 2007, 19(1): 97-102
    [33] Cunningham J, Srijaranai S. Sensitized photo-oxidation of dissolved alcohols in homogeneous and heterogeneous systems. Part 2. TiO_2-sensitized photodehydro- generations of benzylalcohol[J]. J. Photochem. Photobiol. A: Chem., 1991, 58: 361-365
    [34] Turchi C S, Ollis D F. Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack[J]. J. Catal., 1990, 122:178-181
    [35] Zhao H J, Hidaka H J, Serpone N. ESR characterestics of dye/colloidal TiO_2 in ethanolic media under visible light irradiation[J]. J. Chem. Soc. Faraday Trans., 1998, 94:2375-2379
    [36] Tachikawa T, Fujitsuka M, Majima T. Mechanistic Insight into the TiO_2 Photocatalytic Reactions: Design of New Photocatalysts[J]. J. Phys. Chem. C., 2007, 111: 5259-5275
    [37] Cheng M M, Song W J, Ma W H, et al. Catalytic activity of iron species in layered clays for photodegradation of organic dyes under visible irradiation [J]. Appl. Cata. B: Environ., 2007, 77: 355-363
    [38] Liu G M, Zhao J C, Hidaka H, et al. ESR spin-trapping detection of radical intermeicates in the TiO_2-assisted photo-oxidation of sulforhodamin B under visible irradiation [J]. Photochem. Photobiol. A: Chem., 2000, 133: 83-88
    [39] Fang Y F, Deng A P, Huang Y P. Determination of hydroxyl radical in Fenton system[J]. Chin. Chem.Lett., 2009, 20 :1235-1240
    [40] Hoffmann M R , Martin S T, Choi D W, et al . Environmental Applications of Semiconductor Photocatalysis[J]. Chem. Rev., 1995, 95: 69-96
    [41] Nosaka Y, Daimon T, Nosaka A T, et al. Singlet oxygen formation in photocatalytic TiO_2 aqueous suspension[J]. Chem. Phys., 2004, 6: 2917-2918
    [42] Daimon T, Nosaka Y. Formation and behavior of singlet molecular oxygen in TiO_2 photocatalysis studied by detection of near-Infrared phosphorescence[J]. J. Phys. Chem. C., 2007, 111: 4420-4424
    [42] Janczyk A, Rakowska K E, Stochel G, et al . Singlet oxygen photogeneration atsurface modified titanium dioxide[J]. J. Am. Chem. Soc., 2006, 128:15574-15575
    [43] Ishibashi K I, Fujishima A, Watanabe T, et al. Quantum yields of active oxidative species formed on TiO_2 photocataly[J]. J. Photochem. Photobio. A: Chem., 2000, 134: 139-143
    [44] Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO_2 Surfaces: Principles, Mechanisms and Selected Results[J]. Chem. Rev., 1995, 95 (3): 735-758
    [45] Behar D, Rabani J. Laser Photolysis of TiO_2 Layers in the Presence of Aqueous Iodide[J]. J. Phys. Chem. B., 2001, 105 (27):6324-6329
    [46]沈晶晶,刘畅,朱育丹,等.介孔TiO_2的水热法制备及其光催化性能[J].物理化学学报., 2009, 25(5):1013-1018
    [47] Ou Y, Lin J D, Fang S M, et al. Study on the preparation of ultrafine mesoporous TiO_2 with controllable crystalline phase and its photocatalytic activities[J]. Cata. Commun., 2007, 8(6):936-940
    [48]张青红,高镰,孙静.缎烧温度对二氧化钦纳米晶性能的影响[J].无机材料学报, 2001, 16(5):833-838
    [49]乐英红,吴春莹,邓兴毅,等.晶相可控的二氧化钛纳米晶的制备方法[P].中国.专利号:1478725,2004.03.
