不同土壤环境对青(木奈)生长及生理特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青木奈为木奈李(Prunus salicina Lindl. var.cordata J. Y. Zhang et al.)中的一种类型,原产福建,引种至天津后对其适应性进行全面的研究。本试验将青木奈苗木种植在沙土和粘壤土两种土壤条件下,以期研究不同土壤条件对青木奈生长的影响,了解青木奈对我市不同土壤的适应能力,同时探讨青木奈在中轻度盐碱土上种植的可能性,为青木奈在我市及北方类似土壤条件的地区较大面积的推广种植提供参考依据。本试验中还对沙土中生长的普通和变异青木奈生长特性及生理指标进行测定比较。
     对两种类型土壤的理化性质进行了测定分析,测定的指标包括:水解氮、速效磷、速效钾的含量;有机质含量、土壤pH值、土壤容重等。同时,对两地种植青木奈的外部形态特征和生理生化指标进行了分析比较。外部形态特征测定的内容包括:单叶片面积、主干直径、新梢总长度、新梢直径、单株最大新梢长度等;生理生化分析的指标有:叶片中MDA含量、POD活性、SOD活性、Pro含量、可溶性糖含量及根系活力等。再有,对两地青木奈的光合特性进行了研究,测定的指标有:净光合速率(Pn)、气孔导度(Gs)、胞间CO_2浓度(Ci)和蒸腾速率(Tr)等。
     根据两地土壤的理化性质、青木奈的外部形态特征、生理生化指标和光合特性的测定分析结果,对两地青木奈及沙土中生长的普通和变异青木奈的生长情况进行了分析对比,结果表明:
     1、两块试验地虽质地不同(东校区为粘壤土,西校区为沙土),但两地土壤均属坚实度偏大的土壤,且粘壤土坚实度明显高于沙土。粘壤土养分含量较高,其中除速效磷外,有机质含量、水解氮、速效钾含量均高于沙土中各项含量。两地土壤均呈碱性,而粘壤土碱性更强。综合各项指标分析,两地养分供应较为缺乏。两地土壤全盐量均属中下等水平,应不会成为青木奈生长的限制因子。
     2、沙土中种植的青木奈,其地上部分的单叶片面积、主干直径、新梢总长度、新梢直径和单株最大新梢长度均极显著高于东校区粘壤土中种植的青木奈,地下部分的须根系活力显著高于粘壤土中青木奈的根活力,直径2mm根的活力与粘壤土中的青木奈相比,差异未达显著水平。结合田间观察可知沙土中种植的青木奈长势明显强于东校区粘壤土中青木奈的生长势。
     3、粘壤土中种植的青木奈,其叶片中的MDA含量、POD活性和可溶性糖含量均极显著高于、SOD活性显著高于沙土中种植的青木奈,而Pro含量在两种不同土壤条件下的表现为差异不显著。表明在粘壤土逆境胁迫条件下(高土壤容重、高pH值、中等盐分含量),青木奈体内的保护酶活性、某些细胞内含物的含量均呈现提高或增加的趋势。
     4、沙土和粘壤土中种植的青木奈叶片净光合速率的日变化均为双峰型曲线。沙土中种植的青木奈叶片每个时刻的净光合速率都较高,在13:00时,两地种植的青木奈叶片净光合速率均出现低谷,说明青木奈存在光合午休现象。在相同的CO_2浓度条件下,沙土中青木奈的净光合速率均高于粘壤土中的,两地生长种植的青木奈叶片净光合速率均随着CO_2浓度的升高呈现出先上升后下降的趋势。沙土土壤条件下,青木奈能够在较大CO_2浓度范围内不断提高净光合速率,生产力较高。
     5、研究中发现变异植株与普通青木奈相比除具有新梢粗壮、节间短,花芽萌动提前,秋季自然落叶以及净光合速率较高等特点外,在叶片的MDA含量、SOD活性、POD活性、Pro含量、可溶性糖含量等指标中未发现显著差异。今后应对果实性状进行对比分析,以对青木奈变异植株作出全面的评价鉴定。
     综合比较分析本试验对青木奈各项观察测定指标以及其在田间的生长表现,建议在天津地区乃至北方更广大地区栽培青木奈选择土壤时,需特别注意土壤的透气性。应种植在疏松、通气性良好、pH值适当的土壤中,避免在粘重的土壤中栽培青木奈。
Qing-nai is a variety from Nai-li (Prunus salicina Lindl. var. cordata J. Y. Zhang et al),which is native to Fujian China and should be studied systematically after introduced toTianjin. Qing-nai plants were cultivated in sandy and clay loam separately, aiming atunderstanding the effects of soil conditions on growth and development of Qing-nai, learningits adaptability to different soil in Tianjn city, exploring the possibility of planting Qing-nai inmild saline soils and providing the data for planting Qing-nai in a large scale in Tianjin aswell as the area with similar soil conditions as Tianjin. Meanwhile morphological andphysiological properties of Qing-nai and its mutant plants in the sandy soil were compared inthe experiment.
