竖向组合构件抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于高层和超高层建筑的不断发展,传统钢筋混凝土柱和剪力墙已不能满足工程要求,在此背景下,具有显著优点的钢-混凝土竖向组合构件越来越受到关注,工程应用也越来越多。钢管混凝土组合柱和钢管混凝土组合剪力墙是两种新型的竖向组合构件,对其抗震性能等的研究尚不充分。本文通过理论分析、试验研究和数值计算,研究钢管混凝土组合柱和钢管混凝土组合剪力墙的变形能力、承载能力和损伤性能等,为钢管混凝土组合柱和组合剪力墙的工程应用提供理论依据。
     本文的主要工作和成果包括:1)分析了作为钢管混凝土竖向组合构件关键组成部分的钢管混凝土柱的轴心受压受力机理,并据此提出钢管混凝土短柱轴心受压承载力计算公式,其中引入反映钢管轴压承载作用和对混凝土约束作用的钢管约束承载力提高系数。2)分析了钢管混凝土组合柱的箍筋对钢管内外混凝土的约束作用和钢管对管内混凝土的约束作用,提出了轴心受压组合柱轴压力与应变的关系式,通过极限分析确定了轴心受压组合柱的承载力极限状态和组合柱峰值应变,提出了组合柱轴压承载力计算方法,并用试验数据进行了验证;建立了轴心受压组合柱极限压应变的计算公式,通过算例比较了钢筋混凝土柱与组合柱的极限压应变;为使组合柱的轴心受压破坏形态较为合理,提出了钢管混凝土截面积占组合柱总截面比例应有上限,并给出了组合柱不同设计参数条件下钢管混凝土截面积比例的上限值。3)进行了钢管混凝土组合剪力墙在高轴压力和往复水平力作用下的拟静力试验,研究了组合剪力墙的抗震性能,分析了各设计参数对组合剪力墙承载力、变形能力、耗能能力等抗震性能的影响,探讨了轴压比限值及约束边缘构件的箍筋配置。4)在已有钢筋混凝土构件变形能力计算方法的基础上,提出了钢管混凝土组合柱和组合剪力墙变形能力计算方法,采用数值计算研究了钢骨/钢管混凝土组合剪力墙的弯矩-曲率关系。5)建立了钢管混凝土组合柱和组合剪力墙基于低周累积损伤的耗能计算方法和损伤模型,并对耗能和损伤计算方法进行了试验数据验证,在此基础上提出了钢管混凝土组合柱和组合剪力墙的损伤指标。
As the development of the high-rise and ultra-high-rise buildings, the conventional reinforced concrete (RC) vertical member tends to be difficult in satisfying the structural requirement, and the steel-RC composite member obtains more and more attention and has been widely used for its remarkable excellences. The steel-RC composite column and steel-RC composite wall are two examples among kinds of the new vertical composite members. Research on seismic behavior of the steel-RC composite column and the composite wall remains rather limited. In this dissertation, the deformation capacity, load-carrying capacity, and damage performance of the two forms of the vertical composite members is studied through the method of theoretical analysis, experimental research, and numerical calculation, which would provide a theory basis for the engineering application of the steel-RC composite column and the composite wall.
     The main work product of the dissertation is described as followings: 1) As the key component of the vertical composite member, the axial compressive mechanism of the concrete filled-steel tube column is studied, on the basis of which, the formula for calculating the centric axial compressive strength of the short concrete filled-steel tube column is proposed, and the strength enhancement factor due to steel tube confinement is introduced into the formula. 2) The confinement on the different parts of concrete caused by the steel tube and hoops is analysed, and the relationship between the axial compressive force and strain of the steel tube-RC composite column is presented. The ultimate strength state of the steel tube-RC composite column is determined through the limit analysis method, and the formula for calculating the compressive strength of the composite column is established and verified by experiment results. The ultimate compressive strain of the composite column is calculated by the method presented in this dissertation, and the deformation capacity of the composite column is compared with the RC column through an example. Based on the strength research, the upper limit value of the proportion of the steel tube confined concrete area over the overall sectional area of the composite column is suggested, meeting the requirement of which leads to the favorable compressive behavior. 3) Quasi-static tests on the steel tube-RC composite shear wall specimens subjected to high axial compressive load are conducted. The important properties of the walls are studied, i.e., the load-carrying capacity, deformation capacity, and energy dissipation. The effects of the design parameters are investigated, and the possibility of easing the requirement for axial force ratio and transverse boundary reinforcement is also explored. 4) According to the previous research about the deformation capacity of the RC members, the method for calculating the deformation capacity of the steel-RC composite column and the composite wall is developed, and numerical analysis on the sectional moment-curvature relationship of the steel/steel tube RC composite wall is conducted. 5) The energy dissipation and damage modal of the steel-RC composite column and composite wall is established based on the low-cycle cumulative damage and deterioration theory, and verified by experimental results. The damage index of the steel-RC composite column and composite wall is proposed.
