金属氧化物半导体材料的制备、微分析及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以氧化锌稀磁半导体和纳米二氧化钛光催化剂材料为研究对象,针对目前这一领域需要解决的一些问题,将表面微分析技术应用于它们的研究。一方面,探求了制备条件与材料组成、微结构、形貌以及性能的关系;另一方面,研究了载体、外加磁场等对纳米二氧化钛光催化性质的影响,并成功制备了具有实际应用前景的新型阳离子聚丙烯酰胺/TiO2复合絮凝剂。全文共分为以下6个部分。
     第1章为绪论部分,针对功能金属氧化物半导体材料的光催化和稀磁特性,介绍了金属氧化物半导体材料的制备方法、研究进展及微区分析技术,同时展望了其应用前景。
     第2章利用表面微区分析方法系统研究了掺杂元素对氧化锌基稀磁半导体结晶生长的影响。通过水热法制备了不同过渡金属掺杂的ZnO基稀磁半导体晶体,利用扫描电子显微镜(SEM)及X射线能谱仪(XREDS)对合成晶体的微观形貌、表面及内部剖面掺杂元素的相对含量和分布进行了研究。研究发现过渡金属掺杂离子影响ZnO晶体的生长,掺杂离子的不同其大小、形貌均有所差异,随晶体形貌不同,显露面也发生了相应改变。X射线微分析证实,晶体表面与晶体内部掺杂离子分布相对均匀,Co、Mn离子比Fe、Ni离子容易实现掺杂,Fe, Ni离子不容易或少量的进入到晶格中。另外还研究了In离子与过渡金属共掺杂对ZnO晶体极性生长的影响,并从水热理论探讨了晶体生长的影响因素及机理。
     第3章对纳米二氧化钛的制备工艺、微结构及性能进行了研究。本章共分为两节。在第一节中,采用溶胶-凝胶法在玻片上制备了纳米TiO2薄膜,并利用扫描探针显微镜对薄膜的微结构、透光率进行了分析,结果表明制备的TiO2薄膜为均匀突起的锐钛矿型纳米TiO2薄膜,同时探讨了微结构同光催化性能的关系。在第二节中,主要横向比较了常规不同液相制备方法对纳米TiO2粉体的微结构与光催化性能的影响,并从晶体表面结晶度、晶格缺陷以及TiO2表面羟基分布等方面对光催化活性差异的原因进行了初步探讨。
     第4章为粉煤灰负载纳米TiO2的微分析及应用研究。在本章中,利用XRD, SEM及EDS对粉煤灰原灰以及水、磁筛选的粉煤灰进行了物相、表面微结构及X射线微区分析的系统研究,对各种粉煤灰的特征有了较清楚的认识,为粉煤灰的开发利用提供了有用的信息。在此基础上,采用溶胶-凝胶法在粉煤灰沉珠上负载了纳米TiO2薄膜,探讨了其光催化降解性能与载体效应之间的关系。
     第5章为了进一步提高纳米二氧化钛的光催化性能,研究了磁场对纳米二氧化钛光催化性能的影响,重点研究了不同磁场强度及固定磁场强度下体系pH的变化对纳米TiO2的光催化降解性能的影响,证明磁场对增强光催化作用有一定效果。并探讨了磁场在光催化降解过程中的作用机理。
     第6章将纳米TiO2进行表面处理,与合成的阳离子聚丙烯酰胺P(DMC-AM)成功复合,制备了一种新型的P(DMC-AM)/TiO2复合絮凝剂,该复合絮凝剂光催化吸附降解性能明显的提高,1.5h可使染料脱色率达到95%,具有重要的实际应用价值。
In this thesis, some relevant problems of diluted magnetic semiconductor (DMS) ZnO and nano-TiO2 photocatalyst material were mainly studied by the surface micro-analysis methods. The aim is twofold. The former is to find the relationship between the preparation conditions and material composition, microstructure, morphology, performance and application. The latter is to investigate the effect the carrier and magnetic field on the photocatalytic properties nano-TiO2. Moreover, the cationic polyacrylamide/TiO2 composite flocculant were also prepared, which displays some practical application prospect. The whole paper consists of the following six chapters.
     ChapterⅠ. In this chapter, the photocatalytic properties and diluted magnetic specialities of functional metal-oxide semiconductor materials are summarized. Meanwhile, the relevant preparation methods, the current research progress and micro-area analysis techniques were introduced.
     ChapterⅡ. In this chapter we studied doped elements on zinc oxide-based diluted magnetic semiconductor crystal growth for the preparation and microanalysis. Mainly, different transition metal(TM) doped ZnO-based diluted magnetic semiconductor (ZnO-DMS) crystals were synthesized by hydrothermal method. Then the morphology and the relative content and distribution uniformity of the surface and inner TM element of synthesizing crystals were investigated by the scanning electron microscope (SEM) and x-ray energy dispersive spectrometry(XREDS), respectively. The studies show that the effect of different doped-TMed on the growth, size and morphology of ZnO crystal. In addition, it is found that the exposed face also changed with crystal morphology. Furthermore, the X-ray micro-analysis confirmed that the doped-ions distributed homogeneously in crystal surface and crystal inner, relatively. These result showed that the ions of Co and Mn were easier doping than Fe and Ni. Meanwhile, the morphologic effect of In and TM codoping ZnO crystals on polarity growth was also studied and as result, the mechanism and the relevant factors affected the crystal growth were discussed by hydrothermal theory.
     ChapterⅢ. The preparation, microstructure and properties of nano-titanium dioxide (TiO2) are presented. This chapter included two parts. In the first section, uniform anatase nano-TiO2 thin films were prepared by using sol-gel method on the ordinary glass. The microstructure and transmission rate of thin film were investigated by scanning probe microscope(SPM). The study showed that the prepared thin films were with uniformly convex anatase nano-TiO2. On the basis of analysis, the relationship between the photocatalytic properties and microstructure were discussed. In the second section, the main comparison of microstructure and photocatalytic properties of nano-TiO2 powders prepared by three different liquid wet chemical methods(i.e.,sol-gel, liquid deposition and Hydrothermal) are made. The relation between the microstructure and the photocatalytic property has been studied. Correspondingly, the reasons of different photocatalytic activity have been discussed from the crystal surface crystallinity, lattice defects, as well as the distribution of surface hydroxyl on TiO2 surface.
     ChapterⅣ. The investigations are focused on the microanalysis of fly ash for loading nano-TiO2 layer and its application. At first, Fly ash was separated by water and magnetism methods, and then their phase composition, microstructure and x-ray microanalysis were studied by XRD, SEM and EDS. The microstructure properties of fly ash have been understood, which provided useful information for the development and utilization of fly ash. In terms of this, the surface of fly ash particle was loaded nano-TiO2 film by sol-gel method, and then the relationship between the photocatalytic degradation performance and carrier effect are discussed.