     The plots physical and chemical properties, including hydrolysable nitrogen, availablepotassium and phosphorus and organic matter contents, soil pH value and bulk density ofsandy and clay loam, were determined. Determinations of morphological and physiologicalcharacters of Qing-nai planted in two plots were conducted at the same time with soil examine.Plant morphological characters examined included single leaf area, trunk diameter, shootgrowth increment,shoot diameter and the largest shoot growth increment. Physiological andbiochemical properties determined included MDA, Pro and soluble sugar contents and PODand SOD activity as well as root dynamics. In addition, photosynthesis characters such as netphotosynthetic rate, stomata conductance, intercellular CO_2concentration and transpirationrate were studied.
     According to analyzing and comparing of the soil physical and chemical properties of thetwo plots, the morphological, physiological and biochemical characteristics andphotosynthesis of Qing-nai and its mutation planted in sandy soil the results were summarizedbriefly as follows:
     1、Soil compaction of both two plots were relatively great, though there was differencebetween the two plots in the soil texture (the plot in East Campus is clay loam, while that ofWest Campus is sandy soil). Bulk density of the clay loam was higher than that of the sandysoil. Besides of available P, organic matter, hydrolysable nitrogen and available K in the clay loam were higher than that in the sandy soil. The two plots was alkaline soil, with strongeralkalinity in clay loam. Based on the data analyzed both two plots should be considered aspoor nutrient soils. Salt content in the two plots was middle or low and should not be therestrictions for the growth of Qing-nai.
     2、The single leaf area, trunk diameter, shoot growth increment, shoot diameter andsingle largest shoot growth increment of Qing-nai planted in the sandy soil was verysignificantly higher than those in the clay soil. The activity of underground fibrous root ofQing-nai planted in the sandy soil is higher than those in the clay soil. There was nosignificant difference between activities of the root with2mm diameters sampled from clayand sandy soils separately. It was known from the analysis of indexes quoted above and thefield observations that the plants in the sandy soil grew more vigorously than the plants in theclay soil.
     3、MDA and soluble sugar contents and activity of POD of Qing-nai cultivated in theclay loam was very significantly higher than that in the sandy loam, and activity of SOD fromthe clay loam was significantly higher than that from the sandy loam. There was nosignificant difference between the two plots in respect of Pro content. The results suggestedthat protective enzyme activity and intracellular contents of Qing-nai trended to increase orbecame higher when the plants were cultivated under soil stress (high bulk density and pHvalue and moderate salt content).
     4、The diurnal variation of net photosynthetic rate of both two plot plants presented abimodal curve. The net photosynthetic rate of Qing-nai plants which planted in the sandy soilwas higher all the time. The net photosynthetic rate of both two plot plants presented a lowvalley at pm1:00, proposing that there was obvious photosynthetic midday depression. At thesame concentration of CO_2, the net photosynthetic rate of Qing-nai planted in the sandy soil ishigher than those in the clay soil. With the increasing concentration of CO_2, the netphotosynthetic rate of both two plots increased at the beginning and decreased afterwards. Inthe sandy soil, Qing-nai plants could keep increasing the net photosynthetic rate in the largerrange of CO_2concentration, expressing a higher productivity.
     5、Comparing the common Qing-nai with its mutant plants, it was found that the mutantplants performed some different characters from the common Qing-nai, such as thicker shoot,shorter internodes, earlier flower bud sprout in spring, natural leaves fall in autumn and higher net photosynthetic rate, but there was no significant difference between the two kindsplants in MDA, soluble sugar and Pro contents and activities of POD and SOD. In the future,the fruit traits should be analyzed to make further identification and evaluation for themutants.