引文
[1] Paulay T, Priestley MJN. Seismic design of reinforced concrete and masonry buildings. New York: Wiley Interscience Publication, 1992.
    [2]钱稼茹,吕文,方鄂华.基于位移延性的剪力墙抗震设计.建筑结构学报, 1999, 20(3): 42-49.
    [3] European Committee for Standardization. Final draft of EuroCode 8: Design provisions for earthquake resistance-Part 1: General rules, seismic actions and rules for buildings. Bruxelles, 2003.
    [4]中华人民共和国建设部. GB50011-2001.建筑抗震设计规范.北京:中国建筑工业出版社, 2001.
    [5] International Conference of Building Officials. Uniform Building Code. Whittier, 1997.
    [6] International Code Council. Internatioanal Building Code. Whitter, CA, 2006.
    [7] Standard New Zealand. Concrete Structure Standard (NZS 3101:2006). Wellington, 2006.
    [8]林立岩,李庆刚.混凝土与钢的组合促进高层建筑结构的发展.东南大学学报, 2002, 32(5): 702-705.
    [9]韩林海,陶忠,王文达.现代组合结构和混合结构.北京:科学出版社, 2009.
    [10]蔡绍怀.现代钢管混凝土结构.北京:人民交通出版社, 2007.
    [11]韩林海.钢管混凝土结构——理论与实践(第二版).北京:科学出版社, 2007.
    [12]钟善桐.钢管混凝土结构.哈尔滨:黑龙江科学技术出版社, 1994.
    [13] Neogi PK, Sen HK, Chapman JC. Concrete-filled tubular steel columns under eccentric loading. The Structural Engineer, 1969, 47(5): 187-195.
    [14] Knowles RB, Park R. Strength of concrete filled steel tubular columns. Journal of the structural Division, 1970, ST10: 187-195.
    [15] Kenji Sakino, Hiroyuki Nakahara, etc. Behavior of centrally loaded concrete-filled steel-tube short columns. Journal of Structural Engineering, 2004, 130(2): 180-188.
    [16]钟善桐.钢管混凝土统一理论——研究与应用.北京:清华大学出版社, 2006.
    [17]王力尚,钱稼茹.钢管高强混凝土应力-应变全曲线试验研究.建筑结构, 2004, 34(1): 11-12, 19.
    [18]汤关祚,招炳泉,竺惠仙,等.钢管混凝土基本力学性能的研究.建筑结构学报, 1982, 3(1): 13-31.
    [19]蔡绍怀,焦占拴.钢管混凝土短柱的基本性能和强度计算.建筑结构学报, 1984, 5(6): 13-29.
    [20]顾维平,蔡绍怀,冯文林.钢管高强混凝土的性能与极限强度.建筑科学, 1991, 1: 23-27.
    [21]谭克锋,蒲心诚,蔡绍怀.钢管超高强混凝土的性能与极限承载能力的研究.建筑结构学报, 1999, 20(1): 10-15.
    [22] Schneider SP. Axially loaded concrete-filled steel tubes. Journal of Structural Engineering, 1998, 124(10): 1125-1138.
    [23]蒋继武,朱金铨,陈肇元.钢管高强混凝土压弯构件抗震性能试验研究.高强与高性能混凝土(论文集), 1998: 191-248.
    [24] Bergmann R. Load introduction in composite columns filled with high strength concrete. Tubular Structures VI, 1994: 373-380.
    [25] Kavoossi HR, Schmidt LC. The mechanical behavior of higher strength concrete confined in circular hollow sections. 13th Australasian Conference on the Mechanics of Structures and Materials, 1993: 453-460.