     ChapterⅤ. The effect of nano-TiO2 photocatalytic capability under magnetic field condition is performed in order to improve nano-TiO2 photocatalytic properties. In this chapter, the effect of different magnetic field strength and values of the pH on nano-TiO2 photocatalytic degradation performance was studied. The results showed that the magnetic field had the significant effects on its photocatalysis property. Meanwhile, the mechanism was also discussed.
     ChapterⅥ. The nano-TiO2 particles are applied to composite flocculant material. In this chapter, the nano-TiO2 is treated with appropriate surfactant, and then the new cationic polyacrylamide P(DMC-AM)/TiO2 composite flocculant was synthesized. The results show that, P(DMC-AM)/TiO2 composite flocculant have the best decoloring performance and important practical application. In detail, the decolorization rate of can reach in 95% at 1.5h.
引文
[1]张金升,许凤秀,王英姿,等.功能材料综述[J].现代技术陶瓷.2002,(3):40-44.
    [2]韩世同,习海玲,史瑞雪,等.半导体光催化研究进展与展望.化学物理学.2003,16(5):339-349.
    [3]M.R.Hoffmann,S.T.Martin,W.Choi,D.W.Bahnemann., Environmental applications of semicondu-ctor photocatalysis,Chem.Rev,1995,20:69-95.
    [4]Simo O. Pehkonen, Ron Siefert, et al. Photoreduction of iron oxyhydroxides in the presence of important atmospheric organic compounds, Environ. Sci. Technol.,1993,27 (10):2056-2062
    [5]武汉大学博士学位论文,金属氧化物纳米材料在污染物处理及环境分析中的应用,2004.5
    [6]张雪峰,李会容,等.TiO2可见光光催化的研究进展.电子元件与材料.2008,27(9):40-44
    [7]K.Honda,A.Fujishima.Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 1972,238,37-38.
    [8]J.H.Cary, 《Bull Environ Contam Toxicicol》,1976,16,697-701.
    [9]S.N.Frank,A.J.Bard, Heterogeneous Photocatalytic oxidation of Cyanide Ion in Aqueous Solutions at TiO2 Powder. J.Phy.Chem.Soc.,1977,99,303-304.
    [10]S.N.Frank,A.J.Bard,. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. Phy.Chem.Soc.,1977,81,1484-1488.
    [11]M.A.Fox,M.T.Dulay, Heterogeneous photocatalysis,Chem.Rev.,1993,93(1):341-357.
    [12]A.L.Linsebigler,G.Lu,J.T.Yates,Jr. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results Chem.Rev.,1995,95,735-758
    [13]S. J. Teichner, M.Forment, Heterogeneous Photocatalysis. Photoelectrochemistry, Photocatalysis and Photoreactors.Ed.by M.Schiavello,D.Reidel Publishing Company,1985,457-489
    [14]张雯.Pt/TiO2光催化降解苯的磁场效应,福州大学博士学位论文.2004.1
    [15]A.Fujishima, T. N. Rao, D. A. Tryk, J. Titanium dioxide photocatalysis Photochem. Photobio. C. Photochem.Rev.,2000,1,1-21
    [16]Farrauto R J, Heck R M. Environmental Catalysis into the 21st Century. Catalysis Today, 2000,55:179-1874.
    [17]Diebold U. The surface science of titanium dioxide[J]. Surface Science Report,2003,48:53-229.
    [18]岳林海,水淼,等.二氧化钛微晶结构和光催化性能关联性研究[J],化学学报.1999,57:1219-1225
    [19]程萍,顾明元,金燕苹.TiO2光催化剂可见光化研究进展[J].化学进展,2005,17(1):8-14.
    [20]A.Fujishima,K.Hashimoto,T.Watanabe,TiO2 Photocatalysis Fundamentals and Applications,BKC,Inc., Tokyo,1999,125-128
    [21]Xiaobo Chen and Samuel S. Mao. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications. Chemical Reviews,2007,107(7):2891-2959
    [22]张松,李琪,乔庆东.半导体复合TiO2纳米光催化剂.化学通报,2004(4):295-299
    [23]F Capel, C Moure, P Duran. et al. Structure and electrical behavior in air of TiO2-doped stabilized tetragonal zirconia ceramics. Appl. Phys. A,1999,68:41-48.
    [24]Yassine Bessekhouad, Didier Rober, ea al. Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions,Journal of Photochemistry and Photobiology A: Chemistry,2003,157(1):47-53
    [25]高峰,等,染料敏化纳米晶TiO2太阳能电池研究进展,广州化工,2006,34(1):8-11
    [26]Deb Satyen K. Dye sensitized TiO2 thin film solar cell research at the national renewable energy laboratory(NREL) [J]. Solar Energy Materials & Cells,2005,88:1-10.
    [27]Park N G, van de Lagemaat J, Frank AJ. Comparisonof dye sensitized rutile and anatase based TiO2 solarcells[J]. J Phys Chem B,2000,104:8989-8994
    [28]苏文悦,付贤智,魏可镁.表面修饰对TiO2结构及其光催化性能的影响[J].物理化学学报,2001,17:28-31
    [29]赵晖,孙杰.TiO2光催化载体及提高光催化活性的研究进展[J].江苏环境科技,2006,19(4):52-55.
    [30]Durgakumari V,Subrahmanyam M,et al.An Easy and Efficient Use of TiO2 Supported HZSM-5 and TiO2+HZSM-5 Zeolite Combinate in the Photodegradation of Aqueous Phenol and p-Chlorophenol[J].Appl Catal A:General,2002,234(1-2):155-165.
    [31]Shoji N, Yu H, Ishihara S I, et al. Preparation of carbon/TiO2 microsphere composites from cellulose/TiO2 microsphere composites and their evaluation. Mol. Catal. A:Chem.,2002,177:253
    [32]Sun R D, Akira N, Itaru W, Toshiya W, et al. TiO2-coated optical fiber bundles used as a photocatalytic filter for decomposition of gaseous organic compounds Photochem. Photobiol. A Chem.,2000,136:111
    [33]吴楚龙,柳松,秦好丽.外加“场”辅助TiO2光催化降解有机物研究进展.化工进展,2006,25(5):512-516.
    [34]Horikoshi S, Hidaka H, Serpone N. Environmental remediation by an integrate microwave/UV illumination technique[J]. Journal of Photochemistry and Photobiology,2004,161:221-225.
    [35]付贤智,李旦振.提高多相光催化氧化过程效率的新途径[J].福州大学学报(自然科学版)2001,29(6):104-114.
    [36]尹棋亚,殷素华,李道荣,董伟.外加场辅助纳米材料的制备及光催化反应的研究进展.化工进展,2008,27(2):202-205.
    [37]汤红妍,罗亚田,徐昌伟.超声波、电场和光催化协同降解有机污染物的研究现状.四川环境,2005,24(1):65-67
    [38]Kado Y, Atobe M, Nonaka T. Ultrasonic effect on electroorganic Process past 20. Photocatalytic oxidation of aliphatic alcohol in aqueous suspension of TiO2 powder [J]. Ultrason Sonochem.,2001, 8:69.
