食源性革兰氏阴性肠道病原菌PFGE分型和大肠杆菌耐药性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大肠杆菌、沙门氏菌和空肠弯曲杆菌是目前世界范围内报到最多、引起食源性疾病暴发事件最多的3种致病性革兰氏阴性肠道菌。对暴发病原菌的快速确定和溯源是防止疫情恶化、减少对人们身体和经济带来更大危害的关键。脉冲场电泳(PFGE)分子分型技术由于其高分辨力、实验室间的高度可重复性和易于分析并通过网络进行对比,被誉为病原菌分型的“黄金方法”。越来越严重的病原菌耐药问题,对临床上相关感染的治疗带来极大挑战,成为目前困扰医学的一大难题。肠道菌群因为密度比较大,更容易进行耐药基因的水平传递,作为粪便污染指示菌的大肠杆菌更是被认为是肠道致病菌的耐药基因库。对其耐药性现状、耐药性产生和发展、耐药性转移和相关影响因素的研究,对各种肠道病原菌的多重耐药性的控制、临床治疗具有重要意义。本研究对陕西西安和杨凌地区的食源性大肠杆菌进行分离、鉴定、毒力因子、整合子和药敏性研究,并分别利用6种限制性内切酶对大肠杆菌O157:H7、空肠弯曲杆菌和四个血清型的沙门氏菌进行了PFGE分子分型研究,所得主要结果如下:
     1、陕西西安和杨凌地区各种原料肉中,大肠杆菌污染100%存在,其污染程度跟产品种类无关,跟产品来源有一定相关性。凉拌菜样品大肠杆菌分离率86.7%,调味品可能是抑制大肠杆菌在凉拌菜中繁殖的主要原因。在毒力因子检测中,粘附性毒素主要表达基因fimA基因阳性率为56.1%(273株)。通过对STXI、STXII、ST、LT等毒素表达基因的检测,发现产志贺样毒素大肠杆菌阳性率为0.62%,产肠毒素大肠杆菌阳性率是14.4%。
     2、陕西食源性大肠杆菌对四环素的耐药率最高,占受试菌株的99.3%(551);耐受率均超过50%的抗生素依次还有链霉素(65.6%)、阿莫西林(61.3%)、萘啶酮酸(57.7%)、氨苄青霉素(55.1%),其余依次是环丙沙星(38.7%)、氯霉素(38.0%)、卡那霉素(34.6%)、庆大霉素(30.8%)、头孢哌酮(23.4%)、头孢西丁(12.4%);试验菌株对阿米卡星最为敏感,有8.8%耐药菌株产生。
     3、575株受试菌中,发现2.1%(12)的菌株对12种抗生素全部敏感,其余563(97.9%)株大肠杆菌至少对一种抗生素有耐药性。多重耐药(≥3)率为62.3%(358),37.0%的株菌对7种以上抗生素耐受。多重耐药菌存在最多的是9重耐药菌株,有58株菌, 6重和10重耐药菌次之,均都有49株,其余依次是8(43)、3(35)、4(34)、7(31)、5(27)、11(25)、12(7)。表明多重耐药现象在陕西食源性大肠杆菌中比较严重。
     4、大肠杆菌菌株来源不同则耐药性存在很大差异,鸡肉分离株的耐药性和多重耐药率明显高于其它分离株。304株鸡肉分离株100%的耐药,多重耐药(≥3)率为85.5%(260),以9重耐药菌株最多(56),其次是10(47)、8(40)、7(26)、11(25)、6(21)、4(14)、5(14)、3(11)、12(7)重耐药株。对7种以上抗生素耐受率达66.1%(201)。说明陕西鸡肉分离大肠杆菌的耐药性非常严重。
     5、118株肉样品分离菌株中,49.1%的菌株携带有750~2000bp的I类整合子。其中鸡肉分离株的整合子率为55.1%。多重耐药菌株(≥3)中,整合子阳性率为59.1%,其中鸡肉多重耐药菌株的整合子阳性率为59.5%,其它肉多重耐药菌株整合子阳性率为55.6%。非多重耐药菌中,I类整合子检出率仅16.7%。在耐药重数≥7的菌株中,66.7%的菌株I类整合子呈阳性。整合子存在与大肠杆菌耐药性之间有一定的相关性。
     6、58株携带整合子的菌株,携带约2.0kbI类整合子的菌最多,有29株,有19株菌在750bp左右有扩增带,在1.5kb左右有扩增带的菌12株,其中1株有750bp和1.5kb两条带,2株在750bp和2.0kb均有扩增。
     7、在对大肠杆菌O157:H7单酶PFGE分型中,以SpeI效果最好,将43株试验菌株切割后,产生21~32条有效带,产生基因型22个。BlnI/SpeI/PacI3酶结合和XbaI/BlnI/NheI/SpiI/SpeI/PacI 6种酶结合分析做树状图,所得基因型相、束平均数、束菌株百分比、结与菌株比值和SID指数等5个参数完全相同,分别是26、4.4、52%、0.67和0.902。
     8、对4个血清型的沙门氏菌S. Heidelberg、S.Kentucky、S.SaintPaul和S.Hadar进行6种酶PFGE分子分型,分型效果最好的酶各不相同,分别是PacI、SpeI、SpiI、NotI;最佳3酶组合分别依次是:SpeI/PacI/BlnI、SpeI/NotI/SfiI、SpeI/BlnI/SfiI和SpeI/NotI/SfiI。6种酶结合使用,血清型不同则产生的分型能力不同。3酶结合就可以达到很好的分型效果。
     9、限制性内切酶BamHI是对空场弯曲杆菌PFGE分子分型效果最好的内切酶。对空肠弯曲杆菌,要获得更好的溯源和分型效果,PFGE应该与其它方法结合使用才能达到预期结果。
     10、综合分析PFGE分子分型结果,发现与大肠杆菌和沙门氏菌分型结果相比较,PFGE对空肠弯曲杆菌的分型能力要差一些。
Escherichia coli (E.coli) ,Salmonella and Campylobacter jejuni are three major food-borne pathogens which were most frequently reported to cause disease outbreak worldwide. The identification and tracing the source of the pathogens are the keys for preventing deterioration of the epidemic, and economic loss. Because of its high discrimination ability and repeatability, simplicity of analyzing the result and comparing through internet, Pulsed-field gel electrophoresis (PFGE) was named the“gold method”for subtyping pathogens. Multidrug-resistant pathogens are being isolated at an increasing rate in hospital settings and are having a significant impact on clinical practice and overall treatment costs.