    [50] Kim S J, Hwang D S, Lee N H, et al. Phase transition control of nanostructured TiO_2 powders with additions of various metal-chlorides[J]. Biomem. Nanotechn., 2004, 5275: 317-324
    [51] Zhao B, Chen F, Huang Q W, et al. Brookite TiO_2 nano?owers[J]. Chem. Commun., 2009, 34:5115-5117
    [52] He C X, Tian B Z, Zhang J L. Thermally stable SiO_2-doped mesoporous anatase TiO_2 with large surface area and excellent photocatalytic activity[J]. Journal of Colloid and Interface Science, 2010, 344 (2):382-389
    [53]尹建波.二氧化钛微球材料的制备[D].陕西师范大学, 2008.6
    [54]张毓芳,张正国,方晓明. TiO_2一维纳米材料及其纳米结构的合成[J].化学进展, 2007, 19(4): 495-501
    [55]马洁,刘辉,石英,等.不同形状TiO_2纳米材料在耐NaCl溶液及微生物腐蚀中的应用[J].应用化学, 2008, 25(7):815-819
    [56]郝彦忠,王利刚. TiO_2纳米管与纳米线的制备及光电化学研究[J].化学学报, 2008, 66(7) :757-761
    [57]吴良专,只金芳.水相一步合成锐钛矿型二氧化钛空心球[J].物理化学学报,2007, 23(8): 1173-1177
    [58]叶琳,段月琴,袁志好.聚苯乙烯球模板法制备二氧化钛纳米环[J].无机化学学报, 2007, 23(4):717-720
    [59]苏碧桃,王克,胡常林,等. TiO_2中空纤维的制备及光催化性能[J].化学试剂, 2008, 30(2):112-114
    [60] Paulose M, Shankar K, Yoriya S, et al. Anodic growth of highly ordered TiO_2 nanotube arrays to 134μm in length[J]. Phys. Chem., 2006, 110: 16179-16184.
    [61] Raja K S, Misra M, Mahajan V K, et al. Photo-electrochenical hydrogen genneration using band-gap modified nanotular titanium oxide in solar light[J]. Journal of Power Sources, 2006, 161:1450-1457.
    [62] Hiroaki T, Jan Macak, Lenka Muller, et al. Hydroxyapatite growth on anodic TiO_2 nanotubes[J]. J. Biomed. Mater. Res. Part A., 2005, 74:534-541.
    [63]赖跃坤,孙岚,左娟,等.氧化钛纳米管阵列制备及形成机理[J].物理化学学报, 2004, 20 (9):l063-l066
    [64] Wu J M, Hayakawa S,Tsuru K,et al.Porous titania films prepared from interactions of titanium with hydrogen peroxide solution[J]. Scripta Mater., 2002, 46(1):101-106
    [65] Peng X,Chen A.Dense and high-hydrophobic rutile TiO_2 nanorod arrays[J]. J. Mater. Chem., 2004, 14:2542-2547
    [66]张青红,高濂,郑珊,等.制备均一形貌的长TiO_2纳米管[J].化学学报, 2002, 60(8): 1439-1444
    [67] Kim C S, Kee M B, Parka J H, et al. Solvothermal synthesis of nanocrystalline TiO_2 in toluene with surfactant[J]. J. Cryst. Growth., 2003, 257:309-315
    [68] Wen B M, Liu C Y, Liu Y. Controllable Synthesis of One-dimensional Single-crystalline TiO_2 Nanostructures[J]. Chem. Lett., 2005, 34(3):396-397
    [69] Zhang D B, Qi L M, Ma J M, et a1. Formaion of crystallinne nanosized titania in reverse mincelles at room temperature[J]. J. Mater. Chem., 2002, 12: 3677-3680
    [70] Zhu Y C, Li H L, Koltypin Y, et a1. Sonochemical synthesis of titania whiskers and nanotubes[J]. Chem. Commun., 2001, 24:2616-2618
    [71]杨升红,张小明,张廷杰,等.微波法制备纳米TiO_2粉末[J].稀有金属材料与工程, 2000, 29(5):354-356
    [72]江宏富. TiO_2的掺杂改性及光催化研究[D].中国科学技术大学博士学位论文, 2006, 11
    [73] Kapoor M P, Ichihasii Y, Kuraoka K, et al. Catalytic methanol decomposiTion overpalladium deposited on thermally stable mesoporous Titanium oxide[J]. J. Mol. Catal. A: Chem., 2003, 198(1/2): 303-308
    [74]和东亮.掺杂改性的二氧化钛纳米材料的光催化性能研究[D].吉林大学博士学位论文, 2008, 10
    [75] Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides [J]. Science, 2001, 293:269-271
    [76] Wang H, Lewis J P. Second-generation photocatalytic materials: anion-doped TiO_2 [J]. J. Physics: Condensed Matter., 2006, 18(2): 421-434。
    [77] Lindgren T, Mwabora J M, Avendano E, et al. Photoelectroehemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering[J]. J. Phys. Chem. B., 2003, 107:5709-5716.