     A suggestion could be drown from Qing-nai indexes examined in the experiment and itsfield observation that Qing-nai should be planted in loose, good ventilation, proper soil pHconditions, especially avoiding cultivation in heavy clay soil as long as chance of soilselection exists.
引文
[1]才晓玲,李志洪.土壤容重和施肥条件对玉米根系生长的影响[J].云南农业大学学报,2009,24(3):470-473.
    [2]陈根云,俞冠路,陈悦等.光合作用对光和二氧化碳响应的观测方法探讨[J].植物生理与分子生物学学报,2006,32(6):691-696.
    [3]陈小强.不同桃品种光合特性研究[D].南京:南京农业大学,2006.
    [4]陈瑛,陈玲红,韩波清.土壤条件对黑李生长的影响[J].绍兴文院文理报,2001,21(4):47-50.
    [5]陈振光,谢锡瑞,何碧珠.木奈的亲缘关系初探[J].中国果树,1988(3):13-16.
    [6]代向阳,徐程扬,马履一.氮磷配比对水曲柳光合作用的影响[J].山东林业科技,2006(2):1-6.
    [7]邓烈,何绍兰,李学柱.石灰性紫色土壤pH及矫治措施对甜橙叶片过氧化物酶和过氧化氮酶的影响[J].西南农业大学学报,1991,13(1):72-78.
    [8]杜国栋,郭修武,吕德国等.土壤紧实度对草莓光合特性及PSⅡ光化学活性的影响[J].果树学报,2010,27(4):542-546.
    [9]符云鹏,李国芸,王义伟等.短期水分胁迫对香料烟叶片含水量及渗透调节物质的影响[J].中国烟草学报,2008,14(6):41-47.
    [10]龚明,丁念诚,贺子义.盐胁迫下大麦和小麦叶片脂质过氧化伤害与超微结构变化的关系[J].植物学报,1989,31(11):841-846.
    [11]宫璇,张如莲,曹红星等.4个椰子品种光合、蒸腾作用日变化特征及影响因素[J].热带作物学报,2011,32(2):221-224.
    [12]关连珠.土壤肥料学.[M]中国农业出版社,2000,58-63.
    [13]郭本明.柰李栽培[J].安徽林业,1988(4):21.
    [14]郭书奎,赵可夫.NaCl胁迫抑制玉米幼苗光合作用的可能机理[J].植物生理学报,2001,27(6):461-466.
    [15]郭文忠,秦垦,王学梅等.Ca(NO3)2和NaCl不同浓度对番茄生长发育、产量和品质的影响[J].宁夏农林科技,2003(2):1-3.
    [16]何碧珠,陈振光.木奈的离体繁殖[J].福建农业大学学报,1998,27(3):296-300.
    [17]侯蕾,陈龙俊.盐胁迫对拟南芥叶片和下表皮细胞大小的影响[J].安徽农业科学,2011,39(13):7615-7616.
    [18]黄箐,吕芳德,和红晓.美国山核桃光合作用初探[J].中南林业科技大学学报,2011,31(3):174-177.
    [19]赖澄清.福建省木奈李生产与栽培技术[J]中国南方果树,1996,25(1):49.
    [20]劳家圣.土壤农化分析手册[M].北京:农业出版社,1988,229-298.
    [21]冷平生.园林生态学[M].北京:中国农业出版社,2003:149.
    [22]李保国,王永蕙.果树光合作用研究进展[J].河北林学院学报,1990,5(3):254-26.
    [23]李国怀,章文才.我国果园土壤管理制度的发展及评述[J].四川果树,1997,(3):32-34.
    [24]李敏,王维华,王然等.高温胁迫对菠菜叶片保护酶活性和膜透性的影响[J].园艺学报,2004,31(1):99-100.
    [25]李润唐,张映南,张伟国等.土壤营养状况对火龙果产量和品质的影响[J].福建果树,2010(1):37-39.
    [26]李淑英,王北洪,马智宏等.土壤水分含量对欧李叶绿素荧光及光合特性的影响[J].安徽农业通报,2007,13(14):25-27.