     Because of the high concentration, it is easy to acquire the resistance genes by horizontal transfer between Enterobacteriaceae. As the indicator bacteria of dejecta contamination, E.coli is regarded as the reservoir of resistance genes. Study on the antibiotic resistance, the antibiotic resistance emergence, the resistance genes transfers and related influencing factors of E.coli have significant impact on controlling the producing of multidrug-resistance pathogens, and clinical practice. We studied the prevalence of E.coli among meats and Chinese salads, the virulence genes, class I integron and antimicrobial susceptibility in these E.coli, and subtyping 43 E.coli O157:H7, 4 serotypes salmonella(114) and 43 Campylobacter jejuni with 6 enzymes PFGE. The main results as following:
     1、575 E.coli were isolated from meats (100%) and Chinese salads (86.7%) sampled from Xi’an and Yangling in Shannxi Province. The detection rate of E.coli was unrelated with the species of meat, but resources. The flavorings maybe the main reason in inhibitting E.coli in Chinese salads. The detection rate of fimA genes encoding adhesion toxin was 56.1%(273). Furthermore, we detected the stxI、stxII、st and lt genes encoding intestinotoxin. The detection rate of STEC was 0.62%, and the detection rate of ETEC was 14.4%. This means that the food safety in Xi’an and Yingling is potentially at risk.
     2、575 food-borne E.coli isolates were highly resistant to Tetracycline (99.3%), Streptomycin(65.6%), Amoxicillin(61.3%), Nalidixic acid(57.7%), Ampicilllin(55.1%), whose antibiotic resistance rate were above 50%. The others’ordering were Ciprofloxacin (38.7%), Chloramphenicol(38.0%), Kanamycin(34.6%), Gentamicin(30.8%), Cefoperazone(23.4%), Cefoxitin(12.4%). Only 8.8% isolates were resistance to Amikacin.
     3、In 575 food-borne E.coli,2.1%(12)isolates were susceptible to all 12 antibiotics used in the study. 563(97.9%)isolates were resistant to one agent at least. Multidrug resistance (≥3)rate was 62.3%(358),and 37.0% E.coli were resistant to 7 or more agents. In 358 multidrug resistance isolates(≥3), 58 were resistant to 9 agents, isolates resistant to 6,10,8,3,4,7,5,11,7 agents were 49,49,43,35,34,31,27,25,7, respectively. All data indicates that the multidrug resistance food-borne E.coli are prevalent in Shaanxi province。
     4、304 isolates from Chicken displayed 100% resistance,85.5%(260)isolates resistant to 3 or more antibiotics. 7 isolates with the highest level of antibiotic resistance were resistant to all 12 agents used in the study. 56 isolates were resistant to 9 agents. Isolates resistant to 10,8,7,11,6,4,5,3 antibiotics were 47,40,26,25,21,14,14,11, respectively. 66.1%(201)isolates from chicken were resistant to 7 or more agents. Isolates from different resources had different antimicrobial susceptibility. The isolates from chicken displayed higher resistance level than isolates from other resources.
     5、49.1% isolates were PCR positive for class I integron among 118 meat E.coli isolates. 55.1% chicken isolates were PCR positive for class I integron. 59.1% isolates were PCR positive for class I integron among multidrug resistance(≥3) isolates. Isolates resistant to 1 or 2 agents only displayed 16.7% PCR positive for class I integron. Among the isolates resistant to more than 7 agents, 66.7% isolate were PCR positive for class I integron. It demonstrates that antibiotic resistance is associated with class I integron in E.coli.
     6、29 isolates had 2.0kb class I integron among 58 class I integrons PCR positive isolates . 19 isolates were 750bp class I integron positive. 12 isolates were 1.5kb class I integron positive. One isolates displayed PCR positive for both 750bp and 1.5kb class I integrons,and two isolates displayed PCR positive for 750bp and 2.0kb class I integron.
     7、Enzyme SpeI was most suitable for subtyping STEC O157:H7. There were 21 to 32 bands appeared in the PFGE gel. 43 O157:H7 were divided into 22 subtypes. The dendrograms that resulted from three enzyme combination BlnI/SpeI/PacI and six enzyme combination XbaI/BlnI/NheI/SpiI/SpeI/PacI showed same discrimination, produced 26 subtypes, yielded an average 4.4 isolates per unresolved cluster, 52% isolates unresolved, a node-to-isolates ratio of 0.67, and a SID of 0.902.
     8、For 4 serotypes Salmonella -S. Heidelberg, S.Kentucky, S.SaintPaul and S.Hadar, 6 enzymes subtyping results were different in difference serotypes. The enzyme which was most suitable for PFGE subtyping were PacI, SpeI, SpiI and NotI for S. Heidelberg, S.Kentucky, S.SaintPaul and S.Hadar, respectively. For S. Heidelberg, S.Kentucky, S.SaintPaul and S.Hadar, the most suitable three enzyme combination were SpeI/PacI/BlnI, SpeI/NotI/SfiI, SpeI/BlnI/SfiI和SpeI/NotI/SfiI, respectively. 6 enzyme combination PFGE yielded different discrimination for 4 Salmonella serotypes. The simultaneous analysis of 3 enzyme combination proved to be a beneficial scheme for the PFGE-based differentiation of closely related isolates of the four Salmonella serotypes.
     9、BamHI was the most suitable Enzyme for Campylobacter jejuni in PFGE subtyping. In order to get higher discrimination ability for subtyping Campylobacter jejuni , PFGE should be used with other methods together.
     10、Analyzing all data of PFGE subtyping, the discrimination ability of PFGE subtyping for STEC O157:H7 and Salmonella was better than Campylobacter jejuni.
引文
[1] WHO. WHO global strategy for food safety, ISBN 92 4554574 1 NLM classification: WA695, 2002.
    [2] Mead PS, Slutsker V, Dietz, et al. Food-related illness and death in the United Stated [ J ]. Emerg. Infect. Dis. 1999, 5:607-625.
    [3] WHO. Food Chain 2001 -“Food Safety - a World -wide challenge”, 14March 2001.
    [4] WHO.Food safety– a worldwide public health. http://www.who.int/ fsf/ fctshtfs. htw, 2002.
    [5] WHO.Food safety and foodborne illness. http://www. who. int/ inf-fs/en/ fact 237. htm, 2002.
    [6] WHO.Emerging food borne disease. http://www. who. int/ inf-fs/en/ fact 124. htm, 2002.
    [7]潘云娣,贾山,吴邵乾.食品安全—一个世界性的公共卫生问题[ J ].华南预防医学, 2002, 28 (6) : 63 - 64.
    [8]李泰然.中国食源性疾病现状及管理建议[ J ].中华流行病学杂志, 2003, 24 (8):651 - 653.
    [9]刘秀梅.中国食品报.全球微生物食品安全现状与挑战[N], 2004-06-25.
    [10]刘秀梅,陈艳,王晓英等.1992-2002年食源性疾病分析-国家食源性疾病监测网[J].卫生研究,2004, 33(6):725-727.
    [11]凌文化,朱惠莲.控制食源性疾病是一项全球关注的公共卫生问题[J].疾病控制杂志,1999,4(3):304-306.
    [12] Escherich T. The intestinal bacteria of the neonate and breast-fed infant[J]. Rev Infect Dis, 1989,11(2): 352-356.
