小麦镉耐性的基因型差异与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过水培小麦试验,对小麦幼苗进行Cd处理,设置CK、低、中、高Cd (0、30、60、90μmol/L)四个处理浓度,研究Cd对小麦幼苗的生物学效应及幼苗体内Cd吸收和积累情况,探讨洛旱6号、矮抗58、豫麦25、豫麦18、中育10号、豫农949、新麦21、许农5号、洛麦23等9个品种小麦苗期镉耐性的差异。从苗期镉耐性不同的9个品种当中选取镉耐性强的洛旱6号和中育10号、镉耐性中等的新麦21和矮抗58、镉耐性弱的豫麦18和洛麦23等6个小麦品种,结合大田试验,设置CK、低、中、高Cd (0、10、50、100 mg/kg)四个处理浓度,探讨镉胁迫下不同镉耐性小麦品种在灌浆期间生长、干物质积累、产量的特征,同时研究小麦对Cd吸收和分配的特征及镉胁迫对小麦吸收和积累其它金属元素的影响,揭示不同镉耐性小麦品种的生理生化机制。主要结果如下:
     1、Cd对小麦幼苗生长及生物量积累的影响表现为低Cd处理促进了部分品种的生长、生物量积累,中、高Cd处理呈抑制作用。灌浆期间,Cd导致小麦生长、各器官干物质和氮素的积累、转运受阻,叶面积指数下降,进而抑制了小麦的籽粒灌浆速率及产量。其中,镉耐性强的品种在灌浆期间受Cd抑制程度较镉耐性弱的品种小。
     2、灌浆期间,镉胁迫抑制了小麦旗叶叶绿素、旗叶和籽粒可溶性糖、旗叶和籽粒可溶性蛋白及籽粒淀粉的合成和积累,其抑制程度因品种而异。其中,6个品种小麦籽粒可溶性糖含量、籽粒淀粉含量、旗叶可溶性蛋白含量相对值大小与其镉耐性大小不太一致。同时,镉胁迫小麦籽粒的谷蛋白、高分子量谷蛋白亚基(HMW-GS)、低分子量谷蛋白亚基(LMW-GS)含量整体上呈下降趋势。说明镉胁迫导致小麦籽粒的加工品质下降,镉耐性大的品种,籽粒品质受影响较小。
     3、幼苗期间,叶片POD活性随着Cd处理浓度增加和处理时间延长有不同程度的增加,且Cd对POD活性激活效应有一定的界限,其临界浓度值因品种而异。所有品种小麦叶片的脯氨酸含量随着Cd处理浓度升高和处理时间的延长而逐渐升高,升高的幅度因品种而异。灌浆期间,镉胁迫下小麦旗叶POD和SOD的活性整体上呈下降趋势,其抑制程度因品种和处理浓度而异。有部分品种的POD和SOD活性在低镉处理下有所升高。POD和SOD同工酶谱显示,低、中Cd浓度诱导或抑制了低分子量同工酶表达从而影响POD的活性,对高分子量区的POD同工酶影响较小;高Cd处理下高分子量区和低分子量区POD同工酶的表达,从而抑制POD的活性。Cd对大部分小麦品种SOD活性的影响是因为低分子量区的SOD同工酶表达受到诱导或抑制。
     4、小麦幼苗体内Cd含量随着Cd处理浓度的升高而增大,且根部Cd含量高于地上部的。但是Cd积累量却不与Cd处理浓度呈正比,低、中Cd处理下Cd积累量最大,根部的Cd积累量大于地上部的。灌浆期间,各器官Cd含量总体是随着土壤Cd浓度增加而上升,各器官Cd积累量受到对应器官生物量和Cd含量的共同作用,积累量最高点存在较大差异。各器官Cd含量和积累量大小依次为籽粒>茎鞘>叶片。Cd含量与积累量与苗期耐镉性大小顺序不大一致,耐镉性弱的洛麦23籽粒Cd含量最高。镉胁迫下,小麦各器官Zn、Mn、Cu、Fe等金属元素的吸收和积累都受到不同程度的影响。
     5、9个小麦品种的苗期耐镉性大小依次为:豫农949>洛旱6号、豫麦25>中育10号>新麦21>矮抗58、许农5号>豫麦18>洛麦23;6个小麦品种在灌浆期间的耐镉性大小依次为:洛旱6号、中育10号>新麦21>矮抗58>豫麦18>洛麦23。苗期耐镉性大小与灌浆期间耐镉性基本一致。
A hydroponics experiment was set up to cultivate wheats which treated by four Cd concentrations, the concentrations were 0, 30, 60, 90μmol/L, was carried out to study bioeffects of cadmium on wheats, Cd absorption and accumulation, even dicussed Cd tolerance of different genotypic wheats. After that, a field experiment was set up, which using 6 genotypic wheats with different Cd tolerances treated by four Cd concentrations, such as 0, 10, 50, 100 mg/kg, to study effects of cadmium on their growthes, biomasses and yields in filling stage, discussed characteristics of Cd and other metallic elements absorbed and distributed in wheats, and revealed physiological and biochemical mechanisms. The main results are as follows.
