微拟球藻脂酰辅酶A合成酶与脂肪酸延伸酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油资源的日益枯竭与能源需求量日益增长这一矛盾的突出,可再生能源的开发及利用受到世界各地的关注。人们迫切寻找一种能够代替化石燃料的可再生资源。然而,原料问题一直是制约生物柴油发展的“瓶颈”。曾经,人们寄希望于传统的油料作物、粮食、动植物油脂、农林废弃物等,但是这些都有各种各样的缺点。微藻可以生长在海洋、河流以及湖泊里,不用占用耕地。它们能十分有效地利用太阳能进行光合自养,富集油脂。微藻还具有生长周期短,可以大规模培养的特点,被认为是制备生物柴油的优良材料。
     超长链多不饱和脂肪酸(very long-chain polyunsaturated fatty acids, VLCPUFAs)尤其是EPA(eicosapentaenoic acid)和DHA(docosapentaenoic acid)对人体及动植物细胞都是极为重要的,对某些疾病起到明显的预防和治疗作用。但是人类自身只能合成少量的EPA和DHA,远远不能满足自身需要。因此需要摄入一定量的VLCPUFAs以补充人体自身合成的不足。目前,VLCPUFAs的主要来源是深海鱼油,但是由于海洋可捕捞鱼类资源的日益减少和市场需求的迅速增长,该途径已经远远不能满足需要,寻找更为持续、稳定的VLCPUFAs来源已经成为当务之急。许多种类的海洋微藻能够从头合成VLCPUFAs且含量较高,脂肪酸组成稳定,没有难闻的鱼腥味等优点正逐渐成为鱼油的良好替代资源,具有巨大的开发潜力。
     微拟球藻(Nannochloropsis oculata),属于真眼点藻纲(Eustigmatophyceae),微拟球藻属(Nannochloropsis)。该藻富含EPA,因而被认为有望成为EPA产品生产的生物资源。此外,该藻油脂含量非常高,达到干重的30%以上。很多微藻在获得高油脂含量的同时却造成了生物量减少的现象。目前的研究表明,微拟球藻生物量的积累与油脂含量之间呈现最优的组合,被认为是最适于开发的能源微藻之一。总之,微拟球藻是一类非常重要的应用性经济微藻,但是其分子信息比较匮乏,需要进行深入研究。本实验以微拟球藻为研究对象,分别对其油脂代谢中的脂酰辅酶A合成酶(acyl-coenzyme A synthetase,ACS)和EPA合成中的延伸酶(Elongase)进行了研究。
     本研究从微拟球藻中克隆得到一个长链脂酰辅酶A合成酶(long acyl-coenzyme A synthetase, LACS)基因的cDNA全长,并命名为NOLACS。NOLACS的ORF为1947bp,预测编码648个氨基酸残基,蛋白相对分子质量为71kDa。NCBI中进行BlastX比对发现,NOLACS基因编码的蛋白质与三角褐指藻、假微型海链藻等的LACS高度相似。根据NOLACS编码的长链脂酰辅酶A合成酶能够互补LACS缺陷型酿酒酵母YB525生长设计酵母互补实验验证其功能,并分析了该酶的底物偏好性。结果显示,NOLACS能够活化饱和脂肪酸和部分不饱和脂肪酸,尤其偏好于长链脂肪酸。另外,进一步研究了限氮处理对微拟球藻中总脂含量以及NOLACS基因转录水平的影响,并探讨总脂含量与NOLACS基因转录水平的关系。
     运用RACE方法克隆得到了一个延伸酶的cDNA全长序列,其ORF为522个碱基,预测编码173个氨基酸残基。比对结果显示,该序列与三角褐指藻、假微型海链藻、新孢子虫等相似性较高。本实验尝试在酿酒酵母INVSc1中对其进行功能验证,未得到其功能,分析该基因可能是假基因。
     鉴于微拟球藻重要的生态及经济价值,获取更多的分子生物学信息并对其进行深入研究是必要的。本研究不仅有助于阐明该藻复杂的脂类合成途径以及脂肪酸组成随环境因子变化而变化的机理,也为微拟球藻基因表达调控及遗传转化提供了分子基础,因此具有重要的理论意义和广阔的应用前景。
Owing to the prominent contradiction of exhausting fossil fuels and growing energy demands, the development and utilization of renewable energy has attracted worldwide attention. People are eager to find a substitute for fossil fuels. However, raw material has been the "bottleneck" which restricts the development of biodiesel. Once people pinned the hope on traditional oil crops, food, animal fats, farming and forestry residues, etc. However, these materials have various kinds of drawbacks. Microalgae can grow in oceans, rivers and lakes, without occupying any plough land. They can quite effectively utilize solar energy for autotrophic photosynthesis and lipid enrichment. Microalgae have been considered as an excellent choice of biodiesel for high growth and mass cultivation.
     Very long-chain polyunsaturated fatty acids (VLCPUFAs), especially EPA and DHA, are very important for cells and have been found significantly alleviate the symptoms of many diseases. As human cannot synthesize enough VLCPUFAs, dietary supplementation of VLCPUFAs is indispensable. Currently, the principal source of VLCPUFAs is deep-sea fish. However, it is insufficient to an expanding market. To exploit sustainable and continuable sources is urgent need. Many kinds of marine microalgae can synthesize VLCPUFAs with high contents, stable composition of fatty acids, and without unpleasant odor of fish. They are becoming good alternative resources of fish with great development potential.