    [13] http://baike.baidu.com/view/29729.htm
    [14] Dozois CM, Pourbakhsh SA, Fairbrother JM. Expression of P and type 1 (F1) fimbriae in pathogenic Escherichia coli from poultry[J]. Vet Microbiol, 1995, 45(4): 297-309.
    [15]WHO. Enterohaemorrhagic Escherichia coli infection in Japan[J].Wkly Epid Rec. 1996, 30:229-230.
    [16]Tarr PI. Escherichia coli O157:H7:clinical, diagnostic and epidemiological aspects of human infection[J]. Clin Infect Dis. 1995,20(1):1-10.
    [17] Blattner FR, Plunkett G, Bloch CA, et al. The Complete Genome Sequence of Escherichia coli K-12[J]. Science, 1997, 277(5331):1453-1462.
    [18] Perna NT, Plunkett G, Burland V, et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7[J]. Nature , 2001, 409:529-533.
    [19] Welch RA, Burland V, Plunkett G, et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli[J]. Proc Natl Acad Sci U S A. 2002, 99(26): 17020–17024.
    [20] Hayashi T, Makino K, Ohnishi M, et al. Genome sequence and comparative analysis of enterohemorrhagic E. coli O157:H7[J]. DNA Res. 2001, 8:11-22.
    [21] Nateo JP, Kaper JB. Diarrheagenic Escherichia coli[J]. Clin Microbiol Rev. 1998, 11(1):142-201.
    [22] Harrington S.M, Dudley E.G, Ntaro J.P. Pathogenesis of enteroaggregative Escherichia coli infection. FEMS Microbiol.Lett[J]. 2006,254:12-18.
    [23] Muller D, Greune L, Heusipp G, et.al. Identification of unconventional intestinal pathogenic Escherichia coli isolates expressing intermediate virulence factor profiles by using a novel single-step multiplex PCR[J]. Applied and environment microbiology . 2007, 73(10):3380-3390.
    [24] Naveh MW, Zusman T, Skutelsky E, et al. Adherence pili in avian strains of Escherichia coli: Effect on pathogenicity[J]. Avi Dis, 1984, 28: 651-661
    [25] Dozois CM, Chanteloup N, Dho-Moulin M, et al.Bacterial colonization and in vivo expression of F1 (type 1) fimbrial antigens in chickens experimentally infected with pathogenic Escherichia coli[J]. Avi Dis, 1994, 38 (2): 231-239
    [26] La Ragione RM, Sayers AR, Woodward MJ. The role of fimbriae and flagella in the colonization, invasion and persistence of Escherichia coli O78: K80 in the day-old-chicken model[J]. Epidemiol Infect, 2000, 124: 351-363.
    [27] Dozois CM, Pourbakhsh SA, Fairbrother JM. Expression of P and type 1 (F1) fimbriae in pathogenic Escherichia coli from poultry[J]. Vet Microbiol, 1995, 45(4): 297-309.
    [28] Dress DT, Waxler GL. Enteric colibacillosis in gnotobiotic swine: An electron microscope study[J]. Am J Vet Res, 1970, 31(7): 1159-1171
    [29] Marc D. Arne P, Bree A, et al. Colonization ability and pathogenic properties of a fim- mutant of an avian strain of Escherichia coli[J]. Res Microbiol, 1998, 149: 473-485.
    [30] Centers for Disease Control and Prevention. Outbreaks of Salmonella serotype Enteritidis infection associated with eating shell eggs―United States, 1999-2001[J]. MMWR Morb Mortal Wkly Rep. 2003;51:114952.
    [31] Centers for Disease Control and Prevention. Salmonella annual summary: 2000. Division of Bacterial and Mycotic Diseases. 2000. Available from http://www.cdc.gov/ncidod/dbmd/phlisdata/salmtab/2000/Salmonella Annual Summary 2000.
    [32] Voetsch AC, Van Gilder TJ, Angulo FJ, Farley MM, Shallow S, Marcus R, et al. FoodNet estimate of the burden of illness caused by nontyphoidal Salmonella infections in the United States[J]. Clin Infect Dis. 2004;38: 12734.
    [33] Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, et al. Food-related illness and death in the United States[J]. Emerg Infect Dis. 1999, 5:60725.
    [34]巢国祥,徐勤,李禾等.扬州市六类食品沙门氏菌污染状况及耐药情况研究[J].世界感染杂志,2005(2):102-104.
    [35]刘秀梅,陈艳,王晓英等.1992一2002年食源性疾病分析—国家食源性疾病监测网[J]卫生研究,2004,33(6):725一727.
    [36]蒋震羚,吕素玲,唐振柱等.2002~2005年广西食品中沙门氏菌的监测与分析[J].实用预防医学,2006,13(5):1262-1264.
    [37]戴建华,乔昕,袁宝君等.江苏省2001年~2005年食源性致病菌监测分析[J].江苏预防医学,2006 ,17 (3):50-52.
    [38]童哲,程苏云,梅玲玲.浙江省272份食品沙门氏菌检测结果[J].浙江预防医学,2003,15(4):33-34.
    [39] Ridley A, Threlfall EJ. Molecular epidemiology of antibiotic resistance genes in multiresistant epidemic Salmonella typhimurium DT104[J]. Microb. Drug Resist,1998,4:113-118.
    [40] Therfall EJ,Rowe B,Ward LR. A comparson of multiple drug resistance in salmonellas from humans and food animal in England and Wales,1981and1990[J]. Epidemil Infect,1993,111:189-197.
    [41]Chen,S.,S.Zhao,D.G.White,C.M.Schroeder,R.lu,H.Yang,P.F.McDermott,S.Ayers,and J.Meng..Characterization of multiple-antimicrobial-resistant Salmonella serovars isolated from retail meats[J].Appl Environ Microbial. 2004, 70:1-7.
    [42]Zhao,S.,D.G.White,P.F.McDermott,S.Friedman,L.English,S.Ayers,J.Meng,J.J.Maurer,R.Holland, and R.D.Walker. Identification and expression of cephamycinase bla(CMY) genes in Escherichia coli and Salmonella isolates from food animals and ground meat[J].Antimicrob Agents Chemother, 2001, 45:3647-3650.
    [43]关文英,申志新,张淑红等.河北省食品中沙门氏菌的耐药性研究[J].现代预防医学,2006,33(10):1761-1763.
    [44] http://baike.baidu.com/view/91651.htm
    [45] http://baike.baidu.com/view/426116.htm
    [46]陈代杰.抗菌药物与细菌耐药性(第一版)[M].上海,华东理工大学出版社,2001.
    [47]黄怡.常用抗菌药物耐药机制及对策[J].国外医药抗生素分册.1999,20(1):28一31.
    [48]凌文化,朱惠莲.控制食源性疾病是一项全球关注的公共卫生问题[J].疾病控制杂志, 1999,4(3):301-306.
    [49]陈杖榴.兽医药理学[M].2002,中国农业出版社:235-236.
    [50]金少鸿.抗生素在人类医学领域以外使用的危险控制策略[J].中国抗生素杂志,2005, 30(5):321一323.