     Firstly, there was a difference on effects of Cd on growthes and biomasses of seedlings, however, their average values were descending with Cd concentration ascending. The low Cd concentration promoted a part of wheats growing more quickly and accumulated more biomasses than controls’, both growthes and biomasses of wheats exposed in middle and high Cd concentrations were less than controls’. As a whole, Cd depressed growthes, biomasses, leaf area indexes and accumulations of nitrogen of wheats in filling stage, to make matters worse, the yields of wheats were depressed because of Cd. The degrees of depressions were different among genotypics, genotypics with low Cd tolerance beared more poison from Cd than genotypics with high Cd tolerance.
     Secondly, contents of chlorophyll in flag leaves, soluble sugar in flag leaves and grains, soluble protein in flag leaves and grains and amylum in grains were depressed by Cd. Orders of relative values of soluble sugar in grains, amylum in grain and soluble proteins were different from Cd tolerances’. The contents of glutelin, HMW-GS and LMW-GS were on a descending trend on the whole, however, the ratio of HMW and LMW on an ascending trend. The results indicated that processing quality of grains treated by Cd became worse, and there were some relations between Cd tolerances and grains processing quality.
     Thirdly, POD activities of leaves in most of seedlings enhanced with Cd concentration ascending and treated time extending. Prolines of leaves in all seedlings were enhancing with different velocities. During filling stage, a part of wheats’POD and SOD activities enhanced in low Cd concentration, on the while, the POD and SOD activities were restrained. The isozymogram of POD and SOD indicated that effects of Cd on POD and SOD happened in enzyme protein synthesis stage.
     Fourthly, during seedling stage, Cd contents in up ground part and down ground part were increasing when aggravating Cd stress level, and Cd contents in down ground part were more than up ground part’s. The highest Cd accumulations were not in highest Cd concentration, but in middle concentration. Most of Cd accumulated in down ground part. In filling stage, Cd content of each organ increased when the Cd concentration ascend. The highest accumulations of each organ happened in different Cd concentrations, because they affected by biomasses and Cd contents of the genotype’s organ. Both orders of Cd contents and accumulations in organs were grains > stem-sheathes> leaves. As a whole, other metallic elements, such as Zn, Mn, Cu, Fe, their contents and accumulations in wheats were depressed.
     Last, the order of Cd tolerances of seedlings is Yumai 949 > Luohan 6, Yumai 25 > Zhongyu 10 > Xinmai 21 > Aikang 58, Xunong 5 > Yumai 18 > Luomai 23, and the order of Cd tolerances showed in filling stage is Luohan 6, Zhongyu 10> Xinmai 21 > Aikang 58> Yumai 18 > Luomai 23. There was no difference between Cd tolerances showed in seedling stage and filling stage.
引文
[1]韩多红,孟红梅.重金属镉对阿尔网金和金皇后种子发芽和出茁的影响[J].种子,2006,(25):7l-72.
    [2]王凯荣,陈朝明,龚惠群等.镉污染农田农业生态整治与安全高效利用模式[J].中国环境科学,1998,18(2):3-6.