    [26] Prion HGL, Boehme J. Beam-column behavior of steel tubes filled with high strength concrete. Canadian Journal of Civil Engineering, 1994(2): 207-218.
    [27]中国工程建设标准化协会. CECS28:90.钢管混凝土结构设计与施工规程.北京:中国计划出版社, 1990.
    [28]中华人民共和国国家经济贸易委员会. DL/T5085-1999.钢-混凝土组合结构设计规程.北京:中国电力出版社, 1999.
    [29]叶列平,方鄂华.钢骨混凝土构件的受力性能研究综述.土木工程学报, 2000, 33(5): 1-12.
    [30]徐培福.复杂高层建筑结构设计.北京:中国建筑工业出版社, 2005.
    [31]陈富生,岳国华,范重.高层建筑钢结构设计.北京:中国建筑工业出版社, 2004.
    [32]王连广.钢与混凝土组合结构理论与计算.北京:科学出版社, 2005.
    [33]李俊华,赵鸿铁,薛建阳,等.型钢高强混凝土柱若干问题的探讨.西安建筑科技大学学报:自然科学版, 2004, 36(1): 44-47.
    [34]梅村魁,大泽胖监修著,中国建筑科学研究院译.劲性钢筋混凝土结构抗震设计.中国建筑科学研究, 1988.
    [35]蒋东红,王连广,刘之洋.高强钢骨混凝土框架柱的抗震性能.东北大学学报, 2002, 23(1): 67-70.
    [36]赵世春,黄雄军.劲性钢筋混凝土柱基本抗震行为的试验研究.建筑结构学报, 1996, 17(3): 43-51.
    [37]程文瀼,陈忠范,江东,等.钢骨混凝土柱轴压比限值的试验研究.建筑结构学报, 1999, 20(2): 51-59.
    [38]叶列平,方鄂华.钢骨混凝土柱的轴压力限值.建筑结构学报, 1997, 18(5): 43-50.
    [39]苏毅,程文瀼.配置工字、十字形钢骨的钢骨混凝土柱轴压比限值.工业建筑, 2006, 36(2): 85-87, 63.
    [40]蒋东红,王连广,孙逸增.高强钢骨混凝土柱的抗剪承载力计算.东北大学学报:自然科学版, 2001, 22(5): 562-563.
    [41]叶列平,方鄂华,赵树红.钢骨混凝土构件的受剪承载力计算.建筑结构, 1999, 29(7): 17-21.
    [42]叶列平.钢骨混凝土柱的设计方法.建筑结构, 1997, 5: 8-12.
    [43]支运芳,邱阳,陈子静.型钢高强混凝土柱合理含钢量试验.重庆工学院学报, 2008, 22(5): 28-31,39.
    [44]日本土木工程学会编,刘全德等译.混凝土结构设计规范及解说.成都:西南交通大学出版社, 1991.
    [45] Mceormac JC. Structural steel design: LRFD Method. Harper and Row Publishers Inc, 1989.
    [46]李少泉,沙镇平.钢骨混凝土柱正截面承载力计算的叠加方法.建筑结构学报, 2002, 23(3): 27-31.
    [47] Hajjar JF. Composite steel and concrete structural systems for seismic engineering. Journal of Constructional Steel Research, 2002, 58: 703-723.
    [48]中华人民共和国建设部. JGJ138-2001.型钢混凝土组合结构技术规程.北京:中国建筑工业出版社, 2002.
    [49]中华人民共和国国家发展和改革委员会. YB9802-2006.钢骨混凝土结构技术规程.北京:冶金工业出版社, 2006.
    [50]林立岩,李庆刚.钢管混凝土叠合柱的设计概念与技术经济分析.建筑结构, 2008, 38(3): 17-21.
    [51]中国工程建设标准化协会. CECS188:2005.钢管混凝土叠合柱结构技术规程.北京:中国计划出版社, 2005.
    [52]黄用军,尧国皇,宋宝东,等.钢管混凝土叠合柱在深圳卓越-皇岗世纪中心项目中的应用.钢结构进展与市场, 2008, 6(3): 36-39.