    [50] Cohen ML. Changing patterns of infectious disease[J]. Nature. 2000, 406:762-767.
    [51]陈美百.细菌耐药机制与对策[J].海峡药学. 2002,14(1):56-57.
    [52] Wegener HC. Antibiotics in animal feed and their role in resistance development[J].Current Opinion in Microbiology,2003,6:439-455.
    [53]Kullln C.M. Use of antimicrobial drugs in developing countries[J]. International journal of anbiomicrobia lagents,1995,5:107-113.
    [54]田边,细菌的耐药性与人类的生存[J],科技视野,2001,7:18~19.
    [55] Levy SB. The challenge of antibiotic resistance[J]. Sci.Am. 1998, 278:46-53.
    [56] Levy SB, Marshall B. Antibacterial resistance worldwide: cause, challenges and responses[J]. Nat. Med. 2004, 10:122-129.
    [57] Neu HC. The crisis in antibiotic resistance[J]. Science. 1992, 257:1064-1073.
    [58] Wood MJ, Moellering RC. Microbial resistance: bacteria and more[J]. Clin.Infect.Dis. 2003, 36:2-3.
    [59] Travis J. Reviving the antibiotic miracle[J]. Science. 1994, 264:360-362.
    [60] Dano K. Cross resistance between vinca alkaloids and anthracyclines in Ehrlichascites tumor in vivo. Cancer Chemother. 1972, 56:701-708.
    [61]吕津.畜禽滥用抗生素问题巫待解决[J].北方牧业,2006.1.30.
    [62]朱力军.动物大肠杆菌耐药性的变化趋势[J].中国兽药杂志,2001,35(2):16一18.
    [63]潘志明,焦新安,刘文博等.鸡白痢沙门氏菌的耐药性监测研究[J].畜牧兽医学报,2002,33(4):377一383.
    [64] Chu DTW , Fernandes PB. Structure activity relationships of the fluoroquinolones. [J] J . Antim icrob Agents Chemother,1989, 33: 131-137.
    [65] Hooper DC,Wolfson JS. Mode of action of the quinolone antimicrobial agents: review of recent information. [J]. Rev InfectDis, 1989, 11(Suppl 5): 5902
    [66]张致平.合成半合成抗生素研究的进展. [J].中国抗生素杂志, 1996, 21(增刊): 47
    [67]马聪,郝秀红.1991-1999年临床常见病原菌及耐药现状[J].中国抗生素杂志.2001,26(6):447-449.
    [68]张凤凯,余少鸿,吴玲,等.北京地区部分医院细菌对常用抗生素耐药性现状及变迁. [J].中华医学杂志, 1997, 77(5):327
    [69]黄亚非.微生物对喹诺酮类抗菌药物的耐药性[J].中国医院药学杂志,1998,18(5):230-231.
    [70]张军民,吴坚,程彦国,等.大肠杆菌对喹诺酮类抗菌药物耐药性4年监测结果分析.[J].药物与临床, 1998, 13(6): 20-26.
    [71] Ramos JM,Ales JM,Crenca EM,et al. Changes in susceptibility of Salmonella enteritidis Typhimurium and Salmonella Virehow to six antimicrobial agents in a Spanish hospital[J]. Epidemiol Infect,2003,101:302-308.
    [72] Cloete TE. Resistance mechanisms of bacteria to antimicrobial to compounds[J]. International Biodeterioration and Biodegradation.2003,51:277-282.
    [73] Toroasz A. Antibiotic resistance in Streptococcus Pneumoniae[J].Clin Infect Dis,1997,24:585-588.
    [74] World Health Organization, Report of the WHO meeting on the medical impact of the use of antimicrobials in food animals[R]. 1997,October 13-17 ,Berlin.
    [75] Cloete TE. Resistance mechanism of bacteria to antimicrobial compounds [J]. International Biodeterioration and Biodegradation 2003, 51:277-282.
    [76] Davies,JE. Origins, acquisition and dissemination of antibiotic resistance determinants[J]. Ciba Found Sump.1997, 207:15-27.
    [77] Tattawasart U, Maillard J, Furr JR, et al.Outer membrane changes in Pseudomonas statzeir resistant to chlorhexidine diacetate and cetylpyridinium chloride[J]. Int J antimicrob Agents 2000, 16:233-238.
    [78] Goettsch W, Van Pelt W, Nagelkerke N,et al.Increasing resistance to fluoroquinolones in Escherichia coli from urinary tract infections in The Netherlands[J].J Antimicrob Chemother 2000,46:223-228.
    [79] Davis J. Inactivation of antibiotics and the dissemination of resistance genes[J]. Science. 1994, 264:375-382.
    [80]刘渠,刘衡川,白松涛等.食品中大肠埃希氏菌、沙门氏菌整合子的耐药性水平传递研究[J].现代预防医学, 2004,31(15):681-684.
    [81]Schnabel EL,Jones AL. Distribution of tetracycline resistance genes and transposons among phylloplane bacteria in Michigan apple orchards[J]. Appl. Environ. Microbiol. 1999,65: 4898-4907.
    [82]Vezina G, Levesque RC. Molecular characterization of the class II multiresistance transposable element Tn 1403 from Pseudomonas aeruginosa. Antimicrob[J]. Agents Chemother. 1991,35: 313-321.
    [83]http://www.microbiologyprocedure.com/microbial-genetics/transposons-jumping-genes-transposable-genetic-elements.htm.
    [84] Stokes HW, Hall RM. A novel family of potentially mobile DNA elements encoding site specific gene integration functions:integrons [J]. Mol Microbiol, 1989, 3(12):1669~1683.
    [85] Hall RM , Stokes HW. Integrons: novel DNA elements which capture genes by site-specific recombination [J ].Genetica, 1993, 90(23):115- 132.
    [85] Vesque CL, Piche LY, Larose C, et al. PCR Mapping of Integrons Reveals Several Novel Combinations of Resistance Genes[J]. Antimicrobial Agents and Chemotherpy, 1995, 39(1): 185–191. [86 ] Collis CM , Hall RM. Site-specific deletion and rearrangement of integron insert genes catalyzed by the integron DNA integrase [J ]. J B acteriol, 1992, 174 (5) : 1574- 1585.
    [87] Yum JH, Yong D, Lee K, et al. A new integron carrying VIM-2 metallo-beta-lactamase gene cassette in a Serratia marcescens isolate[J]. Diagn Microbiol Infect Dis 2002,42:217–219.
    [88]刘婷婷,李风云.整合子2基因盒系统在细菌耐药性中的作用[J] .蚌埠医学院学报, 2006, 31(2):215-217.
    [89] Fluit AC, Schmitz FJ. Class 1 integrons, gene cassettes, mobility and epidem- iology [ J ]. Eur J Clin Microbiol Inect Dis, 1999, 18 (11) : 761~770.
    [90]Yum JH,Yong D, Lee K. A new integron carrying VIM-2 metallo-beta-lactamase gene cassette in a Serratia marcescens isolate[J].Diagn Microbiol Infect Dis 2002,42:217–219.