    [39]芮延年,刘文杰,王明娣,等.高浓度有机废水的纳米催化超声裂解处理[J].中国给水排水,2003,19(2):64-66.
    [40]De Lima Leite R H, Congnet P, Wilhelm A M, et al. Anodic oxidation of 2,4-dihydroxybenzoic acid for waste water treatment:study of ultrasoud activation [J]. Chemical Engineering Science, 2002,57:767-778.
    [41]黄金球,唐朝群,马新国,等.电场对TiO2纳米膜光催化性能的影响[J].催化学报,2006,27(9):783-786.
    [42]吴合进,吴鸣,谢茂松,等.增强型电场协助光催化降解有机污染物[J].催化学报,2000,21(5):399-403.
    [43]赵景联,种法国,赵靓,等.磁场TiO2光催化耦合降解酸性大红3R的研究[J].西安交通大学学报,2006,40(7):851-855.
    [44]杜朝平,杨幼名.磁场助Y2O3/TiO2粉体的光催化性能研究[J].工业催化,2005,13(2):47-50.
    [45]J.L.Falconer,K.A.Magrini-Bair, Photocatalytic and Thermal Catalytic Oxidation of Acetaldehyde on Pt/TiO2,Catal.,1998,179:171-178
    [46]X Fu, WA Zeltner, MA Anderson. The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts,S Applied Catalysis B, Environmental,1995,6:209-224
    [47]白波,赵景联,冯霄,等.TiO2光催化反应过程的“场流”理论分析.太阳能学报,2002,23(5):641-646
    [48]王红娟,李忠.半导体多相光催化氧化技术[J].现代化工,2002,22(2):56-60
    [49]韩兆慧,赵化侨.半导体多相光催化应用研究进展[J].化学进展,1999,11(1):1-10
    [50]Yu Jiaguo, Zhou Minghua, Cheng Bei, et al. Ultrasonic preparation of mesoporous titanium dioxide nanocrystalline photocatalysts and evaluation of photocatalytic activity[J]. Journal of Molecular Catalysis A:Chemical,2005,227:75-80.
    [51]Senthilkumaar S, Porkodi K, Vidyalakshmi R. Photodegradation of a texile dye catalyzed by sol-gel derived nanocrystalline TiO2 via ultrasonic irradiation [J]. J.Photochem.& Photobio. A:Chemisty, 2005,170:225-232.
    [52]Abernathy C R, Overberg M E, Thaler G T. Wide band gap ferromagnetic semiconductors and oxides[J]. J. Appl. Phys.,2003,93:1.
    [53]赵建华,邓加军,郑厚植.稀磁半导体的研究进展.物理学进展,2007,27(2):109-150
    [54]Chiba D,Yamanouchi M,Matsukura F,et al. Electrical Manipulation of Magnetization Reversal in a Ferromagnetic Semiconductor [J]. Science,2003,301:943.
    [55]陈正才,诸葛兰剑,吴雪梅.过渡金属掺杂ZnO形成稀磁半导体的研究进展[J].微纳电子技术,2007,(1):15-22.
    [56]王爱华,张丽伟,张兵临等.过渡金属掺杂ZnO稀磁半导体铁磁特性研究进展.人工晶 体学报,2008,37(1):114-123
    [57]Dietl T,Ohno H,Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors[J]. Science,2000,287:1019-1022.
    [58]沈益斌,周勋,徐明等.过渡金属掺杂ZnO的电子结构和光学性质[J].物理学报,2007,56(6):3440-3445.
    [59]居健,吴雪梅,诸葛兰剑.ZnO基稀磁半导体磁性起源的探索.材料导报[J],2007,21(12):110-114
    [60]王文进,方奕文,郭锐华.纳米粒度金属氧化物催化剂制备方法的研究进展.工业催化.2006,14(5):1-6
    [61]A. Sclafani, L. Palmisano, M. Schiavello,.Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion, J. Phys. Chem.,1990,94,829
    [62]Liu H M,Yang W S,Ma Y,et al. Synthesis and characterization of titania prepared by using a photoassisted sol-gel method[J].Langmuir,2003,19:3001-3005.
    [63]Garzella C,Comini E,Tempesti E,et al.TiO2 thin films by a novel sol-gel processing for gas sensor applications [J]. Sensors and Actuators B,2000,68:189-196
    [64]Wight, A. P.; Davis, M. E. Design and Preparation of Organic-Inorganic Hybrid Catalysts Chem. Rev. 2002,102,3589-3614
    [65]杨小儒,郭震宁,等.纳米二氧化钛薄膜的制备及光致发光研究,功能材料,2007,38(6):1016-1018
    [66]Andersson M,Oesterlund L,Ljungstroem S.Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol[J].J Phys Chem B,2002,106:10674-10679.
    [67]Kolen'ko Y V,Kovnir K A,Gavrilov A I,et al.Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide[J].J Phys Chem B,2006,110:4030-4038
    [68]Yang, J.; Mei, S.; Ferreira, J. M. F. J. Hydrothermal processing of nanocrystalline anatase films from tetraethylammonium hydroxide peptized titania sols. Journal of the European Ceramic Society,.2004, 24,335-339.
    [69]Yang, J.; Mei, S.; Ferreira,et al. Hydrothermal Synthesis of Nanosized Titania Powders:Influence of Peptization and Peptizing Agents on the Crystalline Phases and Phase Transitions. Eur. Ceram. Soc,2004,83(6):1361-1368
    [70]唐波,葛介超,王春先,等.金属氧化物纳米材料的制备新进展[J].化工进展,200,21(10):707-712
    [71]张明月,廖列文.均匀沉淀法制备纳米氧化物研究进展[J].化工装备技术,2002,23(4):18-20
    [72]王文亮,李东升,等.超声辐射沉淀法纳米ZnO的制备与表征[J].化学研究与应用,2001,3(2):157-159
    [73]钱军民,李旭祥,等.纳米材料的性质及其制备方法[J].化工新型材料,2001,29(7):1-5
    [74]Hong, S. S., Lee, M. S.,et al. Synthesis of Nanosized TiO2/SiO2 Particles in the Microemulsion and their Photocatalytic Activity on the Decomposition of p-Nitrophenol, Catalysis Today,2003,.87, 99-105,
    [75]Kim, K. D.; Kim, S. H.; Kim, H. T. Applying the Taguchi method to the optimization for the synthesis of TiO2 nanoparticles by hydrolysis of TEOT in micelles Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,254,99-105
    [76]Jyh-Ming Wu, Han C. Shih and Wen-Ti Wu. Electron field emission from single crystalline TiO2 nanowires prepared by thermal evaporation. Chem. Phys. Lett.2005,413,490-494
    [77]Wu, J. M.; Shih, H. C.; et al. Thermal evaporation growth and the luminescence property of TiO2 nanowires.Cryst. Growth 2005,281,384-390.