    [3]王凯荣.镉对不同基因型水稻生长毒害影响的比较研究[J].农树生态环境,1993,12(3):18-23.
    [4]夏运生,王凯荣,张格丽.土壤镉生物毒性的影响因素研究进展[J].农业环境保护,2002, 21(3):272-275.
    [5]许嘉林,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1995.
    [6]王云,魏复盛.土壤环境元素化学[M].北京:中国环境科学出版社,1995:67-69.
    [7]熊愈辉.镉污染土壤植物修复研究进展[J].安徽农业科学,2007,35(22):6876-6878.
    [8]柳絮,范仲学,张斌等.我国土壤镉污染及其修复研究[J].山东农业科学,2007,6:94-97.
    [9]顾继光,周启星.镉污染土壤的治理及植物修复[J].生态科学,2002,21(4):352-356.
    [10]郑喜坤,鲁安怀,高翔等.土壤中金属污染现状与防治方法[J].土壤与环境,2002,11:79-84.
    [11] Nilgun G,Omar A,Gmdal T.Investigation of soil multi-element composition in Antalya, Tuikey[J]. Environ International,2003,29(5):631-640.
    [12] Arthur E,Crews H,Morgan C.Optimizing plant genetic strategies for minimizing enviromental contamination in the food chain[J].Inter J Phytoremed, 2000,2:1-21.
    [13] ZHI YL.The source and fate of Pb in centeaal Sweden[J].Sci Total Environ,1998, 209:47-58.
    [14] Wong C S,Lia X D,Zhang G,et al.Atmospheric deposition of heavy metals in the Pearl River Delta [J].China Atmosph Environ,2003,37:767-776.
    [15] Williamas C R,Harrison RM.Cadmium in atmosphere [J].Experimentia,40:29-26.
    [16]杨元根,刘丛强,吴攀等.贵州赫章土法炼锌导致的土壤重金属污染特征及微生物生态效应[J].地球化学,2003,32(2):13l-139.
    [17] JungM C.Heavy metal contamination of soils and waters in and around the Imcheon Au-Ag mine [J].Korea Applied Geochem,2001,16:1369-1375.
    [18] Johoson M S,Eaton J W.Enviromental contamination through residual trace dispersal from a derelict lead-zinc mine [J].Journal of Environmental Quality,1980,2:175-179.
    [19] Bradford M M.A rapid and senstive method for the quantitation of micogram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry,1976,72:248-254.
    [20]王新,陈涛,梁仁禄等.污泥土地利用对农作物及土壤的影响研究[J].应用生态学报,2002,13(2):163-166.
    [21]杨居荣,查燕,刘虹等.污染作物籽实中Cu的分布、结合形态及其毒性[J].农业环境保护, 2001,20(4):199-201.
    [22] Anthony C.Methyl mercury contamination and emission of the atmosphere from soil amended with municipal sewage sludge [J].J Environ Qual.1997,26:1650-1655.
    [23] V. lllera,I. Walter,P. Souza,et al.Short-term effects of biosolid and municipal solid waste applications on heavy metals distribution in a degraded soft under a semi-arid environmen [J]. The Science of Total Environ,2000,255:29-44.
    [24] Chen G,Asada k.Inactivation of ascorbate peroxidase by thiols requires hydrogen peroxide [J].Plant Cell Physiol,1992,33:117-123.
    [25] Bloemen M L,Markert B,Lieth H.The distribution of Cd, Cu, Pb and Zn in topsoils of Osnabmck in relation to land use [J].Sci Total Environ,1995,166:137-148.
    [26]毛跟年,许牡丹,黄建文.环境中有毒有害物质与分析检测[M].北京:化学工业出版社,2004.
    [27]徐素琴,程旺大.油菜、芥菜萌芽与幼苗生长的耐镉性差异[J].浙江农业科学,2005,(6):436-438.
    [28]何俊瑜,任艳芳,任明见等.镉对小麦种子萌发、幼苗生长及抗氧化酶活性的影响[J].华北农学报,2009,24(5):135-139.
