首饰用不锈钢等的镍释放及抗菌改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首饰在佩戴过程中暴露出来的金属镍过敏、带菌感染等安全问题越来越普遍,损害了消费者的身心健康。金属首饰作为与人体皮肤长时间直接接触的或者植入组织的装饰品,与冶金工程、材料和生物医学工程学科都有密切的关系。本文在对首饰市场上常见的首饰材料及生产工艺进行前期调研的基础上,以首饰用不锈钢材料为主线,从生物材料和冶金工程的角度,开展了不锈钢等金属首饰材料的镍释放试验、S316L不锈钢的抗菌改性试验以及高氮无镍抗菌不锈钢的试验等三个方面的研究,以便为解决首饰镍过敏、带菌感染问题,以及首饰金属材料的选择、研发及应用提供指导意见。
     选择使用最广泛的不锈钢、白铜、镍K白金、镀镍层等含镍首饰材料作为镍释放研究对象,采用首饰常用的各种处理工艺对试样进行处理,采用镍释放标准试验方法检测各材料在不同生产工艺下的镍释放水平。试验确定了不同生理环境、成型方法、表面处理方法、热处理工艺对不锈钢等含镍首饰材料镍释放率的影响规律,阐明须根据具体条件评价材料镍释放率及致敏风险。研究发现镍释放率与镍含量没有严格对应关系,材料的夹杂物和冷变形会促进镍释放,且冷变形态的镍释放率呈现各向异性,采取适当的热处理可使镍释放率降低。材料表面越粗糙,镍释放率越高,镀镍层可明显提高镍释放率。S316L不锈钢在不同生理溶液中的镍释放率呈现“人工体液>人工汗液>尿液>人工唾液”的顺序。
     指出BZn10-25镍白铜、S201和S303不锈钢、镍漂白18K和10K材料在各种状态的实际镍释放率均明显超过了镍指令规定的阈值,存在镍致敏风险,尤其是BZn10-25和S303不锈钢的风险极大。固溶态的S316L不锈钢型材经镜面抛光后,其实际镍释放率很低,对绝大部分人员应可安全使用,不至于有镍致敏风险,但是当它处于冷变形态、铸态、退火态、喷砂态、推砂态等条件下,其释放率有不同程度的增加,尤其是当出现两种或数种促进镍释放的因素叠加在一起,镍释放率达到或超过镍指令规定的阈值,长期使用时不排除有引起镍过敏的风险。指出要彻底回避镍过敏风险,研发无镍材料和工艺是必由之路。
     针对普通不锈钢不具抗菌性能的问题,选择对S316L不锈钢进行抗菌改性,采用覆膜法进行抗菌试验。针对含铜不锈钢需要在敏化区间抗菌化时效处理存在的不足,采用在不锈钢基底中固溶度微小的适量铈/镧、银作为抗菌剂,并通过综合细晶化措施,直接获得了抗菌性能而无需时效处理。根据试验结果提出了铈/镧、银改性不锈钢的抗菌机理,它们与细菌接触一定时间,从富集相中释放出铈/镧或银离子,这些离子在静电吸附作用下被吸附在细胞壁表面,对细菌细胞壁和蛋白作用而产生抗菌功效。
     研究发现铈、镧改性S316L不锈钢对金黄色葡萄球菌和大肠杆菌呈现Hormesis效应,铈、镧只有达到一定含量才能实现抗菌功效,且含量越高,抗菌性能越好,但过多的铈、镧会损害加工性能和耐蚀性能,增加材料的镍释放率。指出单一采用铈或者镧对S316L不锈钢进行改性时,难以保证材料同时具有优良的耐蚀性能、抗菌性能和加工性能。当铈或镧含量在0.15~0.2wt%时,这些性能之间可获得相对较好的折衷。
     研究发现在约0.1wt%铌、真空熔炼、加快凝固速度等综合细晶化作用下,银含量在0.04~0.06wt%时以细小富银相弥散分布在基体中,使含银不锈钢对金黄色葡萄球菌和大肠杆菌产生了优良的抗菌性能,且不会因为重复使用和磨损而减弱。发现含银不锈钢改善了在微生物环境中的耐蚀性,但银含量过高时会损害不锈钢在非微生物环境中的耐蚀性,并略微提高不锈钢的镍释放率。
     针对S316L不锈钢抗菌改性后可能出现的镍过敏风险,提出了首饰用高氮无镍奥氏体不锈钢的选材原则,在此基础上确定了试验用钢00Cr18Mn18Mo2N0.55。发现该钢在非微生物环境中具有优异的抗点蚀性能,但是与菌液接触时会在表面形成发达的生物被膜,明显促进细菌的生长繁殖,并诱发微生物腐蚀,阐明了导致粘附严重的根本原因是高氮不锈钢为细菌的附着生长提供了一个营养丰富的基底。指出高氮无镍不锈钢不适合用于微生物环境中,并选择铜和银对其进行抗菌改性。
     研究发现含铜约3.5wt%的00Cr18Mn18Mo2N0.55不锈钢经800℃时效1h后可改善细菌粘附状况,但抗菌性能较弱,同时析出的氮化铬会明显损害耐蚀性,时效时间越长,耐蚀性受损越严重,指出开发高氮无镍抗菌不锈钢时不适合选择铜作为抗菌元素。发现00Cr18Mn18Mo2N0.55不锈钢中需要比在S316L中更高的银含量才能获得抗菌功效,提出这是银抗菌和氮促菌相互竞争、形成起缓释作用的银氨络离子以及锰改善银在基体的固溶等几方面综合作用的结果。设计研发出含银0.13~0.15wt%的00Cr18Mn18Mo2N0.55不锈钢,该钢在微生物环境中可阻碍细菌粘附及生物膜的发展,有较好的抗菌性能和抗微生物腐蚀性能;在非微生物环境中仍保持优良的抗点蚀性能和抗磨蚀性能,不存在镍过敏和金属毒性的风险,可以满足首饰加工要求,是综合性能优于S316L的有前景的首饰材料。
During the application of jewelries, the safety problems such as nickel allergy and bacterialinfection are becoming more and more prevalent, it damages the consumer’s physical and mentalhealth. As the decorations of long time contacting with skin or being implanted in the tissue,metal jewelries have close relationship with metallurgical engineering, materials science andbiomedical engineering discipline. Based on our earlier research of common jewelry materialsand production processes in jewelry market, stainless steel for jewelry was chosen as the mainline in this paper, and three aspects of experimental investigation were carried out from theviewpoint of biomaterial and metallurgical engineering, including the nickel release rates ofmetallic jewelry materials, the antibacterial modification of S316L stainless steel and highnitrogen nickel-free antibacterial stainless steel, so that guidance can be provided for solvingnickel allergy and bacterial infection problem, and the selection, development and application ofmetallic jewelry materials.