     Genus Nannochloropsis is one of class Eustigmatophyceae. Nannochloropsis are rich in EPA, so that they are expected to become the biological resources for EPA. In addition, Nannochloropsis have very high oil content that is more than 30% of dry weight. Many microalgae could obtain high oil contents with reduced biomass at the same time. Nannochloropsis have been proposed as the excellent candidates for fuel production with the optimal combination of biomass productivity and lipid content. In short, they are important applied economic microalgae with deficient molecular information. They deserve intensive investigation. In this study, Nannochloropsis oculata was chosen for study of acyl-coenzyme A synthetase and fatty acid elongase.
     The cDNA of LACS gene was isolated from N. oculata and named as NOLACS. Nucleotide sequence analysis identified an open reading frame of 1947 bp in length, which encodes a protein of 648 amino acids with a predicted molecular mass of 71 kDa. The predicted amino acid sequence was highly similar to the LACSs of other species,such as Phaeodactylum tricornutum and T. pseudonana. The NOLACS encodes a long-chain acyl-coenzyme A synthetase; it recovered the function of Saccharomyces cerevisiae YB525, a LACS-deficient yeast strain. The substrate specificity of the enzyme was also assayed in the yeast. It was found that NOLACS can activate saturated and some unsaturated fatty acids with a preference to long-chain fatty acids. The effects of nitrogen deficiency on lipid contents and transcription of NOLACS are also assayed.
     One elongase from N. oculata was cloned by RACE whose ORF is 522 bp encoding 173 amino acids. The results of alignment indicated that NOLACS exhibited higher homology to Phaeodactylum tricornutum, T. pseudonana, Neospora caninum Liverpool etc. The elongase gene was transformed into yeast strain INVSc1(S. cerevisiae) to testify the function. It has been proved that it is a pseudogene.
     In the light of the great ecological and commercial value, N. oculata deserves intensive investigation at the molecular level. This study not only makes a significant contribution to understanding the metabolic pathways of lipids, but also sets the molecular basis for regulation of gene expression and genetic transformation. The research has important theoretical significance and broad application prospect.
引文
[1]曹春晖,孙世春,麦康森,等. 30株海洋绿藻的总脂含量和脂肪酸组成.青岛海洋大学学报,2000,30(3):428~434
    [2]曹军平,费志清,刘必谦,胡国成,孙宗修.金藻基因工程选择标记的研究、实验与技术,2001,25(7): 6~8
    [3]段炼.全球生物柴油产业的发展.日用化学品科学,2009,32(1):7~11
    [4]方应明,杨保成,张飞.生物柴油的发展研究现状.安徽农业科学,2007,35( 26): 8325~8356
    [5]胡秋龙,刘灿有,吴苏喜,等.生物柴油的应用近况和发展前景.粮食科技与经济, 2006(1):47~49
    [6]黄鸿洲,康燕玉,梁君荣,等.五种底栖硅藻(鲍鱼饵料)的脂肪酸组成分析.植物生理学通讯,2007,3(2):349~354
    [7]黄英明,王伟良,李元广.微藻能源技术开发和产业化的发展思路与策略.生物工程学报,2010,26(7):907~913
    [8]蒋剑春,杨凯华,聂小安,等.生物柴油研究进展.中国能源,2006,28(2) : 36~40
    [9]孔维宝,华绍烽,宋昊,等.利用微藻生产生物柴油的研究进展.中国油脂,2010,35(8):51~56
    [10]李荷芳,周汉秋.海洋微藻脂肪酸组成的比较的研究.海洋与湖沼,1999,30(1):34~40
    [11]李子兴,孙煜,刘志学,宋任涛,许政暟.外源ble基因在杜氏盐藻中的瞬时表达.实验生物学报,2005,38(5): 411~416
    [12]李元广,谭天伟,黄英明.微藻生物柴油产业化技术中的若干科学问题及其分析.中国基础科学,2009(5):64~70
    [13]梁蒙.生物质能源开发利用概述.科技资讯,2010,33:131
    [14]梁英,麦康森,孙世春.硝酸钠浓度对2株三角褐指藻生长及脂肪酸组成的影响.黄渤海海洋,2001,19(4):56~62
    [15]缪晓玲,吴庆余.藻类异养转化制备生物油燃料技术.可再生能源,2004(4): 41~44
    [16]林学政,李光友.环境因子对微藻脂类的影响.黄渤海海洋,1999,17(4):54~59
    [17]沈珺珺,迟晓元,杨庆利,等.生物柴油的研究进展.中国生物工程杂志,2006,26(11):87~90
    [18]石娟,潘克厚.不同光照条件对小新月菱形藻和等鞭金藻8701生长及生化成分的影响.中国水产科学,2004,11(2):121~128
    [19]宋吉彬,银建中,张礼鸣等.生物柴油制备技术研究进展.化工技术与开发,2007,36(9):22~26
    [20]谭天伟,王芳.生物柴油的生产和应用.现代化工,2002,22(2):4~6
    [21]王吉桥,赵丽娟,姜玉声,张剑诚,王锡荣.饲料中不同脂肪酸搭配对仿刺参幼参生长和体组分的影响.渔业科学进展,2009,30(6): 62~74
    [22]王镜岩,朱圣庚,徐长法.生物化学.北京:高等教育出版社第三版,2003.82~89
    [23]王顺昌,王陶,赵世光,等.不同氮源对蛋白核小球藻生长、色素和中性脂肪积累的影响.激光生物学报,2008,17(2):197~202
    [24]王香爱.生物柴油的研究进展.化工科技,2008,16(5):58~61
    [25]巫淼鑫,邹国英,韩瑛,等. 6种食用植物油及其生物柴油中脂肪酸组成的比较研究.中国油脂,2003,28(12):65~67
    [26]吴顺章,李博文,赵扬,陈奕欣.坛紫菜转鲎素基因的初步研究.厦门大学学报(自然科学版),2008,47(4): 567~570
    [27]吴苏喜,董军英,官春云.生物柴油开发研究进展与产业化发展策略.粮油加工,2006(2): 56~59
    [28]吴夏芫,李环,韦萍.能源微藻~葡萄藻培养的研究进展.安徽农业科学,2008,36(20):8755~8756
    [29]肖志新,周冀衡,杨虹琦,李鹏飞,黎娟.转基因植物选择性标记基因.中国农业科技导报,2004,6(5): 19~22
    [30]邢英,郗怡佳.生物柴油的生产现状及发展前景.广东化工,2006,33(6): 6~9
    [31]薛志忠,吴新海.国内外生物柴油研究进展.现代农业科技,2010,16:293~295
    [32]杨仕品.生物柴油产业发展的现状及前景.贵州农业科学,2009,37(1):157~160
    [33]张根旺.油脂的营养与健康.中国油脂,2008,33(5):4~7
    [34]周杰,施定基,武宝?,茹炳根.人肝金属硫蛋白突变β基因通过同源重组在蓝藻中的克隆与表达.中国生物化学与分子生物学报,1999,15(6): 907~911