    [53]哈敏强,陆益鸣,陆道渊,等.钢管混凝土叠合柱在上海保利广场中的应用.第二十届全国高层建筑结构学术交流会论文集,大连, 2008: 513-515.
    [54]幸坤涛,赵国藩.高强钢管混凝土核心柱轴压短柱的承载力研究.钢结构.2002, 17(1): 18-21.
    [55]林拥军,程文瀼,李洁.配有圆钢管的钢骨混凝土短柱轴心受压正截面受压承载力的试验研究.四川建筑科学研究, 2003, 29(4): 11-16.
    [56]林拥军,李洁,程文瀼.配有圆钢管的钢骨混凝土柱受力性能的研究.四川建筑科学研究, 2003, 29(3): 16-30.
    [57]李惠,王震宇,吴波.钢管高强混凝土叠合柱的抗震性能研究.地震工程与工程振动, 1998, 18(1): 45-51.
    [58]林拥军,程文瀼,周宗仁,等.配有圆钢管的钢骨轴心受压柱的试验研究.工程力学, 2001增刊: 140-145.
    [59]杨春,蔡健,张学文,等.劲性钢管混凝土组合柱轴压性能试验研究.东南大学学报:自然科学版, 2002, 32(5): 715-718.
    [60]陈周熠.钢管高强混凝土核心柱设计计算方法研究[博士学位论文].大连:大连理工大学, 2002.
    [61]聂建国,柏宇,李盛勇,等.钢管混凝土核心柱轴压组合性能分析.土木工程学报, 2005, 38(9): 9-13.
    [62]聂建国,赵洁,柏宇,等.钢管混凝土核心柱轴压极限承载力.清华大学学报:自然科学版, 2005, 45(9): 1153-1156.
    [63]陈周熠,赵国藩,易伟建,等.带圆钢管劲性高强混凝土轴压短柱试验研究.大连理工大学学报, 2005, 45(5): 687-691.
    [64]林永安,谢晓峰.钢管混凝土核心短柱轴心受压承载力的研究.广东土木与建筑, 2003(1): 21-23.
    [65]林拥军,冯远,官庆,等.配有圆钢管的钢骨混凝土柱的设计方法.建筑结构, 2004, 34(1): 13-26.
    [66]康洪震.钢管高强混凝土组合柱受力性能研究[博士学位论文].北京:清华大学土木工程系, 2009.
    [67]赵国藩,张德娟,黄承逵.钢管混凝土增强高强混凝土柱的抗震性能研究.大连理工大学学报, 1996, 36(5): 759-766.
    [68]陈周熠,赵国藩,张德娟.钢管混凝土增强高强混凝土柱的轴压比限值分析研究.工业建筑, 2002, 32(4): 55-57.
    [69]林拥军,程文瀼,徐明,等.配有圆钢管的钢骨混凝土柱轴压比限值的试验研究.土木工程学报, 2001, 34(6): 23-28.
    [70]徐明,苏丽莉,程文瀼.内配圆钢管的钢骨混凝土柱轴压比限值的研究.工业建筑, 2003, 33(3): 60-62.
    [71]李惠,王震宇,吴波.钢管高强混凝土叠合柱的轴力分配及名义轴压比限值分析.世界地震工程, 1999, 15(2): 1-27.
    [72]李惠,王震宇,吴波.钢管高强混凝土叠合柱抗震性能与受力机理的试验研究.地震工程与工程振动, 1999, 19(3): 27-33.
    [73] Han LH, Liao FY, Tao Z, etc. Performance of concrete filled steel tube reinforced concrete columns subjected to cyclic bending. Journal of Constructional Steel Research, 2009, 65(8-9): 1607-1616.
    [74]李惠,王震宇,吴波.钢管高强混凝土叠合柱弯矩-曲率关系的合成模型.计算力学学报. 2000, 17(2): 184-191.
    [75]李国强,张晓光,沈祖炎.钢板外包混凝土剪力墙板抗剪滞回性能试验研究.工业建筑, 1995, 25(6): 32-35.
    [76] Zhao Qiuhong, Abolhassan AA. Cyclic behavior of traditional and innovative composite shear walls. Journal of Structural Engineering, ASCE, 2004, 130(2): 271-285.