    [78]杨陈,樊慧庆等.离子束辅助反应电子束蒸发TiO2薄膜的结构和光学性能,材料科学与工程学报,2007,25(1):14-18
    [79]Guanglei Tiana, et al. Influence of deposition conditions on the microstructure of oxides thin films.Applied Surface Science,2007,253(21):8782-8787
    [80]Ibrahim A. Al-Homoudia, et al. Anatase TiO2 films based CO gas sensor:Film thickness, substrate and temperature effects. Applied Surface Science,2007,253(21):8607-8614
    [81]Seifried, S.; Winterer, M.; Hahn, H.;.Nanocrystalline Titania Films and Particles by Chemical Vapor Synthesis, Chem. Vap. Deposition,2000,6,239-244
    [82]Siddhartha K. Pradhan, Philip J. Reucroft, Fuqian Yang, Dozier, A. J. Growth of TiO2 nanorods by metalorganic chemical vapor deposition. Journal of Crystal Growth.2003,256,83-88
    [83]陈艳,何翔等.交流脉冲制备TiO2薄膜的性能研究,中南民族大学学报.2006,25(1):54-57
    [84]F.-D. Duminica, F. Maury and R. Hausbrand.N-doped TiO2 coatings grown by atmospheric pressure MOCVD for visible light-induced photocatalytic activity.Surface and Coatings technology.2007, 201(22-23):9349-9353
    [85]Lei, Y.; Zhang, L. D.; Fan, J. C. Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3. Chem. Phys. Lett.2001,338,231-236.
    [86]Liu S Q,Huang K L.Straightforward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate[J].Solar Energy Materials & Solar Cells,2005,85(1):125-131.
    [87]J.M. Peralta-Hern'andez et al.Photocatalytic properties of nano-structured TiO2 carbonfilms obtained by means of electrophoretic deposition Journal of Hazardous Materials,2007,147:588-593
    [88]张颖,陶珍东等.溶胶电泳法制备纳米TiO2薄膜及其光催化性能研究,硅酸盐通报,2007,26(1):199-204
    [89]曹江林,吴祖成等.阴极共电沉积制备Fe3+掺杂TiO2纳米薄膜及其可见光活性.无机材料学报,2007,22(3):514-518
    [90]M. Uedaa, et al. Hydrothermal synthesis of anatase-type TiO2 films on Ti and Ti-Nb substrates, Journal of Alloys and Compounds,2008,459(1-2):369-376
    [91]施长年等,纳米二氧化钛表面组成及其微结构分析技术进展,材料导报,2002,16(5):39-42
    [92]王永礼,屠恒贤.微观表面的表征技术与方法,安徽工业大学学报,2005,22(4):369-371
    [93]任殿胜等.现代表面分析技术在半导体材料中的应用,现代仪器。2003,(3):20-22
    [94]黄惠忠.表面分析方法,石油化工.2001,30(4):325-339
    [95]黄惠忠.表面分析方法,石油化工.2001,30(6):491-499
    [96]吴正龙 刘洁 现代X光电子能谱(XPS)分析技术,现代仪器.2006(1):50-53
    [97]黄惠忠等著.论表面技术及其在材料分析中的应用(M),北京:科学技术文献出版社,2002
    [98]吴正龙.场发射俄歇电子能谱显微分析(J).现代仪器,2005,(3):1-4
    [99]Xiaobing Zhao et al. Invitro bioactivity of plasma-sprayed TiO2 coating after sodium hydroxide treatment, Surface & Coatings Technology.2006,200:5487-5492
    [100]Y.L. Brama, Y. Sun, S.R.K. Dangeti and M. Mujahid. Response of sputtered titanium films on silicon to thermal oxidation. Surface & Coatings Technology.2005,195:189-197
    [101]S. Meyer et al. Preparation and characterization of titanium dioxide films for catalytic applications generated by anodic spark deposition. Thin Solid Films.2004,450:276-281
    [102]S. Deki et al. Fabrication of nano-structured materials from aqueous solution by liquid phase deposition Journal of Electroanalytical Chemistry.2005,584:38-43
    [103]C. Kan et al. Synthesis and characterization of the air-water interfacial TiO2/ZrO2 binary oxide film Journal of Colloid and Interface Science.2007,310:643-647
    [104]S. Pavasupree et al. Preparation and Characterization of High Surface Area Nanosheet Titania with Mesoporous Structure,. Materials Letters.2007,61:2973-2977
    [105]W.Y. Teoh et al. Flame sprayed visible light-active Fe-TiO2 for photomineralization of oxalic acid Catalysis Today.2007,120:203-213
    [106]Naoki Arimitsu et al. Photoinduced surface roughness variation in polycrystalline TiO2 thin films under different atmospheres Journal of Photochemistry and Photobiology A:Chemistry.2007,190: 53-57
    [107]J.O. Carneiro.et al. Iron-doped photocatalytic TiO2 sputtered coatings on plastics for self-cleaning applications. Materials Science and Engineering B.2007,138:144-150
    [108]Ireneusz Piwonski et al. Vapor phase modification of sol-gel derived titania (TiO2) surfaces Applied Surface Science.2006,253:2835-2840
    [109]V.I. Parvulescu et al. Comparative photocatalytic behavior of Ta catalysts prepared by d.c.-sputtering, sol-gel and grafting in acetone degradation. Catalysis Today.2006,118:433-439
    [110]M.C. Advincula et al. Surface Analysis and Biocorrosion Properties of Nanostructured Surface Sol-Gel Coatings on Ti6A14V Titanium Alloy Implants Biomaterials.2006,27:2201-2212
    [111]Feng Zhu et al. Surface modification of TiO2 nanoparticles through plasma polymerization of acrylic acid. Chemical Physics Letters,2006,423:270-275
    [112]Hubert Gnaser et al. Photocatalytic degradation of methylene blue on nanocrystalline TiO2:Surface mass spectrometry of reaction intermediates. International Journal of Mass Spectrometry.2005,245: 61-67
    [113]M. Lewandowska et al. Nanoscale characterization of anodic oxide films on Ti-6Al-4V alloy,Thin Solid Films 2007,515:6460-6464
    [114]Y. Zeng et al. Photocatalytic performance of plasma sprayed Pt-modified TiO2 coatings under visible light irradiationCatalysis Communications.2007,8:906-912
    [115]X..W. Zhang et al. Preparation of photocatalytic TiO2 coatings of nanosized particles on activated carbon by AP-MOCVD. Carbon.2005,43:1700-1708
    [116]冯庆,刘高斌,王万录,化学气相沉积TiO2薄膜的XPS研究[J].光电子技术.2003,23(1):35-37
    [117]M.C. Advincula et al. Osteoblast adhesion and matrix mineralization on sol-gel-derived titanium oxide,Biomaterials.2006,27:2201-2212
    [118]B.-S. Jeong et al. Structure and composition of secondary phase particles in cobalt-doped TiO2 films Physica B.2005,370:46-51
    [1]Dietl T,Ohno H,Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors[J]. Science,2000,287:1019-1022.