     The most widely used nickel containing materials, including stainless steels, cupronickel,nickel bleached karat white gold and nickel plating layer, were chosen as the nickel release testobjects, the samples were treated by the common processing technology, and then their nickelrelease rates under various conditions were tested according to the nickel release standard testmethods. The effects of various physiological environment, shaping method, surface treatmentmethod and heat treatment process on nickel release rate of stainless steel and other nickelcontaining material for jewelry were determined experimentally and the mechanism wasanalyzed, and it is pointed out that the evaluation of a material’s nickel release rate and allergyrisk can not be separated from its specific conditions. It is found that there is no correspondenceof nickel release rates to nickel content, inclusions and cold deformation will promote nickelrelease, and it presents anisotropy for cold deformation, while appropriate heat treatment canreduce nickel release rate. The rougher the material surface is, the more nickel ions are released,while nickel plating layer can obviously improve nickel release rate. In different physiologicalenvironment, S316L’s nickel release rate shows the sequence as “artificial body fluid> artificialsweat> urine> artificial saliva”.
     It is determined that the actual nickel release rates of BZn10-25, S201and S303stainlesssteels,10K and18K nickel bleached gold alloys under all various conditions significantly exceed the threshold specified in Nickel Directives, the allergy risks for these materials are high,especially for BZn10-25and S303. The practical nickel release rate of mirror polished S316Lstainless steel under solid solution state is very low, it should be safe and can’t go so far as toarouse nickel allergy for most people, however, when the material is under an adverse conditionssuch as cold work, as-cast, annealing, sand blasting, sand pushing, etc, its nickel release rateswill increase by different degrees, especially when two or more of these promoting factors addtogether, the actual nickel release rate will reach or exceed the specified threshold, it can notcompletely exclude the risk of nickel allergy for long term wearing. Therefore, it is pointed outthat the development of nickel-free materials and technologies is the only way to avoid nickelallergy risk thoroughly.
     Since the ordinary stainless steels have no antibacterial performance, S316L was selectedfor antibacterial modification and the thin-film adhering quantitative bacteriostasis method wasused to test the antibacterial property. Aim at the question of copper bearing stainless steel agingtreated at the sensitized interval to acquire antibacterial efficacy, suitable amount of Ce/La or Agwith tiny solubility in the matrix of stainless steel were used as antibacterial agents, by means ofcomprehensive grain refining measures, the modified stainless steel acquired antibacterialperformance with no need of aging treatment. According to the experimental results, theantibacterial mechanism of Ce/La or Ag modified stainless steel is put forward, when the steelcontacts with bacteria for some time, the Ce/La or Ag ions released from the enrichment phaseare absorbed to the bacterial surface because of the electrostatic adsorption, their action on thecell wall and protein will produce antibacterial efficacy.
     It is found that Ce or La modified S316L stainless steel shows Hormesis effect against S.aureus and E. coli, only when Ce or La content reaches a certain amount can the modifiedstainless steel realize antibacterial effect, The more amount of Ce or La is added, the betterantibacterial performance is achieved, however, too much amount of Ce or La will damage theprocessability and corrosion resistance, and increase nickel release rate. It is shown that theaddition of Ce or La alone in S316L is difficult to obtain the optimal combination of corrosionresistance, antibacterial capability and processability, and0.15~0.2wt%Ce or La is suggested tobe the trade-off for the best overall performance.
     Through the comprehensive grain refining measures, including vaccum arc melting, water-cooled copper crucible to accelerate solidification and~0.1wt%niobium,0.04~0.06wt%silver can be dispersed in the stainless steel matrix in the form of tiny Ag-rich phase, themodified stainless steel shows excellent antibacterial efficacy against S. aureus and E. coli, and itwill not abate after repetitive use and wear. It is found that silver modified stainless steel hasbetter corrosion resistance in microbial environment, however, too much silver will degrade thecorrosion resistance in non-microbial environment, and nickel release rate will slightly increasealso.
     In view of the possible risk of nickel allergy for S316L stainless steel after beingantibacterial modified, the material selection principle of high nitrogen nickel-free stainless steelfor jewelry was put forward and the experimental material00Cr18Mn18Mo2N0.55wasdetermined based on it. The material has excellent pitting corrosion resistance in non-microbialenvironment, however, well-developed biofilm will form on its surface when it contacts withbacterial suspension, and the bacterial growth is obviously promoted, inducing microbiologicalcorrosion. The root cause of bacterial serious adhesion is inferred to be that high nitrogenstainless steel provides a rich nutritional basement for bacteria growth. It is suggested that highnitrogen stainless steel is not suitable for microbial environment unless after antibacterialmodification. Copper and silver were selected as the antibacterial agents. It is found that thebacterial adhesion on00Cr18Mn18Mo2N0.55stainless steel containing about3.5wt%Cu can beimproved after aging treatment at800℃for one hour, but the sterilization efficacy is weak, andthe precipitated Cr2N will degrade its corrosion resistance, the longer the aging time, the moreserious the damage to corrosion resistance. It is determined that copper is unsuitable asantibacterial agent in high nitrogen stainless steel. Higher silver content is needed in00Cr18Mn18Mo2N0.55to realize sterilization efficacy than in S316L and it is presumed to bethe comprehensive effect of competition result of silver’s sterilizing bacteria and nitrogen’spromoting bacterial growth, slow-release function of silver ammino ions and manganeseimproving the solubility of silver in the matrix.00Cr18Mn18Mo2N0.55containing0.13~0.15wt%silver is designed and developed, this modified material has relatively goodantibacterial property, it can hinder bacterial adhesion and biofilm development, and improvemicrobiological corrosion resistance, it still keeps excellent pitting corrosion resistance andcorrosion wear resistance in non-microbiological environment, and it has no risk of nickel allergy and metal toxicity and can meet the processing requirement of jewelry, therefore it is apromising jewelry material with superior overall properties to S316L.