    [91]Strommenger B, Kettlitz C, Werner G, et al. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus[J].J Clin Microbio 2003,41:4089-94
    [92] Paulsen IT, Banerjei L, Myers GS, et al. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis[J]. Science 2003,299:2071-2074.
    [93]Centron D, Roy PH. Presence of a group II intron in a multiresistant Serratia marcescens strain that harbors three integrons and a novel gene fusion[J]. Antimicrob Agents Chemother 2002, 46:1402–1409.
    [94]Nield BS, Holmes AJ, Gillings MR, et al. Recovery of new integron classes from environmental DNA[J]. FEMS Microbiol Lett 2001,195:59-65.
    [95] Recch ia G D, Hall R M. Gene casset tes: a new class of mobile element [J ]. M icrobiology , 1995, 141 (12) : 3015-3027. [ 96 ] Hall RM, Collis CM, Kim MJ, et al. Mobile gene cassettes and integrons in evolution [J]. Ann N Y Acad Sci,1999,18(8):70-68.
    [97] Magnus DA, Guerout AM, Ploncard P, et al. The evolutionary history of chromosomal super-integrons provides an ancestry formulti resistant integrons[J]. Proc Natl Acad Sci USA 2001, 98:652–657.
    [98]魏取好,蒋晓飞,吕元.细菌整合子研究进展[J].中国抗生素杂志,2008,33(1):1-5. [ 99 ] Arakaw a Y, Murakami M , Suzuki K, et al. A novel integron2 like element carrying the metalβ-lactamase gene bla IM P [J ]. A ntim icrob A g ents Chem other, 1995, 39(7) : 1612-1615. [100 ] Correia M , Boavida F, Grosso F, et al. Molecular characterization of a new class 3 integron in K lebsiella pneumoniae [J ]. A ntim icrob A g ents Chem other, 2003, 47 (9) :2838- 2843.
    [101] Mazel D, Dychinco B, Webb VA , et al. A distinctive class of integron in the V ibrio chloerae genome [J ]. S cience, 1998, 280 (5363) : 605~608. [102 ] Mazel D. Integrons: agents of bacterial evolution [J ]. Nat Rev Microbiol, 2006, 4 (8) : 608-620.
    [103]Naas T, Mikami Y, Imai T, et al. Characterization of In53, a class 1 plasmid-and composite transposon-located integron of Escherichia coli which carries an unusual array of gene cassettes[J]. J Bacteriol 2001,183:235–249.
    [104]Collis CM , Grammaticopoulos G, Briton J , et al. Sitespecific insert ion of gene cassettes into integrons [ J ].Mol Microbiol, 1993, 9 (1) : 41- 52. [105 ] Collis CM , Hall RM. Gene casset tes from the insert region of integrons are excised as covalently closed circles [J ]. Mol Microbiol, 1992, 6 (19) : 2875- 2885.
    [106]Gravel A , Messier N , Roy PH. Point mutations in the integron integrase Int I that affect recombination and/or substrate recognition [J ]. J B acteriol, 1998, 180 (20) :5437- 5442. [ 107 ] Messier N , Roy PH. Integron integrases possess aunique additional domain necessary for activity [ J ]. JB acteriol, 2001, 183 (22) : 6699-6706.
    [108] Partridge SR, Recchia GD, Scaramuzzi C, et al. Definition of the attI 1 site of class 1 integrons [J ]. M icrobiology , 2000, 146 (11) : 2855- 2864. [109 ] Collis CM , Kim MJ , Stokes HW , et al. Binding of the purified integron DNA integrase Int I1 to integron2 and cassette-associated recombination sites [J ]. M ol Microbiol, 1998, 29 (2) : 477- 490.
    [110] Recchia GD, Stokes HW , Hall RM. Characterization of specific and secondary recombination sites recognized by the integron DNA integrase [J ]. Nucleic Acids Res,1994, 22 (11) : 2071- 2078.
    [111]Hall RM , Collis CM. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination [J ]. Mol Microbiol, 1995, 15 (4) : 593- 600.
    [112] Collis CM , Hall RM. Expression of antibiotic resistance genes in the integrated cassettes of integrons [ J ].Antimicrob Aents Chemother, 1995, 39 (1):155-162.
    [113] Stokes HW , O′Gorman DB, Recchia GD, et al. Structure and function of 592base element recombination sites associated with mobile gene cassettes [J ]. Mol Microbiol, 1997,26 (4) : 731-745.
    [114] Grape M , Farra A , Kronvall G, et al. Integrons and gene cassettes in clinical isolates of co-trimoxazole-resistant Gram-negative bacteria [J ]. C lin M icrobiol Inf ect, 2005, 11 (3) : 185~192.
    [115]Gombac F, RiccioM L , Rossolini GM , et al. Molecular characterization of integrons in epidemiologically unrelated clinical iso lates of A cinetobacter baum annii from Italian hospitals reveals a limited diversity of gene cassette arrays [J ]. A ntim icrob A g ents Chem other, 2002, 46 (11) :3665~3668.
    [116] Su J , Shi L , Yang L , et al. Analysis of integrons in clinical isolates of E scherichia coli in China during the last six years [J ]. FEM S Microbiol Lett, 2006, 254 (1) : 75-80. [117 ] Shi L , Zheng MP, Xiao ZH, et al. Unnoticed spread of class 1 integrons in Gram-positive clinical strains isolated in Guangzhou, Ch ina [J ]. M icrobiol Imm unol, 2006, 50(6) : 463-467. [ 118 ] Rosser SJ , Young HK. Identificat ion and characterization of class 1 integrons in bacteria from an aquatic environment [J ]. J Antimicrob Chemother, 1999, 44 (1) : 11~18.
    [119] David H. Molecular Microbiology[M]. Washington.DC. 2003,5.
    [120] Spratt BG. Resistance to antibiotics mediated by target alterations[J]. Science. 1994, 264:388-393.
    [121] Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux[J]. Science. 1994, 264:382-388.
    [122]Depardieu F, Podglajen I, Leclercq R, et al , Modes and modulations of antibiotic resistance gene expression[J] . Clin Microbial Rev , 2007 , 20 :79-84.
    [123] http://www.lunwentianxia.com/product.free.7811159.1/
    [124]Trindade PA, McCulloch JA, Oliveira GA, et al. Molecular techniques for MRSA typing: current issues and perspectives [ J ] .The Brazilian Journal of Infectious Diseases,2003,7(1):32-43.
    [125] Guerra B,Helmuth R,Tsen HY,et al.Pulsed-field gel electrophoresis,plasmid profiles and phage types for the human isolates of Salmonella enterica serovar enteritidis obtatined over 13 years in Taiwan[J].J Appl Microbiol,2005,99(6):1472-1483.
    [126] Chiou C,Wei H,Yang L.Comparison of pulsed-field gel electrophoresis and coagulase gene restriction profile analysis techniques in the molecular typing of Staphylococcus aureus[J].J Clin Microbiol, 2000, 38:2186-2190.