    [78] Ohoo T, Akiyoshi M, Umebayashi T, et al. Preraration of s-doped TiO_2 Photocatalysts and their Photoeatalytic activities under visible light [J]. Appl. Catal. A., 2004, 265: 115-121
    [79] Sen S, Mahanty S, Roy S, et al. Investigation on sol-gel synthesizedAg-doped TiO_2 thin films[J]. Thin Solid Films., 2005, 474(1/2):245-249
    [80] Yanakata A, Ishibashi T, Onoshi H J. Electron-and hole-capture reactions on Pt/TiO_2 photocatalysts exposed to methanol vapor studied with Time-resolved infrared absorpTion spectroscopy[J]. J. Phys. Chem. B., 2002, 106(35):9122-9125.
    [81]梁春华.稀土掺杂二氧化钛的制备、表征和光催化活性研究[D].西北农林科技大学, 2007, 1
    [82] Hideki K, Akihiko K.Visible-light-response and photocatalytic activities of TiO_2 and SrTiO3 photocatalysts codoped with antimony and chromium[J]. J. Phys. Chem. B., 2002, 106(19): 5029-5035
    [83] Zhao W, Ma W H, Zhao J C, et al. Efficientdegradation of toxic organic pollutants with Ni2O3/TiO_2-xBx under visible irradiation[J]. J. A. Chem. Soc., 2004, 126(15): 4782-4783
    [84] Ozaki H, Iwamoto S, Inoue M. Marked promotive effect of iron on visible-light-induced photocatalytic activities of nitrogen and silicon-codoped titanias[J]. J. Phys. Chem. C., 2007, 111: 17061-17066.
    [85]王勇,张军,杨青林,等.炭与TiO_2光催化剂复合研究进展[J].材料导报, 2006, 20(Ⅶ):68-71.
    [86]姚秉华,郑怀礼,杨丽芹,等. CdS/TiO_2/漂珠复合光催化剂制备及其降解高效氯氰菊酯研究[J].光谱学与光谱分析, 2007, 27(5): 1010-1014.
    [87]刘香玲,潘家荣,李瑞萍,等.紫外光照射下纳米TiO_2降解水中有机氯酚类化合物[J].三峡大学学报(自然科学版), 2006, 28(2):177-180.
    [88]豆俊峰,邹振扬,郑泽根.纳米TiO_2的光学特性及其在环境科学中的应用[J].材料导报, 2000, 14(6): 35-37
    [89]徐瑞芬,佘广为,许秀艳.复合涂料中纳米TiO_2降解污染物和抗菌性能研究[J].化工进展, 2003, 22(11):1193-1195
    [90]王红研,魏成富,来道成,等.纳米二氧化钛抗菌材料的研究[J].云南大学学报(自然科学版), 2005, 27(3A):81-85
    [91]陈前林,吴建青,王龙现. TiO_2光催化抗菌陶瓷的制备[J].功能材料, 2009, 40(7): 1166-1171
    [92]王东波,吴季怀,郝三存,等.纳米二氧化钛的水热法制备及在染料敏化太阳能电池中的应用[J].感光科学与光化学, 2006, 24(3): 173-179.