    [27]李学强,李秀珍.盐碱胁迫对欧李叶片部分生理生化指标的影响[J].西北植物学报,2009,29(11):2288-2293.
    [28]刘春卿,杨劲松,陈德明等.不同耐盐性作物对盐胁迫的响应研究[J].土壤学报,2005,42(6):993-998.
    [29]林大仪.土壤学[M].北京:中国林业出版社,2006:184-185,369-370.
    [30]刘明.水分胁迫对玉米光合特性和形态指标的影响[D].沈阳:沈阳农业大学,2009.
    [31]刘晚苟,山仑,邓西平.植物对土壤紧实度的反应[J].植物生理学通讯,2001,37(3):254-260.
    [32]刘玉环,胡忠全.油木奈生长发育规律[J].中国南方果树,1999,28(4):39.
    [33]刘遵春,张军良,包东娥等.NaCl胁迫对金光杏梅幼苗生长及其生理指标的影响[J].西北植物学报,2007,27(9):1838-1842.
    [34]骆建霞,史燕山,顾俊芹.木奈李授粉座果习性的研究[J].天津农业科学,1999,5(3):14-17.
    [35]买合木提·卡热,克热木·伊力,吾甫尔·巴拉提.盐胁迫对扁桃砧木叶片SOD、POD和CAT活性的影响[J].西北农业学报,2005,14(6):96-101.
    [36]马振峰.钾营养水平对柰李光合特性和果实质量影响的研究[D].安徽:安徽农业大学,2010.
    [37]聂继云,杨振锋,张红军等.果树叶面积简易测定方法研究[J].天津农学院学报,2000,7(4):33-35.
    [38]南志标,赵红洋,聂斌.黄土高原土壤紧实度对蚕豆生长的影响[J].应用生态学报,2002,13(8):935~938.
    [39]潘东明,刘星辉,郑家基.木奈果的贮藏保鲜与采后生理变化研究[J].福建农学院学报,1992,21(4):418-423.
    [40]彭方仁,杨小虎,黄宝龙.密植板栗树净光合作用生理生态的初步研究[J].南京林业大学学报,1998,22(3):6-10.
    [41]《青木奈在北方地区栽培适应性的研究》课题组.《青木奈在北方地区栽培适应性的研究》技术研究总结报告[R].天津:天津农学院园艺系,2002.
    [42]邱武凌,卢开椿.福建珍贵果树—青木奈[J].中国果树,1980(4),198029-32
    [43]全国李杏资源调查协作组.全国李与杏资源考察报告[J].中国果树,1990(4):29-34.
    [44]尚庆文,徐坤,孔祥波等.土壤容重对生姜生长及产量和品质的影响[J].中国蔬菜,2006(11):18-20.
    [45]石海仙,伊东正.NaCl添加和营养液浓度对番茄产量和品质的影响[J].中国蔬菜,2001(4):9-11.
    [46]石岩,曲柏宏.苹果梨净光合速率日变化规律的研究[J].北方园艺,2008(11):58-60.
    [47]史燕山,骆建霞,李玉杰等.木奈李在天津高接后的生长情况[J].落叶果树,1998(3):21-22.
    [48]宋志荣.不同氮钾比例对马铃薯产量和品质的影响[J].中国马铃薯,2009,23(3):155-157.
    [49]孙向阳.土壤学「M].北京:中国林业出版社,2005:1.
    [50]唐雪东,李亚东,李士举等.不同土壤条件下越橘根系活力和菌根侵染率比较研究[J].吉林农业大学学报,2005,27(1):43-47.
    [51]万善霞,秦岭,于同泉,等.水分胁迫对板栗幼苗过氧化物酶、超氧化物歧化酶活力及同工酶谱的影响[J].北京农学院学报,1997,12(3):20-25.
    [52]王宝山,姚敦义.盐胁迫对沙枣愈伤组织膜透性、膜质过氧化SOD活性的影响[J].河北农业大学学报,1993.16(3):20~24.
    [53]王春清,祖容,张贤泽.葡萄幼树若干光合特性的研究[J].园艺学报,1989,16(4):279-285.
    [54]王海云.土壤pH值对苹果生长发育影响及其酸害机理研究[D].山东:山东农业大学,2008.
