基于PSCAD的电力系统机电暂态与电磁暂态混合仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代电力系统的迅速发展,大量高压直流输电系统(High Voltage Direct Current, HVDC)和柔性交流输电装置(Flexible AC Transmission Systems, FACTS)等电力电子设备广泛应用于其中。这些设备的投入使得电力系统的运行和控制更为复杂,同时也对电力系统仿真分析技术提出了更高的要求。
     HVDC系统和FACTS装置对系统故障具有快速响应能力,目前主要运用电磁暂态仿真程序来研究其在系统暂态过程中电压和电流的快速变化现象。但由于计算机存储和计算能力有限,即使用并行计算方法也难以对大型电力系统进行全网电磁仿真。而机电暂态仿真程序(Transient Simulation Program,TSP)基于元件的准稳态模型,不能反应元件内部的电气量瞬时变化过程。为了弥补以上两点不足,电力系统机电暂态与电磁暂态混合仿真算法对电力电子装置部分进行详细的电磁仿真,以便精确模拟其动态特性;对外部交流系统则进行机电仿真,以加快仿真效率。
     本文研究的混合仿真算法将TSP程序嵌入到商业电磁暂态仿真软件PSCAD (Power Systems CAD)主程序中,利用PSCAD自带的元件库搭建HVDC系统及其控制模型,并对其进行电磁仿真,同时用TSP程序对外部交流网络进行机电仿真;数据交换通过连接二者的接口母线进行,从而实现全网的数字仿真。该算法考虑了系统故障后频率偏移对电磁暂态仿真精度的影响,动态更新接口母线电压的瞬时频率。混合仿真算法采用戴维南等效电路来代替外部网络对HVDC电磁仿真部分的影响,而将HVDC系统等效为时变恒功率负荷来代替其对外部网络的影响。用基于Kundur 2区域系统的交直流系统对该算法进行了仿真测试,并将其结果与PSCAD的仿真结果比较,验证了本文提出的算法能准确地反应HVDC系统经受扰动后的动态特性。
With the rapid development of modern power systems, many high-power electronic devices have been widely applied in them, such as HVDC links and FACTS devices. This has made system operation and control become more complex than ever before, at the same time setting down higher requirements for power system simulation and analysis techniques.
     HVDC links and FACTS devices, which respond rapidly to system failures, are mainly simulated with electro-magnetic transient program (EMTP) nowadays to study the detailed transients of instantaneous voltages and currents caused by system disturbances. Due to the limitation of computer storage and computation capability, however, it is barely possible to simulate a large power system with EMTP, even with parallel algorithms. On the other hand, transient simulation program (TSP), based on single-phase quasi-steady state models, can provide a large power system simulation with efficiency, but not instantaneous detailed simulation of these electronic devices. In order to overcome the disadvantages of both methods mentioned above, hybrid simulation algorithms have been developed, which implement EMTP simulation for electronic devices to get accurate dynamic characteristics, and TSP simulation for the external AC power system to raise the efficiency.
     The hybrid simulation algorithm presented in this paper embeds a transient stability program into the main program of commercial electro-magnetic simulation software PSCAD through the user interface. HVDC links and FACTS devices, along with their control systems, are constructed with the component library of PSCAD, and simulated in detail, meanwhile the external AC power system is simulated with TSP; data exchange are implemented through the interface buses at which these two parts interact. The effect of frequency deviation on electro-magnetic simulation caused by system disturbances is considered in this algorithm, the frequencies of the voltages at interface buses are updated dynamically. Thevenin equivalent circuit is used to replace the effect of the external AC power system on HVDC simulation, and the HVDC system is replaced with time-variant constant-power loads in transient stability simulation. Simulative tests for the proposed algorithm are performed on a AC-DC system based on Kundur’s two-area system, and the obtained simulation results are compared with those by PSCAD software, comparison results show that the proposed method can reflect accurately the dynamics of power systems with HVDC links caused by system disturbances.