    [2]沈益斌,周勋,徐明等.过渡金属掺杂ZnO的电子结构和光学性质[J].物理学报,2007,56(6):3440-3445.
    [3]Chiba D,Yamanouchi M,Matsukura F,et al. Electrical Manipulation of Magnetization Reversal in a Ferromagnetic Semiconductor[J]. Science,2003,301:943.
    [4]陈正才,诸葛兰剑,吴雪梅.过渡金属掺杂ZnO形成稀磁半导体的研究进展[J].微纳电子技术,2007,(1):15-22.
    [5]王爱华,张丽伟,张兵临等.过渡金属掺杂ZnO稀磁半导体铁磁特性研究进展.人工晶体学报,2008,37(1):114-123
    [6]居健,吴雪梅,诸葛兰剑.ZnO基稀磁半导体磁性起源的探索.材料导报[J],2007,21(12):110-114
    [7]赵建华,邓加军,郑厚植.稀磁半导体的研究进展.物理学进展,2007,27(2):109-150
    [8]Abernathy C R, Overberg M E, Thaler G T. Wide band gap ferromagnetic semiconductors and oxides[J]. J. Appl. Phys.,2003,93:1.
    [9]宋词,杭寅,张昌龙,等.水热法ZnO晶体特征研究[J].人工晶体学报,2005,34(6):1083-1087.
    [10]Lawes G, Risbud A S, Ramirez A P, et al. Absence of Ferromagnetismin in Co-doped ZnO Thin Films[J]. Appl. Phys. Lett.,2004,84:1338.
    [11]韦志仁,刘超,李军等.水热法合成Zn1-xCoxO室温稀磁半导体[J].人工晶体学报,2006,35(3):484-487.
    [12]Wang B G,Shi E W,Zhong W Z. Understanding and Controlling the Morphology of ZnO Crystallites under Hydrothermal Conditions[J].Crystal Res.Technol.1997,32(5):659-668.
    [13]Eriko O M, Hiraku O, Ikuo N K, et al. Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method [J]. Journal of Crystal Growth,2004,260:166.
    [14]李汶军,施尔畏,殷之文.极性晶体的生长习性.科学通报,1999,44(22):2388-2393
    [15]Li Wenjun, Shi Erwei, Zhong Weizhuo, et al. Growth mechanism and growth habit of oxide crystal. Journal of Crystal Growth,1999,203:186-196
    [16]韦志仁,王伟伟,蔡淑珍,等.碱十金属离子对ZnO极性生长的影响[J].人工晶体学报,2007,36(2):297.
    [17]韦志仁,刘超,李军,等.水热法合成Zn1-xCoxO室温稀磁半导体[J].人工晶体学报,2006,35(3):484.
    [18]Suscavage M, Harris M, Bliss.D, et al. High Quality Hydrothermal ZnO Crystals [J]. MRS Internet J. Nitride Semicond,1999,4S1, G3.40.
    [19]韦志仁,李军,刘超,等.Cu对Zn1-xFexO稀磁半导体磁性的影响[J].物理学报,2006,55(10):5521.
    [20]Sharma P, Gupta A, Rao K V, et al. Ferromagnetism above Room Temperaturein Bulk and Transparent Thin Films of Mn doped ZnO[J]. Nature Materials,2003,2(10):673-677.
    [21]Ane M H, Shalini K, Summers C J, et al. Meganetic Properties of Bulk Znl-xMnxO and Znl-xCoxO Single Crystal[J]. J. Appl. Phys.,2005,97:023906.
    [22]Wei Zhiren, L iuChao, Li Jun. Hydrothermal Synthesis of DilutedMagneticZnl-xMnx O Semiconductor.Journal of Synthetic Crystals,2006,35(1):95-98
    [23]SuscavageM, HarrisM, et al. High Quality Hydrothermal ZnO Crystals [J]. MRS Internet J. N itride Sem icond,1999, Res.4S1, G3.40.
    [24]Sekiguchi T, Miyashita S, Obara K, et al. Hydrothermal Growth of ZnO Single Crystals and Their Optical Characterization [J]. Journal of Crystal Growth,2000,214/215:72276.
    [25]宋旭春,徐铸德,陈卫祥,等.氧化锌纳米棒的制备和生长机理研究[J].无机化学学报,2004(2):186-190.
    [26]Sato K, Katayama-Yoshida H.Stabilization of ferromagnetic states by electron doping in Fe-, Co-or Ni-doped ZnO[J]. Jpn. J. Appl. Phys.,2001,40:334.
    [27]Priya Gopal and Nicola A. Spaldin.Magnetic interactions in transition-metal-doped ZnO:An ab initio study[J] Phys.R..B,2006,74,094418.
    [28]Chen YW, Liu Y C, Lu S X, et al. Op tical Properties of ZnO and ZnO:In anorods ssembled by Sol-gel Method [J]. The Journal of Chem ical Physics,2005,123 (13):134701.
    [29]EscobedoMoralesA, Herrera ZaldivarM, Pal U. Indium Doping in Nanostructured ZnO Through Low-temperature Hydrothermal Process [J].OpticalMaterials,2006,29:100.
    [30]Liu X C, Shi E W, Chen Z Z, et al. High-temperature ferromagnetism in (Co, Al)-codoped ZnO powders[J]. Appl. Phys. Lett.,2006,88:252503.
    [31]Xu H Y, Liu Y C, Xu C S, et al. Room-temperature ferromagnetism in (Mn, N)-codoped ZnO thin films prepared by reactive magnetron cosputtering[J]. Appl. Phys. Lett.,2006,88:242502.
    [32]Venkatesan M, Stamenov P, Dorneles L S, et al. Magnetic, magnetotransport, and optical properties of Al-doped Zn0.95Co0.05O thin films[J]. Appl. Phys. Lett.,2007,90:242508.
    [33]Liu H, Zhang X, Li L Y, et al. Role of point defects in room-temperature ferromagnetism of Cr-doped ZnO[J]. Appl. Phys. Lett.,2007,91,072511.
    [34]Yan W S, Sun Z B, Liu Q H, et al. Zn vacancy induced room-temperature ferromagnetism in Mn-doped ZnO [J]. Appl. Phys. Lett.,2007,91,062113.
    [35]Kan E J, Yuan L F, Yang J L, et al. Electron-induced ferromagnetic ordering of Co-doped ZnO[J] J. Appl. Phys.2007,102:033915.
    [36]王颖,湛永钟,许艳飞.稀磁半导体材料的研究进展及应用前景.材料导报,2007,21(7):20-23.
    [37]侯登录.稀磁半导体的制备与性质.物理实验,2005,25(8):3-7.