引文
[1]袁军平,王昶.流行饰品材料及生产工艺[M].武汉:中国地质大学出版社,2009.
    [2] ML. Armstrong, AE. Roberts, DC. Owen, et al. Contemporary college students and body piercing[J].Journal of Adolescent Health,2004,35(1):58-61.
    [3] A. Stim. Body piercing: medical consequences and psychological motivations[J]. Lancet,2003,361:1205-1215.
    [4]韦友欢,黄秋婵,苏秀芳.镍对人体健康的危害效应及其机理研究[J].环境科学与管理,2008,33(9):45-48.
    [5] JP. Menné Torkil. Metal Allergy-A Review on Exposures, Penetration, Genetics, Prevalence, and ClinicalImplications[J]. Chemical research in toxicology,2010,23:309-318.
    [6] B. Roediger, W. Weninger. How nickel turns on innate immune cells[J]. Immunology and Cell Biology,2011,89:1-2.
    [7] A. Cavani. Breaking tolerance to nickel [J]. Toxicology,2005,209:119-121.
    [8] C. Lidén, K. Norberg. Nickel on the Swedish market. Follow-up after implementation of the NickelDirective[J]. Contact Dermatitis.2005,52(1):29-35.
    [9] JP. Thyssen, Menné Torkil, JD Johansen. Nickel release from inexpensive jewelry and hair claspspurchased in an EU country-Are consumers sufficiently protected from nickel exposure?[J]. Science ofThe Total Environment,2009,407(20):5315-5318.
    [10] B. Bocca, G. Forte, O. Senofonte, et al. A pilot study on the content and the release of Ni and otherallergenic metals from cheap earrings available on the Italian market[J]. Science of the total Environment,2007,388:24-34.
    [11] KE Heim, BA. McKean. Children’s clothing fasteners as a potential source of exposure to releasablenickel ions[J]. Contact Dermatitis,2009,60(2):100-105.
    [12] JG. Jr. Marks, DV. Belsito, VA. DeLeo, et al. North American Contact Dermatitis Group patch-test results,1996-1998[J]. Archives of Dermatology,2000,136:272-273.
    [13] RL. Rietschel, JF. Fowler, EM. Warshaw, et al. Detection of nickel sensitivity has increased in NorthAmerican patch-test patients[J]. Dermatitis,2008,19:16-19.
    [14] SE. Jacob, JN. Moennich, BA. McKean, et al. Nickel allergy in the United States: A public health issue inneed of a ‘‘nickel directive’’[J]. Journal of the American Academy of Dermatology,2009,6:1067-1069.
    [15] Teh-Yang Cheng, Yu-Hsian Tseng, Chee-Ching Sun, et al. Contact sensitization to metals in Taiwan[J].Contact Dermatitis,2008,59:353-360.
    [16] T. Goona, CL. Goh. Metal allergy in Singapore[J]. Contact Dermatitis,2005,52:130-132.
    [17] H. Kerosuo, A. Kullaa, E. Kerosuo, et al. Nickel allergy in adolescents in relation to orthodontic treatmentand piercing of ears[J]. American Journal of Orthodontics and Dentofacial Orthopedics,1996,109(2):148-154.
    [18] European Communities. European Directive94/27/EC of30June1994amending for the12th timeDirective76/769/EEC on the approximation of the laws, regulations and administrative provisions of theMember States relating to restrictions on the marketing and use of dangerous substances[J]. OfficialJournal of the European communities,1994,37:1-2.
    [19] The Commission of European Communities. Commission Directive2004/96/EC of27September2004amending Council Directive76/769/EEC as regards restrictions on the marketing and use of nickel forpiercing post assemblies for the purpose of adapting its Annex I to technical progress[J]. Official Journalof the European Union,2004,301:51-52.
    [20] JP. Thyssen, JD. Johansen, T. Menné, et al. Nickel Allergy in Danish Women before and after NickelRegulation[J]. the New England Journal of Medicine,2009,360:2259-2260.
    [21] C. Lidén, K. Norberg. Nickel on the Swedish market. Follow-up after implementation of the NickelDirective[J]. Contact Dermatitis,2005,52:29-35.
    [22]全国首饰标准化技术委员会. GB11887-2002首饰贵金属纯度的规定及命名方法[S].北京:国家质量监督检验检疫总局,2002.
    [23]全国首饰标准化技术委员会. GB11887-2008首饰贵金属纯度的规定及命名方法[S].北京:国家质量监督检验检疫总局,2008.
    [24] CR. Hamann, DJ. Hamann, QJ. Hamann, et al. Assessment of nickel release from earrings randomlypurchased in China and Thailand using the dimethylglyoxime test[J]. Contact Dermatitis,2010,62(4):232-240.
    [25] T. Menné, KE. Andersen, K. Kaaber, et al. Evaluation of the dimethylglyoxime stick test for the detectionof nickel[J]. Derm Beruf Umwelt,1987a,35:128-130.
    [26] GE. Pate, V. Wu, JG. Webb. Nickel Allergy: Lack of Correlation Between Systemic TH1ImmuneResponse and Skin Patch Testing[J]. Journal of Invasive Cardiol,2005,17(10):574.
    [27] G. Raykhtsaum, DP. Agarwal, Nickel release tests-How well do they work[J]. Gold Technology,2001,32:2-6.
    [28]袁军平,李卫,王昶,等.首饰镍过敏问题评述[J].黄金,2012,33(3):7-10.
    [29]高娟.经济节镍型不锈钢局部腐蚀行为研究[D].复旦大学博士学位论文,2010.