    [93]郝三存,吴季怀,林建明,等.铂修饰光阴极及其在纳晶太阳能电池中的应用[J].感光科学与光化学, 2004, 22(3): 175-181
    [94]刘素琴,方东,李朝建,等.阳极氧化法制备二氧化钛纳米管及其荧光性质[J].无机化学学报, 2007, 23(5): 827-832
    [95] Chen C, Li X, Zhao J, et al. Effect of transition Metal Ions on the TiO_2-assisted Photodegradation of Dyes under Visible Irradiation---A probe for the interfacial electron transfer process and reaction mechanism[J]. J. Phys. Chem. B., 2002, 106:5022-5028
    [96]Wang N, Chen Z, Zhu L, et al. Synergistic effects of cupric and fluoride ions on photocatalytic degradation of phenol[J]. J. Photochem. Photobio. A: Chem., 2007, 191:193-200
    [97]方艳芬,黄应平,刘立明,等.掺氮TiO_2可见光降解有机污染物的比较研究[J].化学学报, 2007, 65(23): 2693-2700
    [98]黄应平,肖峰峰,方艳芬,等.掺B纳米TiO_2制备及可见光催化降解有机污染物[J].华中科技大学学报, 2009, 37(7): 129-132
    [99]姜晓阳,方艳芬,邓安平,等.掺铋纳米TiO_2制备及可见光催化降解有机污染物[J].太阳能学报, 2010, 31(3): 19-24
    [100]于洪涛,全燮.纳米异质结光催化材料在环境污染控制领域的研究进展[J].化学进展, 2009, 23(2/3):407-419
    [101] Paola A D, Bellardita M, Ceccato R, et al. Highly Active Photocatalytic TiO_2 Powders Obtained by Thermohydrolysis of TiCl_4 in Water [J]. J. Phy. Chem. C., 2009,113(34):15166-15174
    [102] Pan H, Qiu X F, Ivanov I N, et al. Fabrication and characterization of brookite-rich, visible light-active TiO_2 films for water splitting [J]. Appl. Cata. B: Environ., 2009, 93: 90-95
    [103] Zhang Hengzhong, Banfield Jillian F. Understanding Polymorphic Phase Transformation Behavior during Growt Nanocrystalline Aggregates: Insights from TiO_2[J]. J. Phys. Chem. B., 2000, 104:3481-3487
    [104] Dong S K, Seung Y K. The hydrothermal synthesis of mesoporous TiO_2 with high crystallinity, thermal stability, large surface area and enhanced photocatalytic activity[J]. Appl. Catal. A: General., 2007, 112: 110-118
    [105] Yang J, Cheng G H, Zeng J H, et al. Shape control and characterization of transition metal diselenides MSe2(M=Ni, Co, Fe) prepared by a solvothermal-reduction process[J]. Chem. Mater., 2001, 13: 848-853
    [106]吴会军,朱冬生,向兰.有机溶剂热法合成纳米材料的研究与发展[J].化工新型材料, 2005, 33(8):1-4
    [107]张继远,田汉民,田志鹏,等. TiO_2纳米晶溶胶水热的合成及其染料敏化光电性能[J].无机材料化学, 2009, 24(6): 1110-1114.
    [108]辛勤.现代催化研究方法[M].北京:科学出版社.
    [109]高廉,陈锦元,黄华军,等.醇盐水解法制备二氧化钛纳米粉体[J].无机材料学报, 1995, 10(4):423-427
    [110] Cong Y, Zhang J L, Chen F, et al. Preparation, Photocatalytic Activity and Mechanism of Nano-TiO_2 Co-Doped with Nitrogen and Iron(III)[J]. J. Phys. Chem. C., 2007, 111:10618-10623.
    [111] Niu C M, Sichel E K, Hoch R, et al. High power electrochemical capacitors based on carbon nanotube electrodes[J]. Appl. Phys. Lett., 1997, 70: 1480-1482
    [112] Huang Y, Ho W K, Ai Z H, et al. Aerosol-assisted flow synthesis of B-doped, Ni-doped and B-Ni-codoped TiO_2 solid and hollow microspheres for photocatalytic removal of NO[J]. Appl. Catal. B: Environ., 2009, 89(3): 398-405
    [113]马军委,张海波,董振波,等.纳米二氧化钛制备方法的研究进展[J].无机盐工业, 2006, 38(10): 5-7
    [114] Tang Z L, Zhang J Y, Cheng Z, et al. Synthesis of nanosized rutile TiO_2 powder at low temperature[J]. Mater. Chem. Phys., 2002, 77: 314-317
    [115]施尔畏,夏长泰,王步国,等.水热法的应用与发展[J].无机材料学报, 1996,11(2) :193-197