    [29]王丽燕,郑世英.镉、铅及其复合污染对小麦种子萌发的影响[J].麦类作物学报,2009,29(1):146-148.
    [30]李子芳,刘惠芬,熊肖霞等.镉胁迫对小麦种子萌发幼苗生长及生理生化特性的影响[J].农业环境科学学报,2005,24(增刊):17-20.
    [31]秦秀昌,郭秀璞,史国安.Cd对小麦种子萌发和幼苗生长的影响[J].麦类作物学报,2002,22(3): 89-91.
    [32]王云,陈尧,钱亚如等.镉胁迫对不同品种小麦幼苗生长和生理特性的影响[J].生态学杂志,2008,27(5): 767-770.
    [33]蔡保松,曹林奎.镉对小麦生长发育的影响及其基因型间差异[J].西北农林科技大学学报,2003,31(1): 62-66.
    [34]张国平,深见元弘,关本根.不同镉水平下小麦对镉及矿质养分吸收和积累的品种间差异[J].应用生态学报,2002,13(4):454-458.
    [35]蓝群,陈娟,李莉等.铅、镉浸种对水稻幼苗生长和抗氧化酶的影响[J].云南农业大学学报,2005,20(5):685-689.
    [36]安志装,王校常,严萧东等.镉硫交互处理对水稻吸收累积镉及其蛋自巯基含量的影响[J].土壤学报,2004,4l(5):728-784.
    [37]闫华晓,赵辉,高登征.镉离子对玉米种子萌发和生长影响的初步研究[J].作物杂志, 2007,5:25-28.
    [38]张杰,梁永超,娄运生,等.镉胁迫对两个水稻品种幼苗光合参数、可溶性糖和植株生长的影响[J].植物营养与肥料学报,2005,11(6):774-780.
    [39]孙建云,沈振国.镉胁迫对不同甘蓝基因型光合特性和养分吸收的影响[J].应用生态学报,2007,18(11):2605-2610.
    [40]段学军,闵航.镉胁迫下稻田土壤生物活性与酶活性综合研究[J].农业环境科学学报, 2004,23(3):422-427.
    [41] Chien H F,Kao C H.Accumulation of ammonium in rice leaves in response to excess cadmium[J]. Plant Science,2000,156:111-115.
    [42]王慧忠,何翠屏,赵楠.镉对草坪植物生长特性及生物量的影响[J].草业科学,2003,20(5):32-34.
    [43]Wang Yong-qian,Xiao Li-zhong,Li Shi-yin,et al.Effects of combined pollution of Pb and Cd on growth and yield of rice[J].Agricultral Science &Technology,2010,11(5):168-170.
    [44]夏来坤,郭天财,朱云集等.土壤重金属Cu、镉胁迫对冬小麦碳氮运转的影响[J].水土保持学报,2006,20(1):117-120.
    [45]孙丹,丛培芳.丛自立.不同矿尾含量盆栽小麦生长结实和重金属富集的状况[J].农业环境科学学报,2007,26(2):683-687.
    [46]王新,粱仁禄,周启星.Cd-Pb复合污染在土壤-水稻系统中生态效应的研究[J].农村生态环境,200l,17(2):4l-44.
    [47]程旺大,姚海根,张国平等.镉胁迫对水稻生长和营养代谢的影响[J].中国农业科学,2005,38(3):528-537.
    [48]王志坤,廖柏寒,黄运湘.镉处理对大豆生物量及镉分布状况的影响[J].湖南农业大学学报(自然科学版),2006,32(6):658-661.
    [49]夏来坤.铜、镉胁迫对冬小麦生长和产量的影响及其缓解措施的研究[D].河南:河南农业大学,2006.
    [50]黄冬芬,王志琴,刘立军等.镉对水稻产量和品质的影响[J].热带作物学报,2010,31(1):19-24.
    [51]曹莹,黄瑞冬,王国骄等.铅和Cd复合胁迫对玉米吸收铅特性及产量影响[J].玉米科学,2007,15(3):91-94.