    [30] P. Haudrechy, B. Mantout, A. Frappaz, et al. Nickel release from stainless steels[J]. Contact Dermatitis.1997,37(3):113-117.
    [31] P. Haudrechy, J. Foussereau, B. Mantout, et al. Nickel release from304and316stainless steels insynthetic sweat. Comparison with nickel and nickel-plated metals. Consequences on allergic contactdermatitis[J]. Corrosion Science,1993,35(1-4):329-336.
    [32] CS. Jensen, S. Lisby, O. Baadsgaard, et al. Release of nickel ions from stainless steel alloys used in dentalbraces and their patch test reactivity in nickel-sensitive individuals[J]. Contact Dermatitis,2003,48:300-304.
    [33] L. Kanerva, T. Sipil inen-Malm, T. Estlander, et al. Nickel release from metals, and a case of allergiccontact dermatitis from stainless steel[J]. Contact dermatitis,1994,31(5):299-303.
    [34] S. Henderson. White Gold Alloys: Colour Measurement and Grading [J]. Gold Bulletin.2005,38(2):55-67.
    [35] Massimo Poliero. White Gold Alloys For Investment casting [J]. Gold Bulletin.2001,31(2):10-20.
    [36]袁军平.关于镍漂白金合金的若干问题[J].特种铸造及有色合金,2009,9:878-880.
    [37] FO. Nestle. H. Speidel. MO. Speidel. Metallurgy: high nickel release from1-and2-euro coins[J]. Nature.2002,419:132.
    [38] E. Nucera, D. Schiavino, A. Calandrelli, et al. Positive patch tests to Euro coins in nickel-sensitizedpatients[J]. British Journal of Dermatology.2004,150(3):500-503.
    [39] C. Lidén, C. Stephen. Nickel release from coins[J]. Contact Dermatitis,2001,44(3):160-165.
    [40] RA. Hayes, WE. Trick, MO. Vernon, et al. Ring use as a risk factor for hand colonization in a surgicalintensive care unit. Abstracts of the41st Interscience Conference on Antimicrobial Agents andChemotherapy, Chicago, IL,2001:414-424.
    [41] WE. Trick, MO. Vernon, RA. Hayes, et al. Impact of ring wearing on hand contamination and comparisonhand hygiene agents in a hospital. Clinical Infectious Diseases,2003,36:1383-1390.
    [42] AM. Kennedy, AM. Elward, VJ. Fraser. Survey of knowledge, beliefs, and practices of neonatal intensivecare unit healthcare workers regarding nosocomial infections, central venous catheter care, and handhygiene[J]. Infection Control and Hospital Epidemiology,2004,25:747-752.
    [43] I. Yildirim, M. Ceyhan, AB. Cengiz, et al. A prospective comparative study of the relationship betweendifferent types of ring and microbial hand colonization among pediatric intensive care unit nurses[J].International Journal of Nursing Studies,2008,45(11):1572-1576.
    [44] NK. Kelsall, RK. Griggs, KE. Bowker, et al. Should finger rings be removed prior to scrubbing fortheatre?[J]. Journal of Hospital Infection,2006,62:450-452.
    [45] MA. Gold, CM. Schorzman, PJ. Murray, et al. Body piercing practices and attitudes among urbanadolescents[J].Journal of Adolescent Health,2005,36(4):352-355.
    [46] Ahmed Messahel, Brian Musgrove. Infective complications of tattooing and skin piercing[J]. Journal ofInfection and Public Health,2009,2(1):7-13.
    [47] TC. Simplot, HT. Hoffman. Comparison between cartilage and soft tissue ear piercingcomplications[J].American Journal of Otolaryngology,1998,19(5):305-310.
    [48] I. Donna, MD. Meltzer. Complications of Body Piercing[J]. American Family Physician,2005,72(10):2029-2034.
    [49] A. Plessas, E. Pepelassi. Dental and periodontal complications of lip and tongue piercing: prevalence andinfluencing factors[J]. Australian Dental Journal,2012,57(1):71-78.
    [50] ML. Armstrong, S. DeBoer, F. Cetta. Infective Endocarditis After Body Art: A Review of the Literatureand Concerns[J]. Journal of Adolescent Health,2008,43(3):217-225.
    [51] E Bernthal. Wedding rings and hospital-acquired infection[J]. Nursing Standard,1997,11:44-46.
    [52] J Henderson, H Budd, J Wimhurst. Bare below the elbows: What do patients want their doctor to wear?[J]Bulletin of The Royal College of Surgeons of England,2009,91(7):246-248.
    [53]李梅,王庆瑞.抗菌材料的发展及其应用[J].化工新型材料,1998,5:8-11
    [54] HA. Videla, WG. Characklis. Biofouling and microbially influenced corrosion[J]. InternationalBiodeterioration&Biodegradation,1992,29(3-4):195-212.
    [55]孙剑,乔学亮,陈建国.无机抗菌剂的研究进展[J].材料导报,2007,S1(F05):344-348.
    [56] Miyano Yasuyuki, Koyama Kunihiro, Sreekumari Kurissery, et al. Antibacterial properties of nine puremetals: a laboratory study using Staphylococcus aureus and Escherichia coli[J]. Biofouling: The Journalof Bioadhesion and Biofilm Research,2010,26(7):851-858.
    [57]张安峰,任会勋,乔继英,等.抗菌金属材料的研究现状与发展趋势[J].热加工工艺,2007,36(18):78-81.
    [58]董加胜,陈四红,吕曼祺,等.抗菌材料发展和现状[J].材料导报,2004,18(3):41-46.
    [59] S. Nakamura, S. Suzuki, N. Ookubo. Microstructure and antimicrobial activity of Cu contained ferriticstainless steels[J]. Camp-ISIJ,1998,11(3):1147(in Japanese)
    [60] S. Suzuki, S. Nakamura, M. Yamamoto, et al. Antibacterial property and characteristics of "NSSAM"stainless steel with high deformability[R]. Nissen Steel Technical Report,2001.(in Japanese)
    [61] Hiroshi Kawakami, Kenji Kittaka, Yoshihiro Sato, et al. Bacterial Attachment and Initiation of Biofilmson the Surface of Copper Containing Stainless Steel[J]. ISIJ International,2010,50(1):133-138.