    [116]瞿鹏,李贯良,徐茂田.催化动力学荧光法测定中草药对羟基自由基的清除率[J].光谱学与光谱分析, 2004, 24(11): 1407-1409
    [117] Munaf E, Zein R, Kurniadi I. The Use of Rice Husk for Removal of Phenol from Wastewater as Studied Using 4-aminoantipyrine Spectrophotometric Method[J]. Environ. Sci. Technol., 1997, 18:355-358
    [118] Znaidi L, Seraphimova R, Bocquet J F. A semi-continuous process for the systhesis of nano size TiO_2 powders and their useas photocatalysts[J]. Mater. Res. Bull., 2001, 36(6):811-825
    [119] Liu G M, Li X Z, Zhao J C, et al. Photooxidation pathway of sulforhodamine-B dependence on the adsorption mode on TiO_2 exposed to visible light radiation[J]. Environ. Sci. Technol., 2000, 34: 3982-3990
    [120] Ohno T, Sarukawa K, Tokieda K, et al. Morphology of a TiO_2 photocatalyst (Degussa, P25) consisting of anatase and rutile rrystalline phases[J]. J. Catal., 2001, 203(1): 82-86
    [121] Beydounl D, Amall R, Low S, et al. Role of nanoparticles in photo catalysis[J]. J. Nanopart. Res., 1999, 1: 439-458
    [122]施利毅,胡莹玉,张剑平,等.微乳液反应法合成二氧化钛超细粒子[J].功能材料, 1999, 30(5) : 495-497
    [123] Deng K J, Huang F D, Wang Y, et al. Green Oxygenation Degradation of Rhodamine B by Using Activated Molecule Oxygen[J]. Chin. Chem. Lett., 2004, 15(10): 1223-1226
    [124] Zhang Q H, Gao L, Guo J K. Effects of calcination on the photocatalytic properties of nanosized TiO_2 powders prepared by TiCl4 hydrolysis [J]. Appl. Catal. B Environ., 2000, 26(3): 207-215
    [125]姚超,杨光,林西平,等.水热条件对板钛矿相二氧化钛微结构的影响[J].无机化学学报, 2005, 21(12): 1821-1826
    [126]夏天,曹望和,付姚,等.板钛矿相对TiO_2纳米晶相转变的影响研究[J].材料科学与工程学报, 2005, 23(1): 105-108
    [127] Murakami N, Kamai T, TsubotaT, et al. Novel hydrothermal preparation of pure brookite-type titanium(IV) oxide nanocrystal under strong acidic conditions [J]. Catal. Commun., 2009, 10(6): 963-966
    [128] Zhao B, Chen F, Huang Q W, et al. Brookite TiO_2 nanoflowers [J]. Chem. Commun.,2009, 34: 5115-5117
    [129]姜利荣,赵超,黄应平,等.可见光下α-FeOOH光催化降解有机污染物研究[J].环境化学, 2007, 26(4): 434-437
    [130] Znaidi L, Seraphimova R, Bocquet J F. A semi-continuous process for the systhesis of nano size TiO_2 powders and their useas photocatalysts [J]. Mater. Res. Bull., 2001, 36(6): 811-825.
    [131] Zhang H Z, Finnegan M, Banfield J F. Preparing single-phase nanocrystalline anatase from amorphous titania with particle sizes tailored by temperature [J]. Nano. Lett. 2001, 1(2): 81-85
    [132] Zhang H Z, Banfield J F. Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline aggregates: Insights from TiO_2 [J]. J. Phys. Chem. B, 2000, 104: 3481-3485
    [133] Wang Y W, Zhang L Z, Deng K J, et al. Low temperature synthesis and photocatalytic activity of rutile TiO_2 nanorod superstructures [J]. J. Phys. Chem. C., 2007, 111(6): 2709-2714
    [134] Benitez F, Heredia B, Acero J. Chemical decomposition of 2,4,6-trichlo-phenol by oaone Fenton’s reagent, and UV radiation [J]. Eng. Chem. Res., 1999, 38(4): 1341-1349
    [135] Chen R F, ZhangC X, Deng J, et al. Preparation and photocatalytic activity of Cu~(2+)- doped TiO_2/SiO_2[J]. Metal. Mater., 2009, 16(2):220-225