    [77]张素梅,吴志坚,马欣伯.预知混凝土板对组合剪力墙抗剪静力性能的影响.建筑科学与工程学报, 2008, 25(1): 18-22.
    [78]马欣伯,张素梅,郭兰慧,等.两边连接钢板混凝土组合剪力墙简化分析模型.西安建筑科技大学学报:自然科学版, 2009, 41(3): 352-357.
    [79] Eom TS, Park HG, Lee CH, etc. Behavior of double skin composite wall subjected to in-plane cyclic loading. Journal of Structural Engineering, ASCE, 2009, 135(10): 1239-1249.
    [80] Emori K. Compressive and shear strength of concrete filled steel box wall. Steel Structures, 2002, 68(2): 29-40.
    [81] Link RA, Elwi AE. Composite concrete-steel plate walls: analysis and behavior. Journal of Structural Engineering, ASCE, 1995, 121(2): 260-271.
    [82] Wright HD. The axial load behaviour of composite walling. Journal of Constructional Steel Research, 1998, 45(3): 353-375.
    [83] Hossain KMA, Wright HD. Experimental and theoretical behaviour of double skin composite walls under in-plane shear. Journal of Constructional Steel Research, 2004, 60(1): 59-83.
    [84] Hossain KMA, Wright HD. Behaviour of composite walls under monotonic and cyclic shear loading. Structural Engineering and Mechanics, 2004, 17(1): 69-85.
    [85] Hossian KMA, Wright HD. Performance of double skin-profiled composite shear walls: experiments and design equations. Canadian Journal of Civil Engineering, 2004, 31(2): 204-217.
    [86] Hossain KMA. Axial load behaviour of piereced profiled composite walls. IPENZ Transactions, 2000, 27(1): 1-7.
    [87]廖飞宇,陶忠,韩林海.钢-混凝土组合剪力墙抗震性能研究简述.地震工程与工程振动, 2006, 26(5): 129-135.
    [88] Shirali NM. Seismic Resistance of a Hybrid Shearwall System. Univeristy of Darmstadt: Darmstadt, 2002.
    [89]曹万林,王敏,张建伟,等.钢管混凝土边框剪力墙抗震试验及承载力计算.北京工业大学学报, 2008, 34(12): 1291-1297.
    [90]王敏,曹万林,张建伟,等.钢管混凝土边框高强混凝土组合剪力墙抗震性能试验研究.地震工程与工程振动, 2008, 28(2): 90-95.
    [91]廖飞宇,陶忠.带不同类型边框柱的剪力墙力学性能试验.工业建筑, 2007, 37(12): 31-34.
    [92] Liao FY, Han LH, Tao Z. Seismic behaviour of circular CFST columns and RC shear wall mixed structures: experiment. Journal of Constructional Steel Research, 2009, 65(8-9): 1582-1596.
    [93]中国工程建设标准化协会. CECS159-2004.矩形钢管混凝土结构技术规程.北京:中国计划出版社, 2004.
    [94]夏汉强,刘嘉祥.矩形钢管混凝土柱带框剪力墙的应用及受力分析.建筑结构, 2005, 35(1): 16-18.
    [95] Esaki F, Ono M. Effect of loading velocity on mechanical behavior of SRC shearwalls. Proceedings of sixth ASCCS Conference on Composite and Hybrid Structures, Los Angeles, USA, 2000: 809-816.
    [96]黄雄军,何小银,赵世春.带SRC边框低剪力墙抗震性能研究.四川建筑科学研究, 1995, 1: 30-34.
    [97]黄雄军,赵世春.带劲性钢筋混凝土边框低剪力墙的试验研究.西安交通大学学报, 1999, 34(5): 536-539.
    [98]黄雄军,罗英,赵世春.劲性砼低剪力墙抗震性能研究.四川建筑科学研究, 1996, 1: 52-62.
    [99]董宇光,吕西林.型钢混凝土剪力墙轴压比计算及其限值研究.地震工程与工程振动, 2007, 27(1): 80-85.
    [100]吕西林,董宇光,丁子文.截面中部配置型钢的混凝土剪力墙抗震性能研究.地震工程与工程振动, 2006, 26(6): 101-107.
    [101]张迎春.钢骨混凝土剪力墙的试验研究[硕士学位论文].北京:清华大学土木工程系, 1993.