    [62]杨伟超,南黎,李慧,等.含铜抗菌不锈钢的抗菌性能研究[J].微生物学杂志,2009,29(3):1-5.
    [63]南黎,刘永前,杨伟超,等.含铜抗菌不锈钢的抗菌特性研究[J].金属学报,2007,43(10):1065-1070.
    [64] Ling Ren, Ke Yang, Lei Guo, et al. Preliminary study of anti-infective function of a copper-bearingstainless steel[J]. Materials Science and Engineering: C,2012,32(5):1204-1209.
    [65] Ke Yang, Manqi Lü. Antibacterial properties of an austenitic antibacterial stainless steel and its securityfor human body[J]. Journal of Material Science and Technology,2007,123(3):333-336.
    [66] Li Nan, Ke Yang. Cu Ions Dissolution from Cu-bearing Antibacterial Stainless Steel [J]. Journal ofmaterial science and technology,2010,26(10),941-944.
    [67]张志霞.含铜(氮)抗菌不锈钢的组织与性能研究[D].上海交通大学博士学位论文,2007.
    [68] IT. Hong, CH. Koo. Antibacterial properties, corrosion resistance and mechanical properties ofCu-modified SUS304stainless steel[J]. Materials Science and Engineering: A,2005,393(1-2):213-222.
    [69] Takeshi Yokota, Misako Tochihara, Susumu Satoh, et al. Stainless steel product having excellentantimicrobial activity and method for production thereof, US patent,6306341B1,2001-10-23.
    [70] Takeshi Yokota, Misako Tochibara, Masayuki Ohta. Silver dispersed stainless steel with antibacterialproperty[R]. Kawasaki steel technical report,2002,46:37-41.
    [71] Kurissery R. Sreekumari, Kanavillil Nandakumar, Kenji Takao, et al. Silver containing stainless steel asa new outlook to abate bacterial adhesion and microbiologically influenced corrosion[J]. ISIJInternational,2003,43(11):1799-1806。
    [72] Chiung-Fang Huang, Hsi-Jen Chiang, Wen-Chien Lan, et al. Development of silver-containing austeniteantibacterial stainless steels for biomedical applications Part I: microstructure characteristics, mechanicalproperties and antibacterial mechanisms[J]. Biofouling: the journal of bioadhesion and biofilm research,2011,27(5):449-457.
    [73]王志广,张伟,李宁,等.金属离子型抗菌不锈钢组织及其抗菌性能的研究[J].铸造技术,2006,27(5):499-502.
    [74]陈爱美,施庆珊,欧阳友生,等.稀土抗菌效应及应用的研究进展[J],微生物学通报,2009,36(1):90-96.
    [75]敬和民,吴欣强,刘永前,等.含铈不锈钢的抗菌性能[J].中国稀土学报,2006,24(2):223-226.
    [76]刘克田,赵莉萍.含Ce10Cr17抗菌不锈钢的性能研究[J].内蒙古科技大学学报,2010,2:155-157.
    [77] K. Vasilev, J. Cook, HJ. Griesser. Antibacterial surfaces for biomedical devices[J]. Expert Review ofMedical Devices,2009,6(5):553-567.
    [78]王章明,孙伟,田修波,等.抗菌表面处理技术研究进展[J].材料科学与工程学报,2006,24(5):787-791.
    [79] Hong-wei Ni, Han-shuang Zhang, Rong-sheng Chen,et al. Antibacterial properties and corrosionresistance of AISI420stainless steels implanted by silver and copper ions[J]. International Journal ofMinerals, Metallurgy, and Materials,2012,19(4):322-327.
    [80]李东,许伯藩,倪红卫,等.沉积扩散法制备不锈钢抗菌渗铜层的研究[J].金属热处理,2005,30(2):8-11.
    [81]张翔宇,蒋立,黄晓波,等.不锈钢表面渗铜扩散复合处理合金层的抗菌性能研究[J].无机材料学报,2012,27(5):519-523.
    [82]杨辉,缪亚美,丁新更.溶胶-凝胶法制备功能薄膜材料的研究及展望[J].稀有金属材料与工程,2004,33(suppl3):208-213.
    [83] Nadir Kiraz, mer Kesmez, Esin Burunkaya, et al. Antibacterial glass films prepared on metal surfaces bysol-gel method[J]. Journal of Sol-Gel science and technology,2010,56(3):227-235.
    [84] S. Krumdieck. Biomaterials by CVD Methods, Introduction to the CVD Special Section[J]. Chemicalvapor deposition,2010,16(1-3):9-11.
    [85] FR. Marciano, LF. Bonetti, LV. Santos, et al. Antibacterial activity of DLC and Ag-DLC films producedby PECVD technique Diamond and Related Materials[J].2009,18(5-8):1010-1014.
    [86]中羲弘.刃物用抗菌クラッドステンレス钢[J].特殊钢(日),1999,48(6):20-21.
    [87]肖纪美.不锈钢的金属学问题[M].北京:冶金工业出版社,2006.
    [88] JP. Thyssen,M. Torkil. Metal Allergy-A Review on Exposures, Penetration, Genetics, Prevalence, andClinical Implications[J]. Chemical research in toxicology,2010,23:309-318.
    [89]陆利明,李宏,壮云乾,等.氮气加压熔炼高氮钢若干理论问题探讨[J].钢铁研究学报,1996,8:6-10.
    [90]李花兵,姜周华.不锈钢熔体中氮溶解度的热力学计算模型[J].东北大学学报(自然科学版),2007,28(5):672-675.
    [91] RD. Pehlke, JF. Elliott.. Solubility of nitrogen in liquid iron alloys-thermodynamics[J]. Transactions of themet allurgical Society of AIME,1960,218:1088-1101.
    [92] HK. Feichtinger. Concepts of nitrogen solubility[C], Proceedings of3rd international conference on highnitrogen steels (HNS93), Ukraine,1993:45.
    [93] JC. Rawers, N. Gocken. High-temperature, high-pressure nitrogen concentration in Fe-Cr-Mn-Ni alloys[J].Steel Research,1993,64(2):110-113.
