多孔CdS/TiO_2的制备及太阳光下降解溴氨酸水溶液
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球性环境污染和能源危机日趋严重的今天,如何有效利用太阳能来治理污染已引起世界各国的广泛重视。TiO_2光催化氧化技术因其具有能耗低、反应条件温和、操作简便、可减少二次污染等突出优点而日益受到重视。具有高量子效率、能充分利用太阳能的高活性光、具有良好沉降性能催化剂的制备与应用,已成为环境科学领域广泛关注和研究的热点课题。
     采用溶胶-凝胶法制备多孔氧化钛,并耦合CdS,制备出对可见光有一定响应又易于分离的多孔耦合CdS/TiO_2催化剂。研究表明,采用煅烧—碱洗—浸渍的制备方法,CdS掺杂比例为3%,煅烧温度为700℃,煅烧时间为3h,碱洗时间为20h时,制备的多孔CdS/TiO_2催化剂性能较优。于太阳光下以溴氨酸溶液为底物,考察了光照方式、底物浓度、催化剂用量、pH值、氯化钠含量、降解时间等因素对降解过程的影响。试验表明,太阳光直射时,溶液的降解效果较好;对于30mg/L的溴氨酸溶液,催化剂的最佳用量为2g/L,最佳pH值为10,少量氯化钠的存在可提高反应体系的褪色效果,此外,当溴氨酸浓度高于50mg/L时,溶液的降解效果显著降低。多孔CdS/TiO_2催化剂的沉降性能优于P25,更易分离。溴氨酸水溶液在多孔CdS/TiO_2催化剂太阳光催化体系中降解脱色反应用L—H方程描述,反应级数为零级反应;随着初始浓度的增大,初始反应速率成增大趋势,催化剂投加量为2g/L时,反应速率最大,碱性条件下的降解反应速率较中性和酸性条件下快,少量氯化钠的存在可加快反应速率。
As world wide enviornment pollution and energy resource crisis are graving gradually today, effective utilization of sunlight to solve pollution problems has became of great interest in many countries. The photocatalytic oxidation technique of TiO_2 has been paid more and more attention for the advantage of less energy cost, mild reaction condition, easy operation, less secondary pollution. The synthesis and applications of photocatalyst with high quantum-efficiency and high activity,which is easy to settle down and separate and can utilize sunlight efficiently, have became hot research topics in the field of environment science.
     Lacunaris coupling CdS/TiO_2 photocatalyst which can be activated by visible light and easily separated from liquor was prepared by coupling CdS with lacunaris TiO_2 by a sol-gel process. Primary research suggested that the optimal preparation condition is method of calcining-alkali marinating-coupling, calcining temperature 700℃, CdS adulterant proportion3%, and alkali marinating time 20h. The photocatalytic degradation by sunlight was investigated with bromamine acid as pollutant, and the manner of light, initial concentration of the pollutant, dosage of photocatalyst, pH value, sodium chloride concentration and reaction time on the photocatalytic degradation were discussed. The results suggested the optimal degradation condition is point-blank sunlight, dosage of photocatalyst 2g/L , and pH value 10 for the bromamine acid solution of 30mg/L. Meanwhile the existence of a few sodium chloride may enhance chroma degradation, furthermore, the degradation rate decreased distinctly when the concentration of bromamine acid is higher than 50mg/L. Comparing with P25, lacunaris coupling CdS/TiO_2 has better settlement and is easier to be seperated. For the system of degradation using lacunaris coupling CdS/TiO_2 with bromamine acid as pollutant by sunlight, chroma degradation can be discribed by L-H equation, it is zero kinetic reaction. The initial reaction rate constant increases, as initial concentration of the pollutant increasing. When dosage of photocatalyst is 2g/L, the initial reaction rate constant is the fastest. The reaction rate constant in the condition of alkali is faster than in the condition of neutral and acidic. Existence of a few sodium chloride may improve chroma degradation the reaction rate constant.
引文
[1] Fujishima.A,Honda.K.Photolysis decomposition of water at the surface of an irradiated semiconductor. Nature,1972,37:238.
    [2]邓南圣,吴峰.环境光化学.北京:化学工业出版社,2003,309.
    [3] Cary J,H Lawrence. J, Tosine H M,Photo dethlorination of titanim dioxide in aqueous suspensions. Bull of Environ Contam Toxical,1976,16(6):697-701.
    [4]吕岩,费学宁,姜远光,TiO2光催化氧化技术在污水处理应用中的新进展,天津建设科技,2004,3:53-54
    [5] M.Gratzel, Heterogeneous Photochemical Electron Transfer.CRC Press, Baton Rouge, FL,1998
    [6] Hoffmann M.R..Martin S.T.,Choi w.,Enviromental application of semiconductor photocatalysis . Chem.Rev,1995,5(1):69 -96.
    [7] Jaeger C D,Band A J. Spin trapping and electorn spin resonance detdction of radical intermediates in the photodecomposition of water at TiO2 particle system . Physchem ,1979,83(13):3146-3152.