    [39]巩锋,臧竟存,等.半导体ZnO晶体生长及其性能研究进展.材料导报,2003,17(2):35-37
    [40]赵有文,董志远,等铟掺杂ZnO体单晶的生长及其性质.半导体学报,2008,29(8)1540-1543
    [41]韦志仁,李哲,胡志鹏等.In掺杂对水热法合成ZnO晶体形貌的影响[J].人工晶体学报,2007,36(4):75
    [1]李志军 王红英.纳米二氧化钛的性质及应用进展[J].广州化工,2006,34(1):23-25.
    [2]Xiaobo Chen and Samuel S. Mao. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications[J]. Chem. Rev.2007,107,2891-2959
    [3]王文进,方奕文,郭锐华.纳米粒度金属氧化物催化剂制备方法的研究进展.工业催化.200614(5):1-6
    [4]程萍,顾明元,金燕苹.TiO2光催化剂可见光化研究进展[J].化学进展,2005,17(1):8-13.
    [5]任成军.TiO2薄膜光催化剂的制备及结构与性能研究.四川大学博士学位论文,2004
    [6]李小甫,余海湖,姜德生等.TiO2纳米薄膜的制备及应用进展[J].光电子技术与信息,200316(3):6-9
    [7]崔婷,唐绍裘,,万隆,等.纳米二氧化钛薄膜的制备及性能研究.硅酸盐通报,2006,(2):121-124
    [8]唐剑文,吴平霄,曾少雁,等.二氧化钛可见光光催化剂研究进展[J].现代化工,2005,25(2):25-28.
    [9]赵力,蒋慧,等.纳米光催化剂TiO2制备过程中的影响因素分析,辽宁化工2008,37(2):85-88
    [10]陈旬,林华香,王绪绪,溶胶制备方法对玻璃表面膜性能的影响.福州大学学报(自然科学版),2002,30(5):610-613
    [11]Andrea Welte, Christoph Waldauf, Christoph Brabec,etal. Application of optical absorbance for the investigation of electronic and structural properties of sol-gel processed TiO2 films.Thin Solid Films, 2008,516(20):7256-7259
    [12]Morten E. Simonsen, Henrik Jensen,et al.Surface properties and photocatalytic activity of nanocrystalline titania films.Journal of Photochemistry and Photobiology A:Chemistry, 2008,200(2-3):192-200
    [13]余家国,赵修建,韩建军,赵青南.溶胶-凝胶法制备TiO2纳米薄膜的晶粒长大机理研究.材料工程,2000,12:19-25
    [14]窦雁巍。徐明霞.溶胶-凝胶法制备TiO2薄膜中溶胶结构的研究.硅酸盐学报,2002,30(增刊)87-89
    [15]尹荔松,周歧发.溶胶-凝胶法制备纳米TiO2的凝胶过程机理研究[J].功能材料,1999,30(4:407-409
    [16]Pierre, A. C.; Pajonk, G. M. Chemistry of aerogels and their applications[J]. Chem. ReV.2002, 102(11):4243-4265.
    [17]Sonawane.R,Hegde.S,Dongare. M. Preparations of ti-tanium(IV)oxide thin film photocatalyst by solgel dip coating[J].Materials Chemistry and Physics,2003,77,77:744-750
    [18]Fujishima A, Rao T N, Tryk D A. J. Titanium dioxide photocatalysis. Photochem. Photobiol.C: Photochem. Rev,2000,1(1):1-21
    [19]N. Arconada, A. Duran, S. Suarez, R.et al.Synthesis and photocatalytic properties of dense and porous TiO2-anatase thin films prepared by sol-gel.Applied Catalysis B:Environmental,2009,86(1-2):1-7
    [20]D. Riassetto, C. Holtzinger, M. Messaoud,et al.Mechanisms involved in the platinization of sol-gel-derived TiO2 thin films Journal of Photochemistry and Photobiology A:Chemistry,2009, 202(2-3):214-220
    [21]孟凡明,周明飞,蔡琪,孙兆奇.纳米TiO2薄膜的制备与表面形貌研究.真空科学与技术学报,2008,28(1):72-77
    [22]Sakai N, Fujishima A, watanabe T, et al. Mechanismfor the photoinduced hydrophilic conversion of TiO2 [A]. The sixth International Conference on TiO2 Photocatalytic Purification and Treatment of Water and Air[C]. Canada:Ontario,2001.
    [23]肖循,唐超群.TiO2薄膜的溶胶-凝胶法制备及其光学特性.功能材料.,2003,34(4):442-444
    [24]王云霞,阎逢元.多层纳米TiO2薄膜化学及机械稳定性的研究.材料科学与工程学学报,2005,23(5):590-594
    [25]余家国,赵修建.多孔光催化纳米薄膜的制备和微观结构研究.无机材料学报,2000,15(2):347-355
    [26]Kinetie K S. Study of photocataiytic degradation of vclatile organic compound in air using thin film TiO2 photocatalystl Appl,Catal B:Environ,2002,15:305-315
    [27]Wang K, Jehng J, Hsieh Y. The reaction pathway for the heterogenous photocatalysis of trichloroethylene in gas phase.J.Hazar Mater,2002,B90:63-75
    [28]余家国,赵修建,赵青南.TiO2纳米簿膜的溶胶-凝胶工艺制备和表征[J].物理化学学报,2000,16(9):792-797
    [29]陈绮丽,唐超群,肖循.TiO2纳米微粒的溶胶-凝胶法制备及XRD分析[J].材料科学与工程,2002(2):224-226
    [30]胡永茂,李茂琼,等.超细TiO2粒子的溶胶凝胶法制备研究.胶体与聚合物,2003,21(1):19-23.
    [31]张青红,高濂,郭景坤.四氯化钛水解法制备纳米氧化钛超细粉体[J],无机材料学报,200015(1):21-25.
    [32]杜剑桥,王兰武.用TiCl4制备纳米TiO2的研究状况钛工业进展,2005,22(2)17-20
    [33]钟永科,唐国凤,朱万强,等.水热法合成锐钛型纳米TiO2的研究.功能材料,2003,34(1):86-89
    [34]韦志仁,罗小平,付三玲.TiCl3水热合成纯金红相和锐钛相TiO2纳米晶体.人工晶体学报.2007,36(6):1301-1304
    [35]郑燕青,施尔畏,李汶军,等.水热条件下二氧化钛同质变体的形成[J].中国科学(E),2001,31(3):204-212.
    [36]郑燕青,施尔畏,元如林,等.二氧化钛晶粒的水热制备及其形成机理研究[J].中国科学(E)1999,29(3):206-213.
    [37]Cho C H, HanM H, Kim D H, et al. Morphology Evolution of Anatase TiO2 Nanocrystals Under a Hydrothermal Condition (pH=9.5) and their Ultra Highphoto Catalytic Activity [J]. Materials Chem istry and Physics,2005,92 (1):104-111.