    [55]王红,王百田,王婷等.不同土壤含水量对山杏盆栽幼苗蒸腾速率和光合速率的影响[J].北方园艺,2010(2):1-5.
    [56]王晓芳,杨阳,翟衡.土壤容重对葡萄根系构型的影响.[J]中外葡萄与葡萄酒,2008(03):4-7.
    [57]王旭明,张铮,史刚荣.磷营养和土壤含水量对大豆光合特性的交互影响[J].干旱地区农业研究,2010,28(5):143-148.
    [58]吴思政,柏文富,禹霖等.土壤容重与杏生长和结果的关系[J].经济林研究,2001,19(4):20-22.
    [59]吴亚维.土壤紧实胁迫对苹果生长的影响[D].陕西:西北农林科技大学,2008.
    [60]郗荣庭.果树栽培学总论(第三版)[M].北京:中国农业出版社,2006:110,114-115.
    [61]夏林喜,牛永波,李爱萍等.浅谈木本植物物候观测要求及各物候期观测标准[J].山西气象,2006(2):47-48.
    [62]许大全.光合作用测定及研究中一些值得注意的问题[J].植物生理学通讯,2006,42(6):1163-1167.
    [63]杨飞.土壤条件对香芋品质影响的研究[D].内蒙古:内蒙古农业大学,2011.
    [64]杨金玲,张甘霖,袁大刚.南京市城市土壤水分入渗特征[J].应用生态学报,2008,29(2):363-368.
    [65]杨仕品,樊卫国.毛桃砧木对土壤盐胁迫的生理响应[J].种子,2008,27(10):44-48.
    [66]尹增芳,何祯祥,王丽霞等.NaCl胁迫下海滨锦葵种子萌发和幼苗生长过程的生理特征变化[J].植物资源与环境学报,2006,15(1):14-17.
    [67]张国红,张振贤.土壤紧实度对温室番茄生长发育、产量及品质的影响[J].中国生态农业学报,2004,12(7):65~67.
    [68]张猛.土壤管理方式对李园土壤影响研究[D].四川:四川农业大学,2004.
    [69]张治安,张美善,尉荣海等.植物生理学实验指导[M].北京:中国农业科学技术出版社,2004:36-71,132-141.
    [70]赵玲玲,张杰,刘艳等.植物源有机肥配方设计及对梨幼树的营养效应[J].中国农业科学,2011,44(12):2504-2514.
    [71]周琳,徐海军,李静等.土壤pH值对蓝莓幼苗生长发育的影响[J].国土与自然资源研究,2010No.1:91.94.
    [72]周芬,曾长立,王建波.外源钙降低拟南芥幼苗盐害效应[J].武汉植物学研究,2004,22(2):179-182.
    [73]褚建民,孟平,张劲松等.土壤水分胁迫对欧李幼苗光合及叶绿素荧光特性的影响[J].林业科学研究,2008,21(3):295-300.
    [74]Adams P. Effect of increasing the salinity of the nutrient solution with major nutrients orsodium chloride on the yield, quality and composition of tomato growth in rock-wool[J]Hort.Sci.,1991,66(2):201-207
    [75]Atwell BJ. The effect of soil compaction on wheat during early tillering.I.Growth,development and root structure.New Phytol,1990,115:29~35.
    [76]Buckley T N. The role of stomatal acclimation in modeling tree adaptation to high CO2[J]. Journal of Experimental Botany,2008,59(7):1951-1961.
    [77]Buttery BR, Tan CC, Drury CF, et al. The effects of soil compaction, soil moisture andsoil type on growth and nodulation of soybean and common bean [J]. Can J Plant Sci,1998,78:571-576.
    [78]Groleau-Renaud V, Plantureux S, Guckert A. Influence of plant morphology on rootexudation of maize subjected to mechanical impedance in hydroponic conditions[J].Plant andSoil,1998,201:231~239.
    [79]Masle J, Passioura JB. The effect of soil strength on the growth of young wheatplants.Aust JPlant Physiol,1987,14:643~656.
    [80]S.DE PASCALE, A.MARTINO, G.RAIMONDI. Comparative analysis of water and saltstress-induced modifications of parameters in cherry tomatoes [J].Horticultural Science&Biotechnology.2007,82(2):283-289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700