    [127] Kumari DN P,Keer V,Hawkey PM,et al.Comparison and application of ribosome spacer DNA amplicon polymorphisms and pulsed-field gel electrophoresis for differentiation of methicillin-resistans Staphylococcus auresu strains [ J ] .J Clin Microbiol,1997,35:881-885.
    [128]计融,李燕俊,王玉平等.多位点序列分型和脉冲长凝胶电泳在肠炎沙门菌分子分型的比较[J].中华流行病学杂志,2006,27(12):1065-1068
    [129]岳慧琴.脉冲电泳技术及其应用[J].实验室科学,2007,5:142-143.
    [130]余小菁.脉冲场电泳及其在食源性疾病预防与控制中的应用[J].现代科学仪器,2007,1:134-36.
    [131] Centers for Disease Control and Prevention. 1998. Standardized molecular subtyping of foodborne bacterial pathogens by pulsed-field gel electrophoresis[S]. CDC training manual. Centers for Disease Control and Prevention, Atlanta.
    [132]付英梅,马佳毓,赵月辉等.脉冲凝胶电泳技术在细菌学上的应用[J].中国卫生检验杂志,1999 ,9(1):72-74.
    [133]Schwartz DC, Cantor CR. Separation of yeast chromosome sized DNA s by pulsed field gradient gel electrophoresis[J]. Cell, 1984; 37: 67-69.
    [134] Smith C, Cantor C. Pulsed-field gel electrophoresis of large DNA molecules[J]. Nature,1986, 319: 701– 702.
    [135]Lee JJ ,Smith HO. Sizing of the Haemophilus influenzae Rd genome by pulsed-field agarose gel electrophoresis[J]. J Bacteria,1988,170 (9) : 4402-4407.
    [136] Partanen J, Kere J, Wessberg S et al. Determination of deletion sizes in the MHC-linked complement C4 and steroid 21-hydroxylase genes by pulsed-field gel electrophoresis[J]. Genomics , 1989, 5: 345–349.
    [137] Bannerman T, Hancock G. Pulsed-Field Gel Electrophoresis as a Replacement for Bacteriophage Typing of Staphylococcus aureus[J]. J Clin Microbiol. 1995, 33(3): 551-555.
    [138]黄彦,孙贵娟,唐振柱等.出血性大肠杆菌O157 :H7的脉冲场凝胶电泳分型方法研究[J].应用预防医学,2007,13(1):19-22.
    [139] Schlichting C, Branger C. Typing of Staphylococcus aureus by Pulsed-Field Gel Electrophoresis,Zymotyping, Capsular Typing, and Phage Typing: Resolution of Clonal Relationships[J]. J Clin Microbiol. 1993, 31(2): 227-232.
    [140] Harrell L, Andersen G. Genetic Variability of Bacillus anthracis and Related Species[J], J Clin Microbiol. 1995, 33(7): 1847-1850.
    [141] Murayama O, Matsuda M, etc. Studies on the genomic heterogeneity of Micrococcus luteus strains by macro-restriction analysis using pulsed-field gel electrophoresis[J], J Basic Microbiol. 2003, 43(4):337-340.
    [142]Zadoks R, van Leeuwen W, etc. Application of pulsed-field gel electrophoresis and binary typing as tools in veterinary clinical microbiology and molecular epidemiologic analysis of bovine and human Staphylococcus aureus isolates[J]. J Clin Microbiol. 2000, 38(5):1931-1939.
    [143] Leonard R, Mayer J. Comparison of MIDI Sherlock System and Pulsed-Field Gel Electrophoresisin Characterizing Strains of Methicillin-Resistant Staphylococcus aureus from a Recent Hospital Outbreak[J]. J Clin Microbiol. 1995, 33(10): 2723-2727.
    [144] Shanahan P, Jesudason M, . Molecular Analysis of and Identification of Antibiotic Resistance Genes in Clinical Isolates of Salmonella typhi from India[J]. J Clin Microbiol. 1998, 36(6): 1595-1600.
    [145] Zhao S, White DG, etc. Identification and characterization of integron mediated antibiotic resistance among Shiga toxin-producing Escherichia coli isolates[J]. ApplEnviron Microbiol. 2001, 67(4):1558-1564.
    [146]陈金东.脉冲场凝胶电泳技术的发展和应用现状[J].国外医学遗传学分册,1994; 17 (1) : 13- 18.
    [147] Tarr PI. Escherichia coli O157:H7: clinical, diagnostic and epidemiological aspects of human infection[J]. Clin Infect Dis. 1995, 20(1):1-10.
    [148] Well J.G, Davis BR, Wachsmuth IK, et al. Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare Escherichia coli serotype[J]. J Clin Microbiol 1983;18:512-520.
    [149]甘孟候.中国禽病原[M].北京:中国农业出版社,1999.
    [150]陈雷,董国雄,李俊宝等。鸡致病性大肠杆菌菌毛分型的初步研究[J].中国预防兽医学报,2002,24(5):371-375.
    [151] Dozis CM, Pourbakhsh SA, Fairbrother JM. Expression of P and type 1(F1) fimbriae in pathogenic Escherichia coli from poultry[J]. Vet Microbiol, 1995.45(4):297-309.
    [152]高崧,彭大新,吴晓东等.禽病原性大肠杆菌I型菌毛主要亚单位结构基因的克隆、测序与表达[J].畜牧兽医学报,2003 ,34 (3) :292- 298.
    [153]Gyimah JE ,Panigrahy B. Adhesin receptor interactions mediating the attachment of pathogenic Escherichia coli to chicken tracheal epithelium[J]. Avian Dis ,1988 ,32 (1) :74 - 78.
    [154] Centers for Disease Control and Prevention. Outbreaks of Escherichia coli O157:H7 infections among children associated with farm visits- Pennsylvania and Washington, 2000 [J]. Morb Mortal Wkly Rep, 2001,50:293- 297.
    [155] Gouveia S,Proctor ME,Lee MS,et al. Genomic comparisons and Shiga toxin production among Escherichia coli O157:H7 isolates from a day care center outbreak and sporadic cases in southeastern Wisconsin[J].J Clin Microbiol,1998,36:727- 733.
    [156]陈祥,赵李祥,高崧等.猪源大肠杆菌(ETEC、STEC、AEEC)毒力基因及其与O抗原型的关系[J].微生物学报,2008,48(7):857-862.
    [157] Ran XQ, Lin JB, Wang JF. Prevalence of shiga toxin- and enterotoxin-producing Eshcerichia coli in patients and animals in Guizhou, China[J]. Acta Microbiologica Sinica. 2008,48(6):796-799.
    [158]朱善元,陆辉,王健.禽源大肠杆菌的分离及其毒力因子的检测[J].微生物学报, 2007,47 (5) : 795~799.
    [159]郑巧敏,张秀霞,朱涛等.大肠埃希菌耐药性水平传播实验研究[J].中国微生态学杂志2008,20(1):44-48.