    [94]张仲秋,李新亚,娄延春,等.含氮不锈钢研究的进展[J].铸造,2002,51(l)l:661-665.
    [95]余蓉.高氮不锈钢的开发进展[J].世界钢铁,2010,1:37-41.
    [96] Hua-bing Li, Zhou-hua Jiang, Yang Cao, et al. Fabrication of high nitrogen austenitic stainless steels withexcellent mechanical and pitting corrosion properties[J]. International Journal of Minerals, Metallurgyand Materials,2009,16(4):387-392.
    [97]钟海林,况春江,匡星,等.粉末冶金高氮不锈钢的研究与发展现状[J].粉末冶金工业,2007,17(3):44-47.
    [98]李科,曲选辉,崔大伟.粉末冶金高氮不锈钢的研究现状[J].粉末冶金工业,2005,15(2):20-25.
    [99] JW. Simmons. Overview: high-nitrogen alloying of stainlesssteels[J]. Materials Science and Engineering:A,1996,207(2):159-169.
    [100] MO. Speidel. New nitrogen-bearing austenitic stainless steels with high strength and ductility[J]. MetalScience and Heat Treatment,2005,47(11-12):489-493.
    [101] G. Stein, J. Menzel, M. Wagner. N-Alloyed steels for retaining rings and other applications[C],Proceedings of2nd international conference on high nitrogen steels (HNS90), Aachen, Germany,1990:399.
    [102]易邦旺,胡燕,郎文运等.氮含量对Cr18Mn18N无磁不锈钢力学性能、磁导率和组织的影响[J].钢铁,1998,33(3):43-45.
    [103]马玉喜.高氮奥氏体不锈钢组织结构及韧脆转变机制的研究[D].昆明理工大学博士学位论文,2008.
    [104] PA. Carvalho, IF. Machado, G. Solórzano, et al. On Cr2N precipitation mechanisms in high-nitrogenaustenite[J]. Philosophical magazine,2008,88(2):229-242.
    [105]郎宇平,康喜范.超级高氮奥氏体不锈钢的耐腐蚀性能及氮的影响[J].钢铁研究学报,2001,13(1):30-35.
    [106] H. Baba, T. Kadama, Y. Katada. Role of nitrogen on the corrosion behavior of austenitic stainless steel[J].Corrosion science,2002,23(44):2393-2407.
    [107] G. Rondelli, P. Torricelli, M. Fini, et al. In vitro corrosion study by EIS of a nickel-free stainless steel fororthopaedic applications[J]. Biomaterials,2005,26(7):739-744.
    [108] Yao Fu, Xinqiang Wu, En-Hou Han, et al. Effects of nitrogen on the passivation of nickel-free highnitrogen and manganese stainless steels in acidic chloride solutions[J]. Electrochimica Acta,2009,54(16):4005-4014.
    [109] H. Gr fen, D. Kauron. Lochkorrosion an Nichtrostenden St hlen[J]. Werkstoff und corrosion,1996(47):16-26.
    [110] M. Sumita, T. Hanawa, S.H. Teoh. Development of nitrogen-containing nickel-free austenitic stainlesssteels for metallic biomaterials-review[J]. Materials Science and Engineering C,2004(24):753-760.
    [111] M. Joachim, K. Walter, S. Gerald. High nitrogen containing Ni-free austenitic steel for medicalapplications[J]. ISIJ International,1996,36(7):893-900.
    [112] M. Finia, N. Aldini, P.Torrieelli, et al. A new austenitie stainless steel with negligible nickel content: anin vitro and in vivo comparative investigation[J]. Biomaterials,2003,24(27):4929-4939.
    [113]马丹.医用无镍不锈钢的血液相容性的研究[D].沈阳工业大学硕士学位论文,2007.
    [114]张琦.新型医用高氮无镍奥氏体不锈钢的力学及生物相容性研究[D].南京理工大学硕士学位论文,2008.
    [115]崔大伟,曲选辉,李科.高氮低镍奥氏体不锈钢的研究进展[J].材料导报,2005,19(12):64-67,71.
    [116]陈志强.高氮不诱钢研究的发展近况[J].宝钢技术,2005,5:11-17.
    [117]郎宇平,康喜范.高氮不锈钢及其冶炼和应用[J].不锈,2002,2:6-8.
    [118]任伊宾.新型医用无镍不锈钢的研究[D].沈阳:中国科学院研究生院博士学位论文,2004.
    [119]任伊宾,杨柯,张炳春,等.新型医用不锈钢研究[J].生物医学工程学杂志,2006,23(5):1101-1103.
    [120] Yibin Ren, Ke Yang, Bingchun Zhang, et al. Nickel-free stainless steel for medical applications[J].Journal of Materials Science and Technology,2004,20(5):571-573.
    [121]崔大伟.高能球磨和冷压烧结制备Cr-Mn-Mo-N无镍不锈钢[J].稀有金属材料与工程,2008,37(12):2249-2252.
    [122]李花兵,姜周华,申明辉.利用真空感应炉和电渣炉制备高氮奥氏体不锈钢[C].重庆:第十四届全国炼钢学术会议,2006.
    [123] XiaoBo Li. Technical progress and product development of TISCO stainless steel[J]. Advanced steels,2011,1:19-26.
    [124]高亦斌,陈根保,金卫强. AOD精炼高氮奥氏体不锈钢1Cr22Mn15N的工艺实践[J].特殊钢,2005,2:51-53.
    [125]王松涛.高氮奥氏体不锈钢的力学行为及氮的作用机理[D].沈阳:中国科学院研究生院博士学位论文,2008.
    [126] KR. Sreekumari, K Takao, T Ujiro. High Nitrogen Stainless Steel as a Preferred Substratum for Bacteriaand Other Microfouling Organisms[J]. ISIJ International,2004,44(5):858-864.
    [127] KR. Sreekumari, Y. Sato, Y. Kikuchi. Antibacterial metals-A viable solution for bacterial attachment andmicrobiologically influenced corrosion[J]. Materials Transactions,2005,46(7):1636-1645.