    [35]周良虹,黄亚晶.国外生物柴油产业与应用状况.可再生能源,2005,122(4): 63
    [36]朱福各,谭小力,崇保强,周佳,袁伟伟.油菜脂酰CoA合成酶基因pXT166的鉴定和功能分析.中国油料作物学报,2009,31(3):274~278
    [37]朱玉贤,李毅等,《现代分子生物学》第二版,2002.104~106
    [38] Adl S M, Simpson A G, Farmer M A, et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukatyot. Microbiol.,2005, 52: 399~451
    [39] Aitzetmuller K, Tsevegsuren N. Seed fatty acids,‘front end’-desaturases and chemotaxonomy-a case study in the Ranunculaceae. J. Plant Physiol., 1994, 143: 538~543
    [40] Babbitt P C, Kenyon G L, Martin B M, et al. Ancestry of the 4-chlorobenzoate dehalogenase: analysis of amino acid sequence identities among families of acyl:adenyl ligases, enoyl-CoA hydratases/isomerases, and acyl-CoA thioesterases. Biochemistry, 1992, 31: 5594~5604
    [41] Bar-Tana J, Rose G, Shapiro B. Palmitoyl-coenzyme A synthetase. Isolation of an enzyme-bound intermediate. Biochem. J., 1973, 135: 411~416
    [42] Benemann J R, Goebel R P, Weissman J C, et al. Microalgae as a Source of Liquid Fuels,Final Technical Report to US Department of Energy. Washington DC:US Department of Energy, 1982
    [43] Behrens P W, Hoeksama K L, Amett M S C, et al. Eicosapentaenoic acid from microalgae. Amsterdam: Elsevier Science Publishers, 1989, 253~ 259
    [44] Bibb M J, Sherman D H, Omura S, et al. Cloning, sequencing and deduced functions of a cluster of Streptomyces genes probably encoding biosynthesis of the polyketide antibiotic frenolicin. Gene, 1994, 142(1): 31~39
    [45] Black P N, DiRusso C C. Yeast acyl-CoA synthetases at the crossroads of fatty acid metabolism and regulation. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2007, 1771(3): 286~298
    [46] Black P N, Zhang Q, Weimar J D, et al. Mutational analysis of a fatty acyl-Coenzyme A synthetase signature motif identifies seven amino acid residues that modulate fatty acid substrate specificity. J Biol Chem, 1997, 272: 4896~4903
    [47] Bligh E G, Dyer W J. A rapid method for total lipid extraction and purification. Canadian J Biol Physiology, 1959, 37, 911~917
    [48] Blobel F, Erdmann R. Identification of a yeast peroxisomal member of the family of AMP-binding proteins. Eur J Biochem,1996, 240: 468~476
    [49] Brenner R R. Hormonal modulation ofΔ6 andΔ5 desaturases: case of diabetes. Prostaglandins Leukot. Essent. Fatty Acids., 2003, 68: 151~162
    [50] Cahoon E B, Lindqvist Y, Schneider G et al. Redesign of soluble fatty acid desaturases from plants for altered substrate specificity and double bond position. Proc Natl Acad Sci USA, 1997, 94: 4872~4877
    [51] Chen H L, Li S S, Huang R, et al. Conditional production of a functional fish growth hormone in the transgenic line of Nannochloropsis oculata (Eustigmatophyceae). J. Phycol., 2008, 44(3): 768~776
    [52] Chen W, Zhang C W, Song L R et al. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiological Methods,2009,77 : 41~47
    [53] Cobelas M A, Lechado J Z. Lipids in microalgae. A review I. Biochemistry. Grasas Aceites, 1989, 40: 118~145
    [54] Coe N R, Smith A J, Frohnert B I et al. The fatty acid transport protein (FATP1) is a very long chain acyl-CoA synthetase.J. Biol. Chem.,1999.274(51): 36300~36304
    [55] Connerton I F, Fincham J R, Sandeman R A, et al. Comparison and cross-species expression of the acetyl-CoA synthetase genes of the Ascomycete fungi, Neurospora crassa and Aspergillus nidulans. Mol Microbiol, 1990, 4: 451~460
    [56] Conti E, Stachelhaus T, Marahiel M A, et al. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. The EMBO Journal, 1997, 16(14): 4174~4183
    [57] Converti A, Casazza A A, Ortiz E Y. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing, 2009, 48:1146~1151
    [58] de Wet J R, Wood K V, Helinski D R, et al. Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc. Natl Acad. Sci. USA, 1985, 82: 7870~7873
    [59] Dismukes G C, Carrieri D, Bennette N, et al. Aquatic phototrophs: efficient alternatives to land~based crops for biofuels. Curr. Opin. Biotechnol., 2008, 19:235–240
    [60] Domergue F, Abbadi A, Heinz E. Relief for fish stocks: oceanic fatty acids in transgenic oilseeds. Trends Plant Sci., 2005, 10: 112~116
    [61] Dunahay T G, Jarvis E E, Roessler P G. Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J. Phycol., 1995, 31:1004–1011
    [62] Eltgroth M L, Watwood R L, Wolfe G V. Production and cellular localization ofneutral long-chain lipids in the haptophyte algae Isochrysis galbana and Emilianiahuxleyi. Journal of Phycology , 2005,41, 1000~1009