    [160]田勇,郑雪花,张建军等.鸡源大肠埃希氏菌多药耐药性的监测与分析[J].中国兽医杂志, 2008,44(1):18-20.
    [161]倪语星,洪秀华.细菌耐药性监测与抗感染治疗.[M]北京,人民军医出版社, 2000.
    [162] Giancarlo Lancini , Francesco Parenti , Gian Guablerto Gallo编著,王以光译,抗生素[M],北京:人民卫生出版社, 1998.
    [163] Mazel D, Davies J. Antibiotic resistance in microbes [J]. Cell Mol Life Sci,1999,56:742
    [164] Recchia G D, Hall R M. Gene cassettes: a new class of mobile element [J]. Microbiology, 1995,141:3015 165]Hall M A, Blok H E, Donders A R, et al. Multidrug resistance among Enterobacteriaceae is strongly associated with the presence of integrons and is independent of species or isolate origin [J]. J Infect Dis,2003,187(2):251
    [166]Nesvera J, Hochmannova J, Patek M. An integron of class 1 is present on the plasmid pCG4 from Grampositive bacterium Corynebacterium glutamicum [J]. FEMS Microbiol Lett,1998,169(2):391
    [167]Zhao S, Qaiyumi S, Friedman S, et.al, Characterization of Salmonella enterica serotype Newport Isolated from Humans and Food Animals[J]. Journal of Clinical Microbiology. 2003. 41(12): 5366-5371.
    [168]刘书亮,王红宁,陶勇等,四川省规模化猪场大肠杆菌质粒DNA分析[J].西南农业学报2000 ,13 (113):69-73.
    [169]陶勇,王红宁,刘书亮.四川规模化鸡场鸡致病性E 1col i血清型、耐药性和质粒图谱的研究[J].中国兽药杂志,2001, 35 (4) : 9-13.
    [170]刘渠,刘衡川,李灶平.食品中大肠埃希菌的耐药性与质粒图谱研究[J].预防医学情报杂志2004,20(4):257-261.
    [171]王晓燕,衣美英,曹慧.大肠埃希菌基因组结构分型及耐药性[J].济宁医学院学报.2008,31(2):122-125.
    [172]杨汉春,陈声,Jianghong Meng等.鸡源大肠杆菌对氟喹诺酮类药物的多重耐药性[J].畜牧兽医学报,2003 ,34 (4):398-404.
    [180]申进玲,杨保伟,只帅等.陕西部分地区零售肉中沙门氏菌耐药的检测[J].中华预防医学杂志,2008,42(10):758-761.
    [181]田勇,郑雪花,张建军等.鸡源大肠埃希氏菌多药耐药性的监测与分析[J].中国兽医杂志2008.44 (1 ):18-20.
    [182] Chang CY, Chang LL, Huang YH, et al. Characterisation of drug resistance gene cassettes associated with classI integrons in clinical isolates of Escherichia coli from Taiwan[J]. J Med Microbiol. 2000, 49(2000):1097-1102
    [183] Martine F, Fluit AC, Schmitz FJ, et al. Class I integrons in Gram-negative isolates from different European hospitals and association with decressed susceptibility to multiple antibiotic compunds[J]. Journal of Antimicrobial Chemotherapy .1998, 42:689-696.
    [184] Jones ME, Peters E, Weersink AM, et al. Widespread occurence of integrons causing multiple antibiotic resistance in bacteria[J]. Lancet. 1997. 349:1742-1743.
    [185]Sallen B, Rajoharison A, Desvarenne S, et al. Molecular epidemiology of inergron-associated resistance genes in clinical isolates of Enterobacteriaceae[J]. Microb Drug Resist. 1995, 1:195-202.
    [186]Lecesque C, Piche L, Larose C, et al. PCR mapping of integron reveals several novel combinations of resistance genes[J]. Antimicrob Agents Chemother. 1995, 39:185-191.
    [187] VinuéL,Sáenz Y, Somalo S, etal. Prevalence and diversity of integrons and associated resistance genes in faecal Escherichia coli isolates of healthy humans in Spain [J].Journal of Antimicrobial Chemotherapy 2008, 62(5):934-937.
    [188] Kadlec K, Schwarz S. Analysis and distribution of class 1 and class 2 integrons and associated gene cassettes among Escherichia coli isolates from swine, horses, cats and dogs collected in the BfT-GermVet monitoring study[J]. Journal of Antimicrobial Chemotherapy 2008, 62(3):469-473.
    [189] Machado E, Coque TM, Cantón R, et.al. Antibiotic resistance integrons and extended-spectrumβ-lactamases among Enterobacteriaceae isolates recovered from chickens and swine in Portugal[J]. Journal of Antimicrobial Chemotherapy 2008,62(2):296-302.
    [190]Acery S, Liebana C, Reid C, et al. Combined use of two genetic fingerprinting methods, pulsed-field gel electrophoresis and ribotyping, for characterization of Escherichia coli O157 isolates from food animals, retail meat, and cases of human disease[J]. J.Clin.Microbiol. 2002, 40:2806-2812.
    [191] Barrett TJ, Lior H, Green JH, et al. Laboratory investigation of a multistate food-borne outbreak of Escherichia coli O157:H7 by pulsed-field gel electrophoresis and phage typing[J]. J.Clin.Microbiol. 1994, 32:3013-3017.
    [192] Beutin L, Kaulfuss S, Herold S, et al. Genetic analysis of enterpathogenic and enterhemorrhagic Escherichia coli serogroup O103 strains by molecular typing of virulence and housekeeping genes and pulsed-field gel electrophoresis[J]. J.Clin.Microbiol. 2005, 43:1552-1563.
    [193] Pei Y, Terajima J, Saito M, et al. Molecular characterization of enterohemorrhagic Escherichia coli O157:H7 isolates dispersed across Japan by pulsed-field gel electrophoresis and multiple-locus variable-number tandem repeat analysis[J]. J. Infect. Dis. 2008, 61:58-64.
    [194] Miranda AG, Singh KV,M urry BE. DNA fingerprinting of Enterococcus faecium by pulsed- field gel electrophoresis may be a useful epidemiologic tool[J]. J Clinical Microbiol. 1991, 29 (12) : 752-759.
    [195] Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems: an application of Simpson' s index of diversity [J].J Clin Microbiol,1988, 26: 2465- 2466.
    [196]康梅,申艳娜. PFGE在医院内感染细菌的分子流行学方面的应用[ J] .华西医学, 2002, 17 ( 4) : 573- 574.
    [197] Tenover F C, Arbeit R D, Goering R V, et al. Interpreting Chromosomal DNA Restriction Patterns Produced by Pulsed-Field Gel Electrophoresis: Criteria for Bacterial Strain Typing[J]. J Clin Microbiol, 1995, 33(9):2233–2239.
    [198] Davis, M. A., Hancock, D. D., Besser, T. E., et al. Evaluation of pulsed-field gel electrophoresis as a tool for determining the degree of genetic relatedness between strains of Escherichia coli O157:H7[J]. J Clin Microbiol. 2003, 41(5):1843-1849.