    [128] ZX. Zhang, G. Lin, LZ. Jiang, et al. Beneficial effects of nitrogen on austenite antibacterial stainlesssteels[J]. Materials Chemistry and Physics,2008,111(2-3):238-243.
    [129] JP. Yuan, W. Li, C Wang, et al. Appraisal about stainless steels for piercing jewelry[J]. AdvancedMaterials Research,2012,(399-401):1540-1546.
    [130] EN1810:1998. Body-piercing post assemblies-reference test method for determination of nickel contentby flame atomic absorption spectrometry[S]. Brussel: European Committee for standardization,1998.
    [131] EN1811:1998. Reference test method for release of nickel from products intended to come into directprolonged contact with the skins[S]. Brussel: European Committee for standardization,1998.
    [132] ISO/TR10271. Dentistry-Determination of tarnish and corrosion of metals and alloys, First edition[S],Printed in Switzerland,1993,3.
    [133]郭亮,梁成浩,隋洪艳.离子注N对人体用金属材料在人工模拟体液中的阳极极化行为的影响[J].电化学,2000,6(2):207-211.
    [134] EN12472:2005. Method for the simulation of wear and corrosion for the detection of nickel release fromcoated items[J]. Brussel: European Committee for standardization,2005.
    [135]藤秀金.颜色测量技术[M].北京:中国计量出版社,2007.
    [136] JP. Yuan, W. Li, WX. Guo. Research of Color And Discoloration Resistance of18K Rosy Gold forOrnaments[J]. Advanced Materials Research,2011,239:3284-3289.
    [137]胡钢,许淳淳,张新生,等.冷加工对304不锈钢孔蚀敏感性的影响[J].中国腐蚀与防护学报,2002,22(4):198-201.
    [138]宋维锡.金属学[M].北京:冶金工业出版社,2004.
    [139]吴涛,余新泉,周业展,等.热处理工艺对316L不锈钢微丝组织和性能的影响[J].金属热处理,2004,29(7):53-56.
    [140]孙兵,高林寒,李小蕴.316不锈钢抗晶间腐蚀工艺优化的研究[J].材料热处理技术,2009,38(16):38-44.
    [141] G. Normandeau. White golds, a review of commercial material characteristics and alloy designalternatives. gold bulletin,1992,25(3):94-103.
    [142] E.Raub, A. Engel. The Gold-Nickel-Copper Ternary System II, Z. Metallkd.,1947,38:147-158.
    [143]曹楚南.腐蚀电化学原理(第二版)[M].北京:化学工业出版社,2004.
    [144] J. Stewart, DE. Williams. The initiation of pitting corrosion on austenite stainless steel: on the role andimportance of sulfide inclusions[J]. Corrosion Science,1992,33:457
    [145] NJ.Laycock, RC.Newman. Localised dissolution kinetics, salt films and pitting potentials[J]. CorrosionScience,1997,39(10-11):1771-1790.
    [146] GS. Frankel. Pitting Corrosion of Metals A Review of the Critical Factors[J]. Journal of theElectrochemical Society,1998,145(6):2186-2198.
    [147]王海涛,左禹,熊金平.表面粗糙度对316L不锈钢亚稳态孔蚀行为的影响[J].中国腐蚀与防护学报,2002,22(3):158-161.
    [148]吴玮巍,蒋益明,廖家兴,等. Cl离子对304、316不锈钢临界点蚀温度的影响[J].腐蚀科学与防护技术,2007,19(1):16-19.
    [149] JP. Thyssen, W. Uter, J. McFadden, et al. The EU Nickel Directive revisited-future steps towards betterprotection against nickel allergy[J]. Contact Dermatitis.2011,64(3):121-125.
    [150]徐光宪主编.稀土[M].北京:冶金工业出版社,1995.
    [151]陈佩芳.稀土金属在钢中的应用[J].金属学报,1978,14(2):188-216.
    [152]杨华.稀土配位化合物在医药领域应用概述[J].稀土,2007,28(2):95-98
    [153] TJ. Haley. Pharmacology and toxicology of the rare earth elements[J]. Journal of PharmaceuticalSciences,1965,54(5):663-670.
    [154]杨军,张赫,王甲辰.稀土抑菌作用研究[J].稀土,2009,30(1):35-39.
    [155] DIN58940-9-2007. Medical microbiology-Susceptibility testing of microbial pathogens to antimicrobialagents-Part9: Regression line analysis for the correlation of inhibition zone diameter (IZD) andminimum inhibitory concentration (MIC)[S]. Berlin: published by DIN,2007.
    [156] JIS Z2801:2000. Antimicrobial products test for antimicrobial activity and efficacy[S]. Tokyo: publishedby Japanese standard association,2001.
    [157] H.П.梁基谢夫主编,郭青蔚等译.金属二元系相图手册[M].北京:化学工业出版社,2009.
    [158]朱兴元,陈邦文,林勤.稀土微合金化作用研究现状分析[J].钢铁研究,1999,4(7):60-65.
    [159]胡汉起.金属凝固原理[M].北京:机械工业出版社,1991.
    [160] RM. Zhao, Y. Liu, ZX. Xie, et al. Microcalorimetric study of the action of Ce (III) ions on the growth ofE. coli[J]. Biological Trace Element Research,2002,86(2):167-175.
    [161] A. Furst. Hormetic effects in pharmacology: pharmacological inversions as prototyes for hormesis[J].Health Physics,1987,52(5):527-530.
    [162]侯安新,刘义,黄伟国,等.钇离子及其阳离子卟啉配合物与金黄色葡萄球菌的相互作用[J].化学学报,2003,61(9):1382-1387.
    [163] Peng Liu, Hongyu Xiao, Xi Li, et al. Study on the toxic mechanism of La3+to Escherichia coli[J].Biological Trace Element Research,2006,114(1-3):293-300.
    [164]霍光华,张冬艳,张通.稀土离子(Nd)对金黄色葡萄球菌细胞壁结构的影响[J].分子细胞生物学报,2007,40(6):437-442.
    [165]霍春芳,张冬艳,刘进荣,等.稀土对芽孢菌的抑菌机理研究[J].化学学报,2002,60(6):1065-1071.