    [63] Faergeman N J, Black P N, Zhao X D et al. The acyl-CoA synthetases encoded within FAA1 and FAA4 in Saccharomyces cerevisiae function as components of the fatty acid transport system linking import, activation and intracellular utilization. J Biol Chem, 2001,276: 37051~37059
    [64] Fernandez-Reiriz M J, Perez-Camacho M J F A, Blanco M P J, et al. Biomass production and variation in the biochemical profile (total protein, carbohydrates , RNA , lipids and fatty acids) of seven species of marine microalgae. Aquaculture., 1989, 83: 17~37
    [65] Fogg G E. Some comments on picoplankton and its importance in the pelagic ecosystem. Aquat Microb Ecol, 1995, 9: 33~39
    [66] Fulda M, Heiz Z E, Wolter F P. Brassica napus cDNAs encoding fatty acyl-CoA synthetase. Plant Mol Biol, 1997, 33(5): 911~922
    [67] Fulda M, Schnurr J, Abbadi A, et al. Peroxisomal acyl-CoA synthetase activity is essential for seedling development in Arabidopsis thaliana. Plant Cell, 2004, 16:394~405
    [68] Funk C D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 2001, 294: 1871~1875
    [69] Genicot G, Leroy J L M R, Van Soom A. The use of a fluorescent dye, Nile red,to evaluate the lipid content of single mammalian oocytes. Theriogenology, 2005, 63,1181~1194
    [70] Gill, Valivety. Polyunsaturated fatty acids, part2: Biotransformations and biotechnological applications. Trends in Biotechnology., 1997, 15(11):470~478
    [71] Giusto N M, Pasquare S J, Salvador P I, et al. Ipid metabolism in vertebrate retinal rod outer segments. Prog. Lipid Res., 2000, 39: 315~319
    [72] Goldberg E M and Zidovetzki R. Effects of dipalmitoylglycerol and fatty acids on membrane structure and protein kinase C activity. Biophys., 1997, 73: 2603~2614
    [73] Goldemberg J. Ethanol for a sustainable energy future. Science, 2007, 315(8): 808~810Groot P H, Scholte H R, Hulsmann W C. Fatty acid activation: specificity, localization and function. Adv Lipid Res, 1976, 14: 75~12
    [74] Guerrini F, Cangini M, Boni L, et al. Metabolic responses of the diatom Achnanthes brevipes (Bacillariophyceae) to nutrient limitation. J. Phycol., 2000, 36: 882~890
    [75] Guillard R R L and Ryther J H. Studies of marine planktonic diatoms: Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol, 1962, 8: 229-239
    [76] Hae J K, Koh J T, Yang S Y et al. A novel murine long-chain acyl-CoA synthetase expressed in brain participates in Neuronal Cell Proliferation. Biochem. Biophys. Res. Commun., 2003, 305: 925~933
    [77] Hall J M, Parrish C C. Thompson R J. Eicosapentaenoic acid regulates Scallop (Placopecten magellanicus) membrane fluidity in response to cold. Biol. Bull., 2002, 202: 201~203
    [78] Hashimoto K, Yoshizawa A C, Okuda C, et al. The Repertoire of Desaturases and Elongases Reveals Fatty Acid Variations in 56 Eukaryotic Genomes. Journal of Lipid Research, 2008, 49:183~191
    [79] Hawkins R L, Nakamura M. Expression of human growth hormone by the eukaryotic alga, Chlorella. Curr. Microbio., 1999, 38: 335~341
    [80] Hazel J R. Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation. Annu. Rev. Physiol., 1995, 57: 19~42
    [81] Heird W C, Lapillonne A. The role of essential fatty acids in development. Annu. Rev. Nutr., 2005, 25: 549~571
    [82] Hibberd D J. Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Bot.J. Linn Soc, 1981, 82: 92~99
    [83] Hisanaga Y, Ago H, Nakagawa N, et al. Structural basis of the substrate-specific two-step catalysis of long chain fatty acyl-CoA synthetase dimer, J. Biol. Chem., 2004, 279: 31717–31726
    [84] Hofmann K, Stoffel W. Tmbase-A database of membrane spanning proteins segments. Biol. Chem, 1993, 374: 166
    [85] Horrocks L A, Yeo Y K. Healthbenefits of docosahexaenoic acid (DHA). Pharmacol. Res., 1999, 40: 211~215
    [86] Hu H, Gao K. Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnol Lett, 2003, 25: 421~425
    [87] Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols feedstocks for biofuel production: perspectives and advances. The Plant journal: for cell and molecular biology, 2008, 54(4): 621~639
    [88] Iijima H, Fujino T, Minekura H, et al. Biochemical studies of two rat acyl-CoA synthetases, ACSl and ACS2. Eur J Biochem, 1996, 242: 186~190
    [89] Illman A M., Scragg A H, Shales S W. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 2000, 27:631~635