    [199]Zheng, J., C. E. Keys, S. Zhao, J. Meng, and E. W. Brown. 2007.Enhanced subtyping scheme for Salmonella Enteritidis[J]. Emerg. Infect.Dis. 13:1932–1935.
    [200] Xi ML, Zheng J, Zhao SH, et al. An Enhanced Discriminatory Pulsed-Field GelElectrophoresis Scheme for Subtyping Salmonella Serotypes Heidelberg, Kentucky, SaintPaul, and Hadar[J]. Journal of Food Protection, 2008, 71(10): 2067–2072.
    [201] Centers for Disease Control and Prevention. Outbreak of Salmonellosis associated with beef jerky--New Mexico[J], MMWR Morb. Mortal. Wkly. Rep. 1995.44:785-8.
    [202] Centers for Disease Control and Prevention. Salmonella heidelberg outbreak at a convention--New Mexico[J]. MMWR Morb. Mortal. Wkly. Rep. 1986, 35:91.
    [203] Beatty ME, LaPorte TN, Phan Q, et al. A multistate outbreak of Salmonella enterica serotype Saintpaul infections linked to mango consumption: a recurrent theme[J]. Clin. Infect. Dis. 2004, 38:1337-8.
    [204] Chittick P, Sulka A, Tauxe RV, et al. A summary of national reports of foodborne outbreaks of Salmonella Heidelberg infections in the United States: clues for disease prevention[J]. J. Food. Prot. 2006, 69:1150-3.
    [205] Burt CR, Proudfoot JC, Roberts M, et al. Fatal myocarditis secondary to salmonella septicemia in young adult[J]. J Emerg. Med. 1990, 8:295-297.
    [206] Hare C, Doran G, Delappe N, et al. Antimicrobial resistance and phage types of human and non-human Salmonella enterica isolates in Ireland, 1998-2003[J]. Commun. Dis. Public. Health. 2004, 7:193-9.
    [207] Olsen SJ, Bishop R, Brenner FW, et al. The changing epidemiology of salmonella: trends in serotypes isolated from humans in the United States, 1987-1997[J]. J. Infect. Dis. 2001, 183:753-61.
    [208] Tadesse WM, Cizek A. The isolation of salmonellae from poultry carcasses and equipment in the poultry processing plant by means of two procedures[J]. Vet. Med. (Praha) 1994, 39:315-20.
    [209] zhao S, White DG, Friedman SL, et al. Antimicrobial resistance in salmonella enterica serovar Heidelberg isolates from retail meats, including poultry, from 2002 to 2006[J]. Applied and Environmental Microbiology. 2008, 74(21):6656-6662.
    [211] Gomez TM, Motarjemi Y, Miyagawa S, et al. Foodborne salmonellosis[J]. World Health Stat. 1997, 50:81-89.
    [212] Swaminathan B,Barrett TJ,Hunter SB,et al. PulseNet:the molecular subtyping network for foodborne bacterial disease surveillance,United States[J]. Emerg Infect Dis, 2001, 7:382- 389.
    [213] Kodama Atsuko, Kamachi Kazunari ,Horiuchi Yoshinobu,et al. Antigenic Divergence Suggested by Correlation between Antigenic Variation and Pulsed - Field Gel Electrophoresis Profiles of Bordetella pertussis Isolates in Japan [J].J Clin Microbiol, 2004,42(12): 5453- 5457.
    [214] Martinez- Urtaza Jaime, Lozano- Leon Antonio, DePaola Angelo, et al. Characterization of Pathogenic Vibrio parahaemolyticus Isolates from Clinical Sources in Spain and Comparison with Asian and North American Pandemic Isolates [J].J Clin Microbiol, 2004, 42: 4672- 4678.
    [215]Well J.G, Davis BR, Wachsmuth IK, et al. Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare Escherichia coli serotype[J]. J ClinMicrobiol 1983;18:512-520.
    [216]Little CL, Richardson JF, Owen RJ, et al. Campylobacter and Salmonella in raw red meats in the United Kingdom: prevalence, characterization and antimicrobial resistance pattern, 2003-2005[J]. Food Microbial, 2008, 25(3):538-543.
    [217]吴国学,格桂花,王文枫等.甘南地区畜禽空场弯曲杆菌分离鉴定[J];中国兽医科技; 1994年06期; 26-27。
    [218]姜毅,朱建国,华修国等。空肠弯曲杆菌基因分型方法的研究进展[J]。中国畜牧兽医,2008,35(1):102~105。
    [219]Kisti P,Mati R,Hannu K.PFGE genotyping and antimicrobial susceptibility of Campylobacter in retail poultry meat in Estonia[J]. International Journal of Food Microbiology, 2007,14:105~112.
    [220] Allos, B.M., 2001. Campylobacter jejuni infections: update on emerging issues and trends[J]. Clin. Infect. Dis. 32, 1201–1206.
    [221] Nachamkin I, Allos BM, Ho T. Campylobacter species and Guillain-Barre syndrome[J]. Clin Microbiol Rev.1998, 11:555-567.
    [222] Solomon E, Hoover D. Campylobacter jejuni: a bacterial paradox[J].J Food Safety. 1999,19:121-136.
    [223] Dickins MA, Franklin S, Stefanova R, et al,Diversity of Campylobacter isolates from retail poultry carcasses and from humans as demonstrated by pulsed-field gel electrophoresis[J].Journal of food protection. 2002, 65(6):957-962.
    [224] Wassenaar TM, Blaser MJ, Pathophysiology of Campylobacter jejuni infection of humans[J]. Microbes Infect. 1999, 1:1023-1033.
    [225]Nachamkin I. Chronic effects of Campylobacter infection[J]. Microbes Infect. 2002, 4:399-403.
    [226] Ge BB, Mcdermott PF, White DG, et al. Role of efflux pumps and topoisomerase mutations in fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli[J], Antimicrobial agents and chemotherapy, 2005, 49(8): 3347-3354.
    [227] Klein G, Beckmann L, Vollmer HM, et al. Predominant strains of thermophilic Campylobacter spp. In a German poultry slaughterhouse[J], International journal of food microbiology. 2007, 117(3):324-328.
    [228] Farber,JM. An introduction to the hows and whys of molecular typing [J].J Food Prot, 1996, 59:1091- 1101.
    [229] Sonntag AK,Prager R,Bielaszewska M,et al. Phenotypic and Genotypic Analyses of Enterohemorrhagic Escherichia coli O145 Strains from Patients in Germany [J]. J Clin Microbiol,2004, 42(3): 954- 962.
    [230] Tenover FC, Arbeit RD, Goering RV, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed- field gel electrophoresis: criteria for bacterial strain typing [J]. J Clin Microbiol,1995,33:2233- 2239.
    [231] Talon D , cailleaux V, Thouverez M, et al. Discriminatory power and usefulness of pulsed - field gel electrophoresis in epidemiological studies of pseudomonas aeruginosa [J].J Hop Infection, 1996, 32: 135- 145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700