    [166] T. Dudev, LY. Chang, C. Lim, Factors Governing the Substitution of La3+for Ca2+and Mg2+inMetalloproteins: A DFT/CDM Study[J]. Journal of the American Chemical Society,2005,127(11):4091-4103.
    [167] W. Vollmer, D. Blanot, M.A. De Pedro. Peptidoglycan structure and architecture[J]. FEMS MicrobiologyReviews,2008,32(2):149-167.
    [168] M Geiser, R Avci, Z Lewandowski. Microbially initiated pitting on316L stainless steel[J]. InternationalBiodeterioration&Biodegradation,2002,49(4):235-243.
    [169]佟世华,高国忠,贺维勇,陈继志.铈、钇及混合稀土对316不锈钢热塑性的影响[J].稀土,1983,2:8-12,24
    [170]傅俊岩. Nb微合金化和含铌钢的发展及技术进步[J].钢铁,2005,8(7):1-6.
    [171] B. Bramfitt. The effect of carbide and nitride additions on the heterogeneous nucleation behavior ofliquid iron[J]. Metallurgical and Materials Transactions B,1970,1(7):1987-1995.
    [172]潘宁,宋波,翟启杰,等.钢液非均质形核触媒效用的点阵错配度及经验电子理论研究[J].中国稀土学报,2010,28(4):125-130.
    [173]万荣春,赵星明,斯松华,等. Nb含量对低碳微合金钢热处理组织与性能的影响[J].安徽工业大学学报,2007,24(2):134-136.
    [174] RC. Newman, WP. Wong, A. Garner. A Mechanism of Microbial Pitting in Stainless Steel[J].Corrosion,1986,42(8):489-491.
    [175]陈四红,吕曼棋,张敬党等.含Cu抗菌不锈钢的微观组织及其抗菌性能[J].金属学报,2004,40(3):314-318.
    [176] QL. Feng, J. Wu, GQ. Chen, et al. A mechanistic study of the antibacterial effect of silver ions onEscherichia coli and Staphylococcus aureus[J]. Journal of Biomedical Materials Research,2000,52:662-668
    [177] WK. Jung, HC. Koo, KW. Kim, et al. Antibacterial activity and mechanism of action of the silver ion inStaphylococcus aureus and Escherichia coli[J]. Applied and Environmental Microbiology,2008,74:2171-2178.
    [178]张安峰,乔继英,李利军,等.奥氏体抗菌不锈钢的微观组织及抗菌性能[J].材料科学与工程学报,2008,26(5):669-672.
    [179]杨柯,陈四红,董加胜,等.铁素体抗菌不锈钢的抗菌特性[J].金属功能材料,2005,12(6):6-9.
    [180]吴玖.双相不锈钢[M].北京:冶金工业出版社,2000.
    [181] D. Baldissin, L. Battezzati. Multicomponent phase selection theory applied to high nitrogen and highmanganese stainless steels[J]. Scripta Materialia,2006,55:839-842.
    [182] U.卡曼奇.曼德里, R.贝德威著,李晶,黄运华译.高氮钢和不锈钢---生产、性能与应用[M].北京:化学工业出版社,2006.
    [183] K. Frisk, M. Hillert. Thermodynamics of the Fe--Cr--Ni--N System[C]. Proceeding of1st internationalconference on high nitrogen steels (HNS88), France,1988.
    [184] G. Balachandran, ML. Bhatia, NB. Ballal, et al. Some theoretical aspects on designing nickel free highnitrogen austenitic stainless steels[J]. ISIJ International,2001,41(9):1018-1027.
    [185] PJ. Uggowitzer, R. Magdowski, MO. Speidel. Nickel free high nitrogen austenitic steels[J]. ISIJInternational,1996,36(7):901-908.
    [186]张志霞,林刚,徐洲.含铜铁素体抗菌不锈钢中抗菌相的析出行为[J].材料热处理学报,2008,29(5)93-96.
    [187] HeonYoung Ha, HyukSang Kwon. Effects of Cr2N on the pitting corrosion of high nitrogen stainlesssteels[J]. Electrochimica Acta,2007,52(5):2175-2180.
    [188] S. Hertzman. Nitrogen in stainless steels: A thermodynamic approach[C]. Proceedings of8thinternational conference on high nitrogen steels (HNS2006), sichuan, China,2006:30-36.
    [189]徐洲,赵连城.金属固态相变原理[M].北京:科学出版社,2004.
    [190] F. Vanderschaeve, R. Taillard, J. Foct. Nitrogen, chromium-manganese austenitic stainless steel[J].Journal of materials science,1995,30:6035-6046.
    [191]王庆飞,宋诗哲.金属材料海洋环境生物污损腐蚀研究进展[J].中国腐蚀与防护学报,2002,22(3):184-188.
    [192]温昕,安胜军,侯志飞,等.载银缓释型抗菌敷料[J].化学进展,2009,21(7-8):1644-1654.
    [193] JR Galvele. Transport Processes and the Mechanism of Pitting of Metals[J]. Journal of theElectrochemical Society,1976,123:464-474
    [194] H. Baba, T. Kodama, Y. Katada. Role of nitrogen on the corrosion behavior of austenitic stainlesssteels[J]. Corrosion science,2002,44:2393-2407.
    [195]许崇臣,冈毅民.氮含量对高纯奥氏体不锈钢耐蚀性能的影响及机理的研究[J].钢铁研究学报,1996,8(s1):22.
    [196]郑纪勇.海洋生物污损与材料腐蚀[J].中国腐蚀与防护学报,2010,30(2):171-176.
    [197]王松涛,杨柯,单以银,等.高氮奥氏体不锈钢与316L不锈钢的冷变形行为研究[J].金属学报,2007,43(2):171-176.
    [198]刘文昌,张静武,郑炀曾.氮强化高锰奥氏体不锈钢的应变硬化行为[J].金属热处理,1995,3:33-38.
    [199]李宁,张宏群,张征,等.济南市区成人铜和锰摄人量及血清铜和锰含量参考值范围[J].环境与健康杂志,2009,1:66-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700