    [90] Izard J, Limberger R J. Rapid screening method for quantitation of bacterial celllipids from whole cells. Journal of Microbiological Methods, 2003, 55, 411~418
    [91] Jain R K, Coffey M, Lai K, et al. Enhancement of seed oil content by expression of glycerol-3-phosphate acyltransferase genes. Biochem. Soc. Trans., 2000, 28:959~960
    [92] Jako C, Kumar A, Wei Y, et al. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol., 2001, 126:861~874
    [93] Jara A de la, Mendoza H, Martel A, et al. Jounrnal of Applied Phycology, 2003, 15 (5): 433~438
    [94] Jay J. Thelen and John B. Ohlrogge. Metabolic Engineering of Fatty Acid Biosynthesis in Plants. Metabolic Engineering, 2002, 41:2~21
    [95] Jiménez C, Niell F X. Growth of Dunaliella viridis Teodoresco: effect of salinity, temperature and nitrogen concentration. J. Appl. Phycol., 1991, 3: 319~327
    [96] Johnson D R, Knoll L J, Levin D E, et al. Saccharomyces cerevisiae contains four fatty acid activation (FAA) genes: an assessment of their role in regulating protein N-myristoylation and cellular lipid metabolism. J Cell Biol, 1994, 127: 751~762
    [97] Kapilan N, Ashok B T P, Reddy R P. Technical aspects of biodiesel and its oxidation stability. International Journal of ChemTech Research CODEN (USA)IJCRGG , 2009, 1(2):278~82
    [98] Karlson B, Potter D, Kuylenstierna M, et al. Ultrastructure, pigment composition, and 18S rRNA gene sequence for Nannochloropsis granulate sp. Nov. (Monodopsidaceae, Eustigmatophyceae), a marine ultraplankter isolated from the Skagerrak, northeast Atlantic Ocean. Phycologia, 1996, 35: 253~260
    [99] Kim D H, Kim Y T, Cho J J, et al. Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Mar. Biotechnol., 2002, 4: 63~73
    [100] Kinney A J. Development of genetically engineered soybean oils for food applications J. Food Lipids, 1996, 3, 273~292
    [101] Klaus D, Ohlrogge J B, Neuhaus H E, et al. Increased fatty acid production in potato by engineering of acetyl-CoA carboxylase. Planta, 2004, 219:389~396
    [102] Knoll L J, Johnson D R, Gordon J I. Complementation of Saccharomyces cerevisiae strains containing fatty acid activation gene (FAA) deletions with a mammalian acyl-CoA synthetase. J Biol Chem, 1995, 270: 10861~10867
    [103] Knoll L J, Johnson D R, Gordon J I. Biochemical Studies of Three Saccharomycescerevisiae Acyl-CoA Synthetases, Faalp, Faa2p, and Faa3p. J Biol Chem, 1994, 269: 16348~16356
    [104] Kornberg A, Pricer W E J. Enzymatic synthesis of the coenzyme A derivatives of long chain fatty acids. J. Biol. Chem., 1953, 204: 329~343
    [105] Kyte J, Doolittle R F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol, 1982,157: 105~132
    [106] Ladygin V G. Efficient transformation of mutant cells of Chlamydomonas reinhardtii by electroporation. Process Biochem., 2004, 39: 1685~1691
    [107] Lardizabal K, Effertz R, Levering C, et al. Bennett. Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean. Plant Physiol., 2008, 148:89~96
    [108] Leiting B, Noegel A A. The ble gene of Streptoaloteichus hindustanus as a new selectable marker for Dictyostelium discoideium confers resistance to phleomycin. Biochem. Biophys. Res. Commun., 1991, 180(3): 1403~1407
    [109] Li S S, Tsai H J. Transgenic microalgae as a non-antibiotic bactericide producer to defend against bacterial pathogen infection in the fish digestive tract. Fish & Shellfish Immunology, 2009, 26:316~325
    [110] López A D, García M F. Plant as‘chemical factories’for the production of polyunsaturated fatty acids. Biotechnol. Adv., 2000, 18: 481~497
    [111] Los D A, Murata N. Structure and expression of fatty acid desaturases. Biochim. Biophys. Acta., 1998, 1394:3~15
    [112] Lozoya E, Hoffmann H, Douglas C, et al. Primary structures and catalytic properties of isoenzymes encoded by the two 4-coumarate:CoA ligase genes in parsley. Eur J Biochem, 1988, 176: 661~667
    [113] Lubián L M, Montero O, Moreno-Garrido I, et al. Nannochloropsis (Eustigmatophyceae) as a source of commercially valuable pigments. J. Appl. Phycol., 2000, 12: 249~255
    [114] Lv J M, Cheng L H , Xu X H. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technology, 2010, 101:6797~6804
    [115] Ma X L, Yu J Z, Zhu B H, et al. Cloning and characterization of a delta-6 desaturase encoding gene of Nannochloropsis oculata. Chinese Journal of Oceanology and Limnology., 2010,Accepted