    [102]乔彦明.钢骨钢筋混凝土剪力墙抗剪性能试验研究[硕士学位论文].北京:清华大学土木工程系, 1993.
    [103]唐曦.钢骨钢筋混凝土剪力墙抗弯性能试验研究[硕士学位论文].北京:清华大学土木工程系, 1995.
    [104]张云峰.钢筋混凝土剪力墙高轴压比下抗震性能试验研究[硕士学位论文].北京:清华大学土木工程系, 1996.
    [105]乔彦明,钱稼茹,方鄂华.钢骨混凝土剪力墙抗剪性能的试验研究.建筑结构, 1995, 8: 3-7.
    [106]王志浩,方鄂华,钱稼茹.钢骨混凝土剪力墙的抗弯性能.建筑结构, 1998, 2: 13-16.
    [107]钱稼茹,魏勇,赵作周,等.高轴压比钢骨混凝土剪力墙抗震性能试验研究.建筑结构学报, 2008, 29(1): 43-50.
    [108]魏勇,钱稼茹,赵作周,等.高轴压比钢骨混凝土矮墙水平加载试验.工业建筑, 2007, 37(6): 76-79.
    [109]曹万林,杨兴民,黄选明,等.带钢筋及钢骨暗支撑剪力墙抗震性能试验研究.世界地震工程, 2005, 21(1): 1-6.
    [110]曹万林,张建伟,田宝发.带暗支撑剪力墙体系抗震研究及应用.工程力学, 2004, 21: 1-12.
    [111]陶军平,曹万林,张静娜,等.内藏钢桁架混凝土组合低剪力墙抗震性能试验研究.世界地震工程, 2006, 22(2): 131-137.
    [112]郑同亮,曹万林,张静娜,等.内藏钢桁架混凝土组合高剪力墙抗震性能试验研究.世界地震工程, 2006, 22(2): 77-83.
    [113]曹万林,杨亚彬,张建伟,等.圆钢管混凝土边框内藏桁架剪力墙抗震性能.东南大学学报:自然科学版, 2009, 39(6): 1187-1192.
    [114]刘航,蓝宗建,庞同和,等.劲性钢筋混凝土低剪力墙抗震性能试验研究.工业建筑, 1997, 7(5): 32-36.
    [115] Park R, Paulay T. Reinforced Concrete Structures. New York: Joan Wiley and Sons, 1975.
    [116] California Seismic Safety Commission. Seismic evaluation and retrofit of concrete buildings, ATC-40, 1996.
    [117] SEAOC Vision2000 Committee. Performance based seismic engineering. Report prepared by Structural Engineers Association of California, Sacramento, California, 1995.
    [118]罗文斌.钢筋混凝土框架基于位移的抗震设计原理及方法[博士学位论文].北京:清华大学土木工程系, 2002.
    [119]徐福江.钢筋混凝土框架-核心筒结构基于位移抗震设计方法研究[博士学位论文].北京:清华大学土木工程系, 2006.
    [120]张国军,吕西林,刘建新.高强约束混凝土框架柱基于位移的抗震设计.同济大学学报:自然科学版, 2007, 35(2): 143-148.
    [121] Wallace JW, Moehle JP. Ductility and detailing requirements of bearing wall buildings. Journal of Structural Engineering, ASCE, 1992, 118(6): 1625-1644.
    [122] ACI. Building Code Requirements for Structural Concrete and Commentary (ACI 318-99). American Concrete Institute: Farmington Hills, 1999.
    [123] Wallace JW. New methodology seismic design of RC shear walls. Journal of Structural engineering, ASCE, 1994, 120(3): 863-884.
    [124] Wallace JW. Seismic design of RC structural walls. Journal of Structural engineering, ASCE, 1995, 121(1): 75-101.
    [125] Thomsen JH, Wallace JW. Displacement-based design of slender reinforced concrete structural walls-experimental verification. Journal of Structural Engineering, ASCE, 2004, 130(4): 618-630.
    [126]杜修力,欧进萍.建筑结构地震破坏评估模型.世界地震工程, 1991, 7(3): 52-58.
    [127] Park YJ, Ang AH, Wen YK. Mechanistic seismic damage Analysis for reinforced concrete Buildings. Journal of Structural Engineering, ASCE, 1985, 111(4): 740-756.