    [8]王彦敏,TiO2纳米光催化剂的改性及其降解有机物的研究:[硕士学位论文],山东;山东轻工业学院,2005
    [9] Fujihira M,Satoh Y, Osa T .Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2.Nature,1981,293(2):206-208
    [10] Anpo M, Shima T, Kondama S, et al. Photocatalytic hydrogenation of CH3COOH with H2O on small-particle TiO2 J.Phys.Chem.1987,91:4035-4310
    [11]张金龙,陈峰等,光催化,华东理工大学出版社,2004:35-36,57-64
    [12]费学宁,刘小平,李莹等,半导体复合CdS/TiO2催化剂改性及冷冻-光催化组合方法应用的初步研究,影像科学与光化学,2008,26(5):417-424
    [13] Fujii H, Ohtaki M, Eguchi K, et al. Photocatalytic activities of CdS crystallites embedded in TiO2 gel as a stable semiconducting matrix. J Master Sci Lett,1997, 16(13): 1086
    [14]曲建林,薛韩玲,纳米CdS/TiO2对亚甲基蓝废水溶液的光催化降解研究,陶瓷,2007,(3):19-22
    [15] Maria Hodos, Endre Horvath, Henrik Haspel, et al, Photosensitization of ion-exchangeable titanate nanotubes by CdS nanoparticles. Chemical Physics Letters,2004,(399):512-515
    [16]姚秉华,郑怀礼,杨丽芹等,CdS/TiO2/漂珠复合光催化剂制备及其降解高效氯氰菊酯研究,光谱学与光谱分析.2007,27(5):1010-1014
    [17]谭怀琴,全学军等,TiO2光催化剂的制备与改性研究进展,材料导报,2005,19(4):59-61
    [18] W.Choi.The Role of Metal Ion Dopants in Quantum Sized TiO2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics J Phys Chem 1994,98(51) : 13669-13679
    [19]黄娟茹,李明伟,崔忠,TiO2光催化剂掺杂改性的研究进展,工业催化,2007,15(1):1-7
    [20] Asahi Asahi R, Morikawa T, Ohwaki T,et a1. Visible-light photo—catalysis in nitroge—doped titanium oxides.Science,2001,293:269.
    [21]董丽君,邹丽霞,白秀敏,提高二氧化钛可见光活性的掺杂方法的研究进展,中国陶瓷工业,2007,14(3):34-39
    [22]石建稳,郑经堂,胡燕等,纳米TiO2光催化剂共掺杂的研究进展,化工进展,2006,25(6):604-607
    [23]魏凤玉,祝童,S,Fe共掺杂纳米TiO2的制备及其光催化性能,应用化工,2007,36(5):421-425
    [24]刘崎,陈晓青,杨娟玉等,双元素掺杂对纳米二氧化钛光催化降解甲基橙的影响,河南化工,2004,21(2):8-10
    [25]范崇政,肖建平等,纳米TiO2的制备与光催化反应研究进展,科学通报,2001,46(4):265-273.
    [26]何建波,张鑫,魏凤玉等,TiO2薄膜晶相组成对苯胺光催化降解的影响,应用化学,1990,165(5):57-60
    [27]张丙华,李俊玲,纳米TiO2光催化降解技术在污水处理中的应用,四川环境,2006,25(5):56-60
    [28]张天永,邵红飞等,TiO2用量对聚集太阳光催化降解染料的影响,太阳能学报,2005,26(1):19-21
    [29]肖梅,纳米技术在污水处理中的应用研究,[硕士学位论文],上海;上海大学,2004
    [30]李薇,王怡中,无机离子对光催化水处理过程影响的研究进展,环境污染治理技术与设备,2004,5(3):15-17
    [31] ZHANG Wen Bing, FU Jia Mo, XIAO Xian Ming et al, Treatment of Organic Pollutants in Aqueous Sotution by Homogenous and Heterogaeneous Advanced Oxidation Processes. Journal of the Graduate School of the Chinese Academy of Sciences, 2005, 22(1): 122-127
    [32]唐玉朝,胡春,王怡中等,TiO2光催化剂失活机理研究,化学进展,2005,17(2):225-232
    [33]唐玉朝,胡春,王怡中,无机阴离子对Fe-TiO2/SiO2复合光催化剂脱色染料的影响,环境科学学报,2003,23(4):504-508
    [34]史载锋,范益群,徐南平等,不同光源对光催化降解亚甲基蓝的影响,南京化工大学学报,2000,22(l):59一62
    [35]李芳柏,改性二氧化钛的制备、表征及其在光催化处理染料废水中的应用,[硕士学位论文].,四川;华南理工大学,1999
    [36]高濂,郑珊,张青红,纳米氧化钛光催化材料及应用,北京:化学工业出版社,2002.46
    [37]赵玉翠,郑经唐,石建稳,纳米TiO2光催化剂的最新发展——多孔TiO2,新技术新工艺,2007,(1):50-53
    [38]孙德智,环境工程中的高级氧化技术,北京:化学工业出版社,2002,239
    [39]陈晓慧,柳丽芬,杨凤林等,CdS/TiO2光催化去除水体中氨氮的研究,感光科学与光化学,2007,25(2):89-101