    [116] Mansilla M C, de Mendoza D. The Bacillus subtilis desaturase: a model to understand phospholipids modification and temperature sensing. Arch. Microbiol., 2005, 183: 229~235
    [117] Marszalek J R, Lodish H F. Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: breastmilk and fish are good for you. Annu. Rev. Cell. Dev. Biol., 2005, 21: 633~657
    [118] MartinezBlanco H, Orejas M, Reglero A, et al. Characterization of the gene encoding acetyl-CoA synthetase in Penicillium chrysogenum: conservation of intron position in plectomycetes. Gene (Amst.), 1993, 130: 265~270
    [119] Maruyama I, Nakamura T, Matsubayashi T, et al. Identification of the alga known as‘marine Chlorella’as a member of the Eustigmatophyceae. Jap. J. Phycol., 1986, 34: 319~325
    [120] Masuda T, Tatsumi H, Nakano E. Cloning and sequence analysis of cDNA for luciferase of a Japanese firefly, Luciola cruciata. Gene, 1989, 77: 265~270
    [121] Merzlyak M N, Chivkunova O B, Gorelova O A, et al. Effect of nitrogen starvation on optical properties, pigments, andarachidonic acid content of the unicellula green alga Parietochloris incisa (Trebouxiophyceae, Chlorophyta). Journal of Phycology, 2007, 43(4): 833~843
    [122] Meves H. Modulation of ion channels by arachidonic acid. Prog. Neurobiol., 1994, 43: 175~186
    [123] Molina, Grima E, Sánchez Pérez J A, et al. Variation of fatty acid profile with solar cycle in outdoor chemostat culture of Isochrysis galbana ALII-4. J. Appl. Phycol., 1995, 7: 129~134
    [124] Morais M G, Costa J A V. Carbon dioxide fixation by Chlorella kessleri, C.vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol. Lett., 2007, 29: 1349~1352
    [125] Nakamura M T, Nara T Y. Structure, function, and dietary regulation ofΔ6,Δ5, andΔ9 desaturases. Annu. Rev. Nutr., 2004, 24: 345~376
    [126] Napier J A, Michaelson L V, Stobart A K. Plant desaturases: harvesting the fat of the land. Curr. Opin. Plant Biol., 1999a, 2:123~127
    [127] Napier J A, Sayanova O, Sperling P, et al. A growing family of cytochrome b5 fusion desaturases. Trends Plant Sci., 1999b, 4: 2~5
    [128] Napier J A, Sayanova O, Stobart A K, et al. A new class of cytochrome b5 fusion proteins. Biochem. J. , 1997, 328: 717~720
    [129] Nichols B W, Appleby R S. The distribution and biosynthesis of arachidonic acid in algae. Phytochemistry, 1969, 8:1907~1915
    [130] Nishida T, Orikasa Y, Ito Y, et al. Escherichia coli engineered to produce eicosapentaenoic acid becomes resistant against oxidative damages. FEBS Lett., 2006, 580: 2731~2735
    [131] Ohlrogge J B, Jaworski J G. Regulation of fatty acid synthesis. Annu. Rev. Plant Biol., 1997, 48:109~136
    [132] Ohlrogge J B, Kuhn D N, Stumpf P K. Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea. Proc. Natl. Acad. Sci. USA, 1979, 76:194~1195
    [133] Pan K H, Ma X L, Yu J Z, et al. Cloning and phylogenetic analysis of a fatty acid elongase gene from Nannochloropsis oculata CS179. Journal of Ocean University of China, 2009, 8(4), 392~398
    [134] Parker-Barnes J F, Das T, Bobik E, et al. Identification and characterization of an enzyme involved in the elongation of n-6 and n-3 polyunsaturated fatty acids. Proc. Natl. Acad. Sci. USA, 2000, 97: 8284~8289
    [135] Pereira S L, Leonard A E, Huang Y S, et al. Identification of two novel microalgal enzymes involved in the conversion of theω3-fatty acid, eicosapentaenoic acid, into docosahexaenoic acid. Biochem. J., 2004, 384: 357~366
    [136] Pienkos P T, Darzins A. The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod. Bioref., 2009, 3:431~440
    [137] Piorreck M, Klaus-Hinnerk B, Pohl P. Biomass production, total protein ,chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry, 1984, 23(2): 207~216
    [138] Qi B, Beaudoin F, Fraser T et al. Identification of a cDNA encoding a novel C18-Δ9 polyunsaturated fatty acid-specific elongating activity from the Docosahexaenoic acid(DHA)-producing microalga, Isochrysis galbana. FEBS Lett, 2002, 510: 159~165
    [139] Qi B, Fraser T, Breakley C L, et al. The variant‘his-box’of the C18-Δ9-PUFA-specific elongase IgASE1 from Isochrysis galbana is essential for optimum enzyme activity. FEBS Lett, 2003, 547: 137~139
    [140] Renaud S M, Parry D L, Thinh L-V, et al. Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture. J. Appl. Phycol., 1991, 3: 43~53
    [141] Rodolfi L, Zittelli G C, Bassi N, et al. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng., 2008, 102 (1): 100~112