    [38]Yang J, Mei S, Ferrei J M F, et al. Fabrication of Rutile Rod-like Particle by HydrothermalMethod:an Insight into HNO3 Peptization [J] Journal of Colloid and Interface Science,2005,283 (1):102-106.
    [39]Pavasup ree S, Ngamsinlapasathian S, Suzuki Y, et al. Preparation and Characterization of High Surface Area Nanosheet Titania withMesoporous Structure[J]. M aterials Letters,2007,61 (14215): 2973-2977.
    [40]董永春,刘春燕.偶氮染料分子结构与氧化脱色性能的定量关系.纺织学报.2006,27(1):16-19
    [41]尹荔松,周岐发,等.纳米TiO2粉晶的晶粒长大动力学及相转位动力学.《功能材料》2000,31(2):186-188
    [42]岳林海,水淼,徐铸德.二氧化钛微晶结构和光催化性能关联性研究[J],化学学报.1999,57:(1219-1225)
    [43]郑红,汤鸿霄,王怡中.有机污染物半导体光催化氧化机理及动力学研究进展[J].环境科学1996,4(3):1-18.
    [44]王积森,冯忠彬,等.纳米TiO2的光催化机理及其影响因素分析纳米材料与结构,2008,45(1):28-32
    [45]武汉大学博士学位论文,金属氧化物纳米材料在污染物处理及环境分析中的应用,2004.5
    [1]王运泉,张建平,郑燕君.粉煤灰的组成特征及其系统分类[J].环境科学研究,1998,11(6):1-4.
    [2]宋存义.粉煤灰砌筑抹灰水泥的生产与应用[M].北京:中国建材工业出版社,1999:1-5.
    [3]沈毅,任富建,刘红娟.掺杂TiO2的光催化性能研究[J].稀有金属材料工程,2006,35(11):1841-1844.
    [4]胡晓云,樊君,常娜,等.TiO2纳米薄膜微结构及光催化性能研究[J].化学工程,2006,34(5):41-44.
    [5]Xiaobo Chen and Samuel S. Mao. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications[J]. Chem. Rev.2007,107,2891-2959
    [6]赵晖,孙杰.TiO2光催化载体及提高光催化活性的研究进展[J].江苏环境科技,2006,19(4):52-55.
    [7]张覃,毛德明,卢定寿,等.粉煤灰的矿物学特性研究[J].粉煤灰综合利用,2001,(1):11-14.
    [8]徐风广.漂珠的物性研究及与原始粉煤灰的比较[J].煤炭科学技术,2002,30(9):49-52.
    [9]边炳鑫,陈文义,艾淑艳.粉煤灰中沉珠分选机理和分选试验研究[J].中国矿业,1997,6(1):65-69.
    [10]赵亚娟,刘转年,赵西成.粉煤灰吸附剂的研究进展[J].材料导报,2007,21(11):88-94.
    [11]陈旬,林华香,王绪绪.溶胶制备方法对玻璃表面膜性能的影响.福州大学学报(自然科学版),2002,30(5):610-613
    [12]Andrea Welte, Christoph Waldauf, Christoph Brabec,et al. Application of optical absorbance for the investigation of electronic and structural properties of sol-gel processed TiO2 films.Thin Solid Films, 2008,516(20):7256-7259
    [13]Morten E. Simonsen, Henrik Jensen,et al.Surface properties and photocatalytic activity of nanocrystalline titania films.Journal of Photochemistry and Photobiology A:Chemistry, 2008,200(2-3):192-200
    [14]刘兴德,牛福生,倪文.粉煤灰的资源化利用现状与研究进展[J].建材技术与应用,2005,(1):12-15.
    [15]张云怀,刘仁龙,张丙怀.以粉煤灰微珠为载体的TiO2结构和光催化性能的研究[J].精细化工中间,2002,32(4):38-40.
    [16]肖鹏,张云怀.粉煤灰负载TiO2光催化剂及其光催化活性的研究[J].粉煤灰综合利用,2004,(2):15-16.
    [17]Yeon-tae Yu. Preparation of nanocrystalline TiO2-coated coal fly ash and effect of iron oxides in coal fly ash on photocatalytic activity[J]. Powder Technology,2004,146(8):154-159
    [18]S.V. Vassilev, C.G. Vassileva. A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behavior [J]. Fuel,2007,86(10-11):1490-1512.
    [19]李磊,朱强,徐炎华,等.粉煤灰处理废水技术研究进展[J].粉煤灰综合利用,2006,(4):54-57.
    [20]曹广秀,马淮凌,江芳婷,等.掺杂Fe2O3纳米TiO2膜光催化降解有机染料废水中甲基橙[J].工业水处理,2006,26(12):44-47.
    [21]R. Cioffi, P. Pernice, A. Aronne,et al. Glass-ceramic from fly ash with added MgO and TiO2. Journal of the European Ceramic Society,1994,14(6):517-521.
    [22]崔婷,唐绍裘,万隆,等.纳米二氧化钛薄膜的制备及性能研究.硅酸盐通报,2006,(2):121-124
    [1]Xiaobo Chen and Samuel S. Mao. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications[J]. Chem. Rev.2007,107,2891-2959
    [2]李志军 王红英.纳米二氧化钛的性质及应用进展[J].广州化工,2006,34(1):23-25.
    [3]程萍,顾明元,金燕苹.TiO2光催化剂可见光化研究进展[J].化学进展,2005,17(1):8-14.
    [4]赵力,蒋慧,等.纳米光催化剂TiO2制备过程中的影响因素分析,辽宁化工2008,37(2):85-88
    [5]冯涛,刘洪波,陈姗姗.高级氧化技术在有机废水处理中的研究与应用.环境保护科学,2007,33(3):29-31
    [6]张治宏,王彩花,王晓昌.高级氧化技术在印染废水处理中的研究进展.工业安全与环保,2008,34(8):19-21
    [7]Zhang Wen, Wang Xuxu, Fu Xianzhi. Magnetic field effect on photocatalytic degradation of benzene over Pt/TiO2[J]. Chem Commun,2003(17):2196-2197.
    [8]白波,赵景联,冯霄,等.TiO2光催化反应过程的“场流”理论分析[J].太阳能学报,2002,23(5):641-647
    [9]朱素芳,袁斌,等.声光电磁废水处理技术[J].化工环保,2004,24(2):111-114
    [10]Steiner, U. E.; Ulrich, T. Magnetic field effects in chemical kinetics and related phenomena.Chem. Rev.1989,89(1):51-147.
    [11]Masanobu Wakasa, Sachiko Suda,et al. Magnetic Field Effect on the Photocatalytic Reaction with Ultrafine TiO2 Particles. J. Phys. Chem. B,2004,108 (32):11882-11885
    [12]Brocklehurst, B. Magnetic fields and radical reactions:recent developments and their role in nature Chem. Soc. Rev.2002,31,301-311.
    [13]陆模文,胡文详.有机磁合成化学研究进展[J].有机化学,1997(17):289-294.