    [136] Chen Y F, Lee C Y, Yeng MY, et al. The effect of calcination temperature on the crystallinity of TiO_2 nanopowders[J]. J. Cryst. Growth., 2003, 247(3): 363-370
    [137] Ma N, Fan X F, Xie Q, et al. Ag-TiO_2/HAP/Al_2O_3 bioceramic composite membrane: Fabrication, characterization and bactericidal activity[J]. J. Memb. Sci., 2009, 336:109-117
    [138]邹华,吴石山,沈健.单分散空心SiO_2纳米微球的合成与表征[J].化学学报, 2009, 29(3): 266-269
    [139]康传红,郭桐,井立强,等.多孔SiO_2与TiO_2复合纳米材料的制备及光催化性能[J].无机材料学报, 2009, 24(2):229-233
    [140] Hu C, Wang Y Z, Tang H X. Preparation and characterization of surface bond-conjugated TiO_2/SiO_2 and photocatalysis for azo dyes[J]. Appl. Catal. B: Environ., 2001, 30 (3/4):277-285
    [141]冯文辉,管自生,蒋峰芝,等.超亲水TiO_2和TiO_2-SiO_2表面的动态润湿性[J].高等学校化学学报, 2003, 24(4):745-747
    [142]许章炼,王晟,王掏,等. SiO_2/TiO_2中空型界面光催化剂的制备及性能[J].催化学报, 2008, 29(10):987-991
    [143] Wang S , Wang T, Chen W X, et al. Phase-selectivity photocatalysis: a new approach in organic pollutants photodecomposition by nanovoid core(TiO_2)/ shell(SiO_2) nanoparticles[J]. Chem. Commum., 2008, 32: 3756-3758
    [145] Ohno T, Numakura K, Itoh H, et al. Control of the quantum size effect of TiO_2-SiO_2 hybrid particles[J]. Mater. Lett., 2009, 63: 1737-1739
    [146] Ye J S, Liu X, Cui H F, et al. Electrochemical oxidation of multi-walled carbon nanotubes and its application to electrochemical double layer capacitors[J]. Electrochem. Commun., 2005, 7(3):249-255
    [147] XingW, Zhuo S P, Cui H Y, et al. Enhanced electrochemical properties of polyaniline-coated multiwall carbon nanotubes[J]. J. Porous. Mater., 2008, 15:647-651
    [148] Du C S, Yeh J, Pan N. High power density supercapacitors using locally aligned carbon nanotube electrodes[J]. Nanotech., 2005, 16:350-353
    [149] Liu G M, Li X Z, Zhao J C, et al. Photooxidation pathway of sulforhodamine-B. Dependence on the adsorption mode on TiO_2 exposed to visible light radiation[J]. Environ. Sci. Technol., 2000, 34: 3982-3990
    [150]邓安平,黄应平,方艳芬,等. TiO_2纳米管制备和光催化降解有毒有机污染物[J].环境化学, 2009, 28(2):202-205
    [151]唐玉朝,黄显怀,俞汉青,等.非金属掺杂改性TiO_2光催化剂的机理[J].化学进展, 2007, 19( 2/3):225-233
    [152]黄冬根,廖世军,周文斌,等.锐钛矿型F-TiO_2溶胶制备及光催化降解2,4-二氯苯酚的性能[J].功能材料, 2008, 7(39): 1166-1173
    [153]陈恒,龙明策,徐俊,等.可见光响应的氯掺杂TiO_2的制备、表征及其光催化活性[J].催化学报, 2006, 27 (10):890-894
    [154]周武艺,曹庆云,唐绍裘,等.硫掺杂纳米TiO_2的掺杂机理及可见光催化活性的研究[J].无机材料学报, 2006, 21(4):778-782
    [155]张宁,许明霞,陈超,等.拉曼光谱对碘掺杂二氧化钛的晶相与表面结构[J].南昌大学学报(理科版), 2008, 32(2):130-133
    [156]张勇,唐超群,戴君.锐钛矿TiO_2及其掺Fe所导致的红移现象研究:赝势计算和紫外光谱实验[J].物理学报, 2005, 1(1):323-327
    [157]石建稳,郑经堂,胡燕,等.纳米TiO_2光催化剂共掺杂的研究进展[J].化工进展, 2006, 25(6):604-607
    [158]栾勇,傅平丰,戴学刚,等.金属离子掺杂对TiO_2光催化性能的影响[J].化学进展, 2004, 16( 5 ):738-746
    [159]刘奎仁,于会文,韩庆,等.稀土掺杂TiO_2光催化材料的制备和性能[J].材料研究学报, 2006, 20(5):459-464
    [160]陈其凤,姜东,徐耀,等.溶胶-凝胶-水热法制备Ce-Si/TiO_2及其可见光催化性能[J].物理化学学报, 2009, 25(4):617-623
    [161]井立强,孙晓君,蔡伟民,等.掺杂Ce的TiO_2纳米粒子的光致发光及其光催化活性[J].化学学报, 2003, 6(18):1241-1245
    [162] Bian Liang, Song Mianxin, Zhou Tianliang , et al. Band gap calculation and photo catalytic activity of rare earths doped rutile TiO_2[J]. J.Rare Earths., 2009, 27(3): 461-468

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700