    [142] Roesler K, Shintani D, Savage L, et al. Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol., 1997, 113:75~81
    [143] Roessler P G. Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon deficiency. Arch ieves of Biochemistry and Biophysics, 1988, 267: 521~528
    [144] Russell N J. Mechanisms for thermal adaptation in bacteria: blueprint for survival. Trends Biochem. Sci., 1984, 9: 108~112
    [145] Sampath H, Ntambi J M, Sampath H. et al. Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu Rev Nutr., 2005, 25:317~340
    [146] SanGiovanni J P. Chew E Y. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog. in Retin. and Eye Res., 2005, 24: 87~138
    [147] Sayanova O, Napier J A. Eicosapentaenoic acid: biosynthetic routes and the potential for synthesis in transgenic plants. Phytochemistry., 2004, 65: 147~158
    [148] Sayanova O, Shewry P R, Napier J A. Histidine-41 of the cytochrome b5 domain of the borageΔ6~fatty acid desaturase is essential for enzyme activity. Plant Physiol., 1999, 238: 445~453
    [149] Schmidt A, Wolde M, Thiele C, et al. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature ., 1999, 401:133~141
    [150] Schneider J C, Livne A, Sukenik A. A mutant of Nannochloropsis deficient ineicosapentaenoic acid production. Phytochemistry, 1995, 40: 807~814
    [151] Schneider J C and Roessler P. Radiolabeling studies of lipids and fatty acids in Nannockloropsis (Eustigmatophyceae), an oleaginous marine alga. J. Phycol., 1994, 30: 594~598
    [152] Shanklin J, Cahoon E B. Desaturation and relatedmodifications of fatty acids. Ann. Rev. Plant Physiol. PlantMol. Biol., 1998, 49: 611~642
    [153] Shanklin J, Whittle E, Fox B C. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry, 1994, 33: 12787~12794
    [154] Sheehan J, Dunahay T, Benemann J, et al. A look back at the US Department of Energy’s Aquatic Species Program-biodiesel from algae. Report no. NREL/TP-580~24190. National Renewable Energy Laboratory, Golden, Colorado., 1998
    [155] Shifrin N S, Chisholm S W. Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles. Journal of Phycology, 1981, 17: 374~384
    [156] Shi J, Pan K H, et al. Analysis of expressed sequence tags from the marine microalga Nannochloropsis oculata (Eustigmatophyceae). Journal of Phycology, 2008, 44:99~102
    [157] Shimizu S, Inoue K, Tani Y et al. Enzymatic microdetermination of serum free fatty acid. Analytical Biochemistry, 1979, 98(2):341~345
    [158] Shockey J M, Fulda M S, Browse J A. Arabidopsis contains nine long-chain acyl-coenzyme a synthetase genes that participate in fatty acid and glycerolipid metabolism. Plant Physiol, 2002, 129(4): 1710~1722
    [159] Simopoulos A P. Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nutr., 2002, 21: 495~505
    [160] Somerville C, Browse J. Dissecting desaturation: plants prove advantageous. Trends Cell Biol., 1996, 6: 148~153
    [161] Sperling P, Ternes P, Zank T K, et al. The evolution of desaturases. Prostaglandins Leukot. Essent. Fatty Acids., 2003, 68: 73~95
    [162] Stubbs C D and Smith A D. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim. Biophys. Acta., 1984, 779: 89~137
    [163] Stuhlsatz-Krouper S M, Bennett N E, Schaffer J E. Substitution of alanine for serine 250 in the murine fatty acid transport protein inhibits long chain fatty acid transport. J. Biol. Chem., 1998, 273: 28642~28650
    [164] Sydney E B, Sturm W, de Carvalho J C, et al. Potential carbon dioxide fixation by industrially important microalgae. Bioresource Technology,2010, 101:5892~5896
    [165] Sukenik A, Carmeli Y, Berner T. Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J. Phycol., 1989, 25: 686~692
    [166] Suzuki H, Kawarabayasi Y, Kondo J et al. Structure and Regulation of Rat Long-chain Acyl-CoA Synthetase. J Biol Chem, 1990, 266: 8681~8685
    [167] Taylor D C, Katavic V, Zou J, et al. Field testing of transgenic rapeseed cv. Hero transformed with a yeast sn-2 acyltransferase results in increased oil content, erucic acid content and seed yield. Mol. Breed., 2002, 8:317~322
    [168] Terri G D, Eric E J, Kathryn G Z et al. Genetic engineering of microalgae for fuel production. App lied Biochernistry and Biotechnology, 1992, 34: 331~339
    [169] Thelen JJ, Ohlrogge J B. Metabolic Engineering of Fatty Acid Biosynthesis in Plants. Metabolic Engineering, 2002, (4): 12~21