    [128]吴波,欧进萍.钢筋混凝土结构在主余震作用下的反应与损伤分析.建筑结构学报, 1993, 14(10): 45-53.
    [129]杨栋,丁大钧,宰金珉.钢筋混凝土框架结构的地震损伤分析.南京建筑工程学院学报, 1995, 4: 8-13.
    [130]江近仁,孙景江.砖结构的地震破坏模型.地震工程与工程振动, 1987, 7(1): 20-34.
    [131]欧进萍,牛荻涛,王光远.多层非线性抗震钢结构的模糊动力可靠性分析与设计.地震工程与工程振动, 1990, 10(4): 27-37.
    [132]欧进萍,何政,吴斌,等.钢筋混凝土基于地震损伤性能的设计.地震工程与工程振动, 1999, 19(1): 21-30.
    [133]牛荻涛,任利杰.改进的钢筋混凝土结构双参数地震破坏模型.地震工程与工程振动, 1996(4): 44-54.
    [134]刘伯权,白绍良.抗震结构的等延性破坏准则及其子结构试验验证.地震工程与工程振动, 1997, 17(3): 77-83.
    [135]李宏男,何浩详.利用能力谱法对结构地震损伤评估简化方法.大连理工大学学报, 2004, 44(2): 267-270.
    [136] Ghobarah A, Elfath HA, Ashraf B. Response-based damage assessment of structures. Earthquake Engineering and Structural Dynamics, 1999, 28: 79-104.
    [137] Park YJ, Ang AH, Wen YK. Mechanistic seismic damage model for reinforced concrete. Journal of Structural Engineering, ASCE, 1985, 111(4): 722-739.
    [138]沈祖炎,董宝,曹文衔.结构损伤累积分析的研究现状和存在的问题.同济大学学报, 1997, 25(2): 135-140.
    [139] Bozorgnia Y, Bertero VV. Damage spectra characteristics and applications to seismic risk reduction. Journal of Structural Engineering, ASCE, 2003, 129(10): 1330-1340.
    [140]陈永祁,龚思礼.结构在地震动时延性和累积塑性耗能的双重破坏准则.建筑结构学报, 1986, 7(1): 35-48.
    [141]于海祥.钢筋混凝土结构地震损伤模型研究[硕士学位论文].重庆:重庆大学土木工程学院, 2004.
    [142]李军旗,赵世春.钢筋混凝土构件损伤模型.兰州铁道学院学报, 2000, 7(1): 25-27.
    [143]吕大刚,王光远.基于损伤性能的抗震结构最优设防水准的决策方法.土木工程学报, 2001, 7(1): 44-49.
    [144]何益斌,冷巧娟.钢筋混凝土压弯构件考虑阻尼耗能时的地震破坏模型研究.工程抗震与加固改造, 2006, 28(5): 13-16.
    [145]张国军,吕西林.高强混凝土框架柱的地震损伤模型.地震工程与工程振动, 2005, 25(2): 100-104.
    [146]姚谦峰,马静,黄炜.密肋复合墙体双参数地震损伤模型研究.西安交通大学学报, 2007, 41(7): 852-856.
    [147]袁文柏译.极限平衡法的结构承载能力的计算.北京:中国建筑工业出版社, 1958.
    [148]中国土木工程学会高强混凝土委员会.高强混凝土结构设计与施工指南(第二版).北京:中国建筑工业出版社, 2001.
    [149] Blanks RF, McNamara CC. Mass concrete tests in large cylinders. ACI, 31: 280-303.
    [150]程丽荣,钱稼茹,周栋梁.普通箍筋约束混凝土柱的中心受压性能.清华大学学报, 2002, 42(10): 1369-1373.
    [151]谢小松,林震宇,徐伟.圆钢管超高强混凝土应力-应变关系研究.建筑材料学报, 2007, 10(4): 402-406.
    [152]过镇海,时旭东.钢筋混凝土原理和分析.北京:清华大学出版社, 2003.
    [153]陆明万,罗学富.弹性理论基础.北京:清华大学出版社, 2001.
    [154]蔡健,谢晓峰,杨春,等.核心高强钢管混凝土柱轴压性能的试验研究.华南理工大学学报:自然科学版, 2002, 30(6): 81-85.