    [14]朱传征.磁化学及其进展[J].科学,1995,47(2):32-351
    [15]Takashi Tachikawa, et al. Spin dynamics and zero-field splitting constants of the triplet exciplex generated by photoinduced electron transfer reaction between erythrosin B and duroquinone Chemical Physics Letters,2002,360:13-214
    [16]A. P. Chiriac, and C. I. Simionescu. Magnetic field polymerisation. Progress in Polymer Science.2000,25(2):219-2584
    [17]Aurica P. Chiriac Polymerization in a magnetic field.14. Possibilities to improve field effect during methyl acrylate polymerization.2004,92(2):1031-1036.
    [18]Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D.W. Environmental Applications of Semiconductor Photocatalysis Chem. Rev.1995,95,69-96.
    [19]Jonathan R. Woodward,Christiane R. et al.Timme. Oscillating magnetic field effects on chemical reaction yields.2002,44:79-81
    [20]Masanobu Wakasa and Hisaharu Hayashi.Magnetic field effects on the thermal reactions. RIKEN Review.2002,44:44-46
    [21]孙汉文.原子光谱分析.高等教育出版社[M],2002.7:30-40
    [22]岳林海,水淼,徐铸德.二氧化钛微晶结构和光催化性能关联性研究[J].化学学报.1999,57:(1219-1225)
    [23]赵宗彦,柳清菊,等.锐钛矿相TiO2电子结构和光学性质的第一性原理计算[J].半导体学报,2007,28(10):1555-1561
    [24]郑红,汤鸿霄,王怡中.有机污染物半导体光催化氧化机理及动力学研究进展[J].环境科学,1996,4(3):1-18.
    [25]常文贵,张胜义.高级氧化技术中羟基自由基产生的机理[J].安庆师范学院学报(自然科学版),2004,10(4):24-26
    [26]张雯,王绪绪,等.磁场对光催化反应羟基自由基生成速率的影响[J].化学学报,200563(18):1765-1768
    [27]姜方新,兰绕中.印染废水处理技术研究进展[J].云南师范大学学报,2002,22(2):24-27
    [28]刘冬莲,黄艳斌.OH的形成机理及在水处理中的应用[J].环境科学与技术,2003,26(1):44-46
    [29]张雯,王绪绪,付贤智.Pt/TiO2光催化降解苯的磁场效应研究[J].化学学报,2005,63(8):715-719
    [30]赵景联,种法国,赵靓,等.磁场TiO2光催化耦合降解酸性大红3R的研究[J].西安交通大学学报,2006,40(7):851-855
    [31]齐普荣,王光辉.光降解偶氮染料的研究进展[J].染料与染色,2007,44(2):1-4
    [32]姜焕伟,王郁,林逢凯等.磁场对TiO2光催化降解水中微量氯苯的影响[J],华东理工大学学报,2003,29(2):166-169
    [33]张雯.Pt/TiO2光催化降解苯的磁场效应,福州大学博士学位论文.2004.1
    [34]杜朝平,杨幼名.磁场助Y2O/TiO2粉体的光催化性能研究.工业催化,2005,13(2)47-50
    [35]Gautron J,Lemasson P,Marucco J F. Correlation between the non-stoichiometry of titanium dioxide and its photo electrochemical behavior[J]. Fara Diss Chem Soc,2001,70:80
    [36]彭晓春,陈新庚,黄鹊,等.n-TiO2光催化机理及其在环境保护中的应用研究进展.环境污染技术与设备,2002,3(3):1-6.
    [37]杨俊伟,王绪绪,戴文新,等Pt/TiO2上苯和乙烯光催化氧化过程的磁场效应[J].物理化学学报,2006,22(1):92-97
    [38]熊德琪,黄先湖.应用磁化效应提高含酚废水处理效果[J].水处理技术,2001,27(1):50-521
    [1]刘秀华,邓义,傅依备.聚合物基纳米复合材料的研究进展[J].化学工程师,2004,108,9:22-25
    [2]王德禧.聚合物基纳米复合材料的最新进展[J].工程塑料应用,2002,30,11:57-59
    [3]李志军,王红英.纳米二氧化钛的性质及应用进展[J].广州化工,2006,34(1):23-25
    [4]陈中元,陈晓,富坚.高聚物絮凝剂的研究进展.杭州化工,2007.37(2):5-8
    [5]舒型武.阳离子有机絮凝剂研究进展[J].现代化工,2001,21(10):13-15
    [6]刘翠云等.阳离子及两性聚丙烯酰胺絮凝剂的研究进展[J].石油化工,2002.19(2):45-47.
    [7]卢珍仙,马旭东.阳离子聚丙烯酰胺类絮凝剂的合成及应用进展[J].天津化工.2003,17(6):14-16
    [8]胡瑞,周华,等.阳离子有机高分子絮凝剂的研究进展及其应用[J].化工进展,2006,25(6):600-603
    [9]Xiaobo Chen and Samuel S. Mao. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications[J]. Chem. Rev.2007,107,2891-2959
    [10]吕亮,吾国强.高电荷密度阳离子聚丙烯酰胺的合成[J].化工技术与开发,2002,31(3):8-11.
    [11]赵立志,范晓宇,等.聚丙烯酰胺改性絮凝剂的制备及其应用研究[J].石油与天然气化工,2003,33(2):137-141
    [12]王晓春,王共远,郁桂云,等.阳离子聚丙烯酰胺絮凝剂的合成及水质对其影响的研究[J].化学推进剂与高分子材料,2004,2(5):4245
    [13]李海东,程风梅等.PVB/纳米TiO2复合材料的制备和表征[J].中国塑料 2006,206)32-35
    [14]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社,2003:172-180.
    [12]董永春,邢玉庭,王涛.不同结构酸性染料在染色整理-浴法中的应用[J].天津纺织工学院学报,1995,14(3):6-13
    [13]董永春,刘春燕.偶氮染料分子结构与氧化脱色性能的定量关系[J].纺织学报,2006,27(1):16-19
    [15]赵宗彦,柳清菊,朱忠其,等.锐钛矿相TiO2电子结构和光学性质的第一性原理计算[J].半导体学报.2007,28(10):1555-1561
    [16]ChoM S, Song B K, Yoon K J. Flocculation characteristics of copolymer of acrylamide with quaternary ammonium cationic monomer (running) flocculation by cationic polyacrylamide. Journal of Industrial and Engeering Chemistry,2002,8 (2):131-137
    [17]赵仕林,朱明,罗娅君.P(DMC-AM)阳离子絮凝剂的絮凝性能研究[J].四川师范大学学报(自然科学版),2002,25(5):503-506.
    [18]沈俊菊,庄源益.有机絮凝剂]P(AM-DMC)的脱色性能[J].南开大学学报(自然科学版),2006,39(1):24-28
    [19]郑红,汤鸿霄,王怡中.有机污染物半导体光催化氧化机理及动力学研究进展[J].环境科学,1996,4(3):1-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700