    [170] Thijssen M A. Mensink R P. Fatty acids and atherosclerotic risk. Handb. Exp. Pharmacol., 2005, 170: 165~194
    [171] Thompson G A, Scherer D E, Aken S F, et al. Primary structures of the precursors and mature forms of stearoyl~acyl carrier protein desaturase from safflower embryos and requirement of ferredoxin for enzyme activity. Proc. Natl. Acad. Sci. USA., 1991, 88: 2578~2582
    [172] Thompson G A. Membrane acclimation by unicellular organisms in response to temperature change. J. Bioenerg. Biomembr., 1989, 21: 43~60
    [173] Thompson P A, Harrison P J, Whyte J N C. Influence of irradiance on the fatty acid composition of phytoplankton. Journal of Phycology, 1990, 6(2): 278~288
    [174] Tonon T, Larson T R, Graham I A. Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry, 2002, 61: 15~24
    [175] Tonon T, Qing R W, Harvey D, et al. Identification of a Long-Chain Polyunsaturated Fatty Acid Acyl-Coenzyme A Synthetase from the Diatom Thalassiosira pseudonana. PlantPhysiol, 2005, 138: 402~408
    [176] Tremblin G, Cannuel R, Mouget Jean-Luc. Change in light quality due to a blue-green pigment, marennine, released in oyster-ponds: effect on growth and photosynthesis in two diatoms, Haslea ostrearia and Skeletonema costatum. J. Appl. Phycol., 2000, 12:557~566
    [177] Truksa M, Wu G, Vrinten V. et al. Metabolic engineering of plants to produce very long-chain polyunsaturated fatty acids. Transgenic. Res., 2006, 15: 131~137
    [178] Tsutsumi T. Effect of a high alpha-linolenate and high linoleate diet on membrane-associated enzyme activities in rat brain~modulation of Na+, K+-ATPase activity at suboptimal concentrations of ATP. Biol. Pharm. Bull., 1995, 18: 664~670
    [179] Uauy R, Hoffman D R, Peirano P, et al. Essential fatty acids in visual and brain development. Lipids., 2001, 36: 885~895
    [180] Uchiyama A, Aoyama T, Kamijo K, et al. Molecular cloning of cDNA encoding rat very long-chain acyl-CoA synthetase. J Biol Chem, 1996, 271: 30360~30365
    [181] Vigeolas H, Waldeck P, Zank T, et al. Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seedspecific promoter. Plant Biotechnol. J., 2007, 5:431–441
    [182] Volkman J K, Brown M R, Dunstan G A, et al. The biochemical composition of marine microalgae from the class Eustigmatophyceae. J Phycol, 1993, 29: 69~78
    [183] Wallis J G, Browse J. Mutants of Arabidopsis reveal many roles for membrane lipids. Prog. Lipid Res., 2002, 41: 254~278
    [184] Wang Z T, Ullrich N, Joo S, et al. Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starch-less Chlamydomonas reinhardtii. Eukaryot Cell ,2009, 8:1856~1868
    [185] Watkins P A. Fatty acid activation. Prog Lipid Res, 1997, 36: 55~83
    [186] Watkins P A, Lu J F, Steinberg S J, et al. Disruption of the Saccharomyces cerevisiae FAT1 gene decreases very long-chain fatty acyl-CoA synthetase activity and elevates intracellular very long-chain fatty acid concentrations. J. Biol. Chem., 1998, 273: 18210~18219
    [187] de Wet J R, Wood K V, Helinski D R, et al. Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc. Natl Acad. Sci. USA, 1985, 82:7870~7873
    [188] Xiao Y F, Ke Q, Wang S Y, et al. Single point mutations affect fatty acid block of human myocardial sodium channel alpha subunit Na+ channels. Proc. Natl. Acad. Sci. USA., 2001, 98: 3606~3611
    [189] Yu J Z, Ma X L, Pan K H, et al. Construction and characterization of a normalized cDNA library of Nannochloropsis oculata (Eustigmatophyceae). Chin J Oceanol Lomnol, 2010, 28(4): 802-807
    [190] Zaslavskaia L A, Lippmeier J C, Korth P G, et al. Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J. Phycol., 2000, 36: 379~386
    [191] Zheng P, Allen W B, Roesler K, et al. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat.Genet., 2008, 40:367–372
    [192] Zhou X R, Robert S S, Petrie J R, et al. Isolation and characterization of genes from the marine microalga Pavlova salina encoding three front-end desaturases involved in decosahexaenoic acid biosynthesis. Phytochemistry., 2007, 68: 785~796
    [193] Zittelli G C, Lavista F, Bastianini A, et al. Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J. Biotechnol., 1999, 70: 299~312
    [194] Zou J, Katavic V, Giblin E M, et al. Modification of seed oil content and acyl composition in the Brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell, 1997, 9:909–923

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700