    [40]周秀文,朱祖良,赵君科等,TiO2/CdS复合半导体光催化剂降解甲基橙的实验研究,环境污染治理技术与设备,2006,7(1):106-109
    [41]彭峰,任艳群,提高二氧化钛光催化性能的研究进展,现代化工,2002,22(10):6-9
    [42] Kim T K, Lee M, Lee S H, et al, Development of surface coationg technology of TiO2 powder and improvement of photocatalytic activity by surface modification . Thin Solid Films, 2005, 475: 171-177
    [43]刘公召,隋智通,Sol-gel法制备超细粉体TiO2粉体条件的研究,化学世界,2002,(6):293-296
    [44]张青红,高濂,孙静,氧化硅对二氧化钛纳米晶转变和晶粒生长的抑制作用,无机材料学报,2002,17(3):415-420
    [45]郭文华,张军剑,李钢,溶胶-凝胶法及其制备纳米TiO2粉体的原理和研究进展,中国陶瓷工业,2006,13(5):26-29
    [46]郑小明,周仁贤,环境保护中的催化治理技术,北京:化学工业出版社,2003,264-277
    [47]侯炳,杨顺生,高峰,热处理温度对TiO2的微结构及催化性能的影响研究,工业安全与环保,2008,34(7):20-22
    [48] Su C, Hong B Y, Tseng C M. Sol-gel preparation and photocatalysis of titanium dioxide. Catalysis Today, 2004, 96(3):119-123
    [49]吴春山,陈震,Sol-gel法制备纳米TiO2及其对亚甲基蓝染料光催化降解的研究,福建师范大学学报(自然科学版),2005,21(1):75-80
    [50] Vilma C Costa,Fernando S Lameiras, Maria Terezinha C Sansviero, et al,.Preparation of CdS-containing silica-titania compostes by the sol-gel process. Journal of Non-Crystaline Solids, 2004, 348:190-194
    [51]周秀文,朱祖良,赵君科等,TiO2/CdS复合光催化剂的制备及结构研究,材料导报,2005,19(IV):71-73
    [52] Ohtani B, Ogawa Y, Mishimoto S. Photocatalytic activity of amorphous-anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions. Journal Physics Chemical B, 1997,101:3746-3752
    [53]梁德荣,纳米TiO2的制备及其光催化性能的研究,山西化工,2008,28(3):17-20
    [54]周建敏,牛显春,尹爱国等,纳米TiO2光催化处理乙烯工业废水的研究,石油与天然气化工,2007,36(1):79-82
    [55] O Shea K, Carelona C. The reactivity of phenol in Irradiated Aqueous Suspensions of TiO2 Mechanistic Charge as a Funcation of Solution pH. Photochem Photobiol A:Chem, 1995,91:67-72
    [56]王星敏,陈胜福,印染废水的光催化氧化处理新进展,重庆工商大学学报;自然科学版,2004,21(3):229-232
    [57]王里奥,黄本生,吕红等,光催化氧化处理生活垃圾渗滤液,中国给水排水,2003,19(6):56-58
    [58]汤心虎,韦潮海,原炜明等,玻璃纤维负载P25光催化接触氧化活性艳红X-3B,环境科学,2005,26(5):124-127
    [59] Ozkan A, Ozkan M H, Gurkan R, et al. Photocatalytic degradation of a textile azo dye, Sirius Gelb GC on TiO2 or Ag-TiO2 particles in the absense and presence of UV irradiation: the effects of some inorganic anions on the photocatalysis. Journal Photochem Photobiol A, 2004, 163:29-35
    [60]杨世迎,TiO2光催化降解有机污染物的初始步骤机理研究,[博士学位论文],浙江;浙江大学,2005:90-104
    [61]杨祝红,暴宁钟,刘畅等,TiO2纤维的制备及其光催化活性研究,高等学校化学学报,2002,23(7):1371-1374
    [62]袁笑一,周勤,纳米二氧化钛在水中的环境行为,广东工业大学学报,2005,22(3):17-20
    [63]郭汉贤,应用化工动力学,北京:化学工业出版社,2004,5-6
    [64]唐玉朝,胡春,王怡中,TiO2光催化反应机理及动力学研究进展,化学进展,2002,14(3):195-197
    [65]范山湖,孙振范,李玉光,偶氮染料吸附和光催化动力学,物理化学学报,2003,19(1):25-29
    [66]戴智铭,陈爱平,古政荣,三氯乙烯在TiO2上光氧化反应动力学,中国环境科学,2000,20:301-304
    [67]王正烈,周亚平,李松林等,物理化学,北京:高等教育出版社,2004,203-216
    [68]尹晓红,辛峰,张凤宝,4BS染料光催化氧化动力学,化工学报,2002,53(5):528-533
    [69]胡春,王怡中,汤鸿霄,多相光催化氧化的理论玉实践发展,环境科学进展,1995,3(1):55-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700