    [155]钱稼茹,李耕勤.钢筋混凝土抗震墙墙肢约束边缘构件基于弹塑性层间位移角的设计.建筑结构, 2002, 32(8): 3-6.
    [156]中华人民共和国建设部. JGJ3-2002.高层建筑混凝土结构技术规程.北京:中国建筑工业出版社, 2002.
    [157]徐亚丰,赵敬义,张世宪,等.钢骨-钢管混凝土柱抗震性能试验研究.建筑钢结构进展, 2009, 11(3): 4-11.
    [158]金向前,陈忠范.配有圆钢管的钢骨混凝土柱抗震性能试验研究.工程力学增刊, 2001: 175-180.
    [159]张德娟.以钢管混凝土为核心的高强混凝土柱的试验研究[硕士学位论文].大连:大连理工大学, 1995.
    [160]吉西M著,徐国彬等译.钢筋混凝土框架结构塑性阶段的计算.北京:中国建筑工业出版社, 1988.
    [161] Sheikh SA. Confined concrete columns with stubs. ACI Structural Journal, 1994, 90(4): 414-431.
    [162]清华大学抗震抗爆工程研究室.科学研究报告集(3):钢筋混凝土结构的抗震性能.北京:清华大学出版社, 1981.
    [163] Yong Lu. Probabilistic drift limits and performance evaluation of reinforced concrete columns. Journal of Structural Engineering, 2005, 131(6): 966-978.
    [164] Panagiotakos TB. Deformations of reinforced concrete members at yielding and ultimate. ACI Structural Journal, 2001, 98(2): 135-148.
    [165] Priestley MJN. Brief comments on elastic flexibility of reinforced concrete frames and significance to seismic design. Bulletin of the New Zealand National Society for Earthquake Engineering, 1998, 31(4): 246-259.
    [166] Pantazopoulou SJ. Detailing for reinforcement stability in RC members. Journal of Structural Engineering, 1998, 124(6): 623-632.
    [167]白亮.型钢高性能混凝土剪力墙抗震性能及性能设计理论研究[博士学位论文].西安:西安建筑科技大学, 2009.
    [168]吕文.钢筋混凝土剪力墙的延性研究[硕士学位论文].北京:清华大学土木工程系, 1998.
    [169] Miner MA. Cumulative damage in fatigue. Journal of Applied Mechanics, 1945, 12: 159-164.
    [170] Manson SS. Behavior of materials under conditions of thermal stress. Heat Transfer Symposium, Engineering Research Institute, University of Michigan, Ann Arbor, 1953: 9-75.
    [171] Coffin LF. A study of effects of cyclic thermal stresses on ductile metal. Transactions of the American Society of Mechanical Engineering, 1954, 76: 931-950.
    [172] Krawinker H, Zohrei M. Cumulative damage in steel structures subjected toearthquake ground motions. Computers and Structures, 1983, 16(1-4): 531-541.
    [173] Chai YH, Romstad KM. Correlation between strain-based low-cycle fatigue and energy based linear damage models. Earthquake Spectra, 1997, 13(2): 191-209.
    [174] Fajfar P. Equivalent ductility factors, taking into account low-cycle fatigue. Earthquake Engineering and Structural Dynamics, 1992, 21: 837-848.
    [175] Meyer C. An energy-based damage model for inelastic analysis of reinforced concrete frames. Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings, Fajfar P, Krawinkler H (eds). Elsevier, 1992: 115-124.
    [176] Kazuhiko Kawashima, Tatsuhiko Koyama. Effect of number of loading cycles on dynamic characteristics of reinforced concrete bridge pier columns. Structural Eng./Earthquake Eng. 1988.5(1): 183-191.
    [177] Altug Erberik, Haluk Sucuoglu. Seismic energy dissipation in deteriorating systems through low-cycle fatigue. Earthquake Engineering and Structural Dynamics, 2004, 33: 49-67.
    [178] Clough RW, Johnston SB. Effect of stiffness degradation on earthquake ductility requirements. Proceedings of the 2nd Japan National Conference on Earthquake Engineering, 1966: 227-232.
    [179]中华人民共和国建设部. GB50010-2002.混凝土结构设计规范.北京:中国建筑工业出版社, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700