引文
[1]刘振亚,特高压直流输电理论,北京:中国电力出版社,2009,1~3
    [2]韩民晓,文俊,徐永海,高压直流输电原理与运行,北京:机械工业出版社,2009,7~11
    [3]陈琦,高压直流输电系统的实时数字仿真研究:[硕士学位论文],武汉:武汉大学,2004
    [4]郭剑波,姚国灿,我国未来大区电网互联可能出现或应该注意的若干技术问题:全国联网和更高一级交流电压等级技术问题研究之一,电网技术,1998,22(6):63~67
    [5]中国南方电网公司,交直流电力系统仿真技术,北京:中国电力出版社,2007,1~9
    [6]陈坚,许汉平,余雷等,RTDS用于FACTS元件特性仿真的研究,华中电力,2003,16(3):21~22
    [7] Etxeberria-Otadui, I., Manzo, V. Generalized average modelling of FACTS for real time simulation in ARENE, Industrial Electronics Society, IEEE 2002 28th Annual Conference on, 2002 2(5):864~869
    [8] A.Kaddouri, B.Khodabakhchian, A new generation of simulation tools for electric drives and power electronics, Power Electronics and Drive Systems, Proceedings of the IEEE 1999 International Conference on,1999 1(27):348~354
    [9] B M Buchholz, X Lei, Advanced solutions for power system analysis-computer study and real-time simulation,IEEE Power System Technology,2000(2):613~618
    [10] X Lei, B Buchholz, D Povh, et al, Power system analysis-software approach and real-time simulation, IEEE Power Engineering Society Winter Meeting 2002,2002,2(27-31):1011~1016
    [11] Wu Zhongxi, Zhou Xiaoxin, Power system analysis software package(PSASP)-an integrated power system analysis tool, Proceedings POWERCON’98.Beijing 1998
    [12] Demello F P, Feltes J W, Loskowski T F, et al, Simulating fast and slow dynamic effects in power systems, IEEE Computer in Application,1992,5(3):33~38
    [13] Fankhauser H R.Aneros K, et al, Advanced simulation techniques for the analysis of power system dynamics, IEEE computer applications in Power,1990,3(4):31~36
    [14] M. D. Heffernan, K. S. Turner, J. Arrillaga, et al, Computation of AC-DC system disturbance, Part I, IEEE Trans. on Power Apparatus and Systems, 1981, PAS-100, (11) : 4341 ~ 4348
    [15] Reeve J, Adapa R, A new approach to dynamic analysis of AC networks incorporating detailed modeling of DC systems Part I: Principles and Implementations, IEEE Transactions on Power Delivery, 1988, 3 (4) : 2005 ~ 2011
    [16] G. W. J. Anderson, N. R. Watson, C. P. Arnold, et al, A new hybrid algorithm for analysis of HVDC and FACTS systems, Proceedings of the International Conference on Energy Management and Power Delivery, 1995, 2 : 462 ~ 467
    [17] M.Sultan, J.Reeve, R.Adapa, Combined transient and dynamic analysis of HVDC and FACTS systems, IEEE Transactions on Power Delivery,1998 13(4):1271~1277
    [18] G W J Anderson, C P Arnold, N R Waston, et al, A new hybrid AC-DC transient stability program, International Conference on Power Systems Transients(IPST’1995):535~540
    [19] G W J Anderson, Hybrid simulation of AC-DC power systems:[D].New Zealand: University of Canterbury,1995
    [20]柳军勇,梁旭,闵勇等,电力系统机电暂态和电磁暂态混合仿真接口算法,电力系统自动化, 2006, 30(11):44~48.
    [21]岳程燕,田芳,周孝信等,电力系统电磁暂态-机电暂态混合仿真接口原理,电网技术, 2006, 30(1):23~28.
    [22]岳程燕,田芳,周孝信等,电力系统电磁暂态-机电暂态混合仿真接口实现,电网技术, 2006, 30(4):6~10.
    [23]徐政,交直流电力系统动态行为分析,北京:机械工业出版社,2004,58~60
    [24] Kundur P, Power system stability and control, New York: McGraw- Hill Inc,1993,22~25
    [25]王锡凡,方万良,杜正春,现代电力系统分析,北京:科学出版社,2003,168~169
    [26]李兴源,高压直流输电系统的运行和控制,北京:科学出版社,1998,7~8
    [27]浙江大学发电教研组直流输电科研组,直流输电,北京:电力工业出版社,1982,90~91
    [28]林良真,叶林,电磁暂态分析软件包PSCAD/EMTDC,电网技术,2000,24(1):65-66
    [29]杨健维,麦瑞坤,何正友,PSCAD/EMTDC与Matlab接口研究,电力自动化设备,2007,27(11):83~87
    [30]钟波,赵华军,PSCAD/EMTDC与MATLAB语言接口的研究,广东电力,2005,18(8):28~30
    [31] Xuegong Wang, Paul Wilson, Dennis Woodford, Interfacing transient stability program to EMTDC program, In: Proceedings of the PowerCon 2002. International conference on, vol. 2, 13–17 October 2002: 1264–1269
    [32]王立伟,房大中,钟德成,含静止无功补偿器的电力系统混合仿真新算法研究,电力系统及其自动化学报,2004,16(1):74~77
    [33]燕庆明,信号分析与处理,北京:电子工业出版社,2009,177~179

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700