    [52]王英,李正文,贺紫荆.不同水稻品种积累镉的差异及其动态变化[J].广西农业生物科学,2007,26(增刊):82-85.
    [53]王激清,刘波,苏德纯.超积累镉油菜品种的筛选[J].河北农业大学学报,2003,26(1):13-16.
    [54] Grant C A, Buckley W T, Bailey L D,et al.Cadmium accumulation in crops [J].Canadian Jounral of Plant Science,1998,78:1-17.
    [55] Kelly J M, Parker G R., McFee W W. Heavy metal accumulation and growth of seedlings of five forest spcies as influenced by soil cadmium level [J].J.Environ.Qual., 1979,8:361-364.
    [56]肖昕,冯启言,季丽英.重金属Cd、Cu、Zn在小麦中富集特征的实验研究[J].农业环境科学学报,2006,25(5):1133-1137.
    [57]姜丽娜,邵云,李春喜等.镉在小麦植株体内的吸收、分配和累积规律研究[J].河南农业科学,2004,7:13-17.
    [58]赵雄,李福燕,张冬明等.水稻土镉污染与水稻镉含量相关性分析[J].农业环境科学学报,2009,28(11):2236-2240.
    [59]许嘉琳,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1995.
    [60]查燕,杨居荣,刘虹等.污染稻麦籽实中镉和铅的分布及其存在形态[J].北京师范大学学报(自然科学版), 2000,36(2):268-273.
    [61]杨居荣,查燕,刘虹.污染稻、麦籽实中Cd、Cu、Pb的分布及其存在形态初探[J].中国环境科学,1999,19(6):2-6.
    [62]查燕,杨居荣,刘虹等.污染谷物中重金属的分布及加工过程的影响[J].环境科学,2000,21(3):52-55.
    [63]安志装,王校常,施卫明等.重金属与营养元素交互作用的植物生理效应[J].土壤与环境,2002,11(4):392-396.
    [64]张玲,李俊梅,王焕校.镉胁迫下小麦根系的生理生态变化[J].土壤通报,2002,33(1):61-65.
    [65]邬飞波,张国平.不同镉水平下大麦幼苗生长和镉及养分吸收的品种间差异[J].应用生态学报,2002,13(12):1595-1599.
    [66]杨春刚,朱智伟,章秀福等.重金属镉对水稻生长影响和矿质元素代谢的关系[J].中国农学通报,2005,21(11):176-192.
    [67]程旺大,姚海根,张国平等.镉胁迫对水稻生长和营养代谢的影响[J].中国农业科学,2005,38(3):528-537.
    [68] Bernal M P. Effects of pH and heavy metal concentrations in solution culture on the proton release,growth and elemental composition of Alyssum murale and Raphnus sativus L. [J]. Plant soil,1994,166:83-92.
    [69] Kahle H.Response of root of trees to heavy metals[J].Environ. Experi. Bot.,1993,33:99-119.
    [70]江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报,2001,7(1):92-99
    [71]高扬,毛亮,周培等.Pb、Cd复合胁迫下4种植物抗氧化防御差异性研究[J].中国生态农业学报,2010,18(4):836-842.
    [72]杨居荣,贺建群.Cd污染对植物生理生化的影响[J].农业环境保护,1995,14:193-197.
    [73]何俊瑜,任艳芳,朱诚期等.镉胁迫对镉敏感水稻突变体活性氧代谢及抗氧化酶活性的影响[J].生态环境,2008,l 7(3):1004-1008.
    [74]张金彪,黄维南.镉对植物的生理生态效应的研究进展[J].生态学报,2000,20:514-523.
    [75]刘文龙,王凯荣,王铭伦.花生对镉胁迫的生理响应及品种间差异[J].应用生态学报,2009,20(2):451-459.
    [76]郭凌,张肇铭,芦冬涛.球形红细菌对镉胁迫下小麦幼苗几项生理生化指标的影响[J].农业环境科学学报.2008,27(1):0040-0045.
    [77]李荣春.Cd,Pb及其复合污染对烤烟叶片生理生化及其亚显微结构的影响[J].植物生态学报,2000,24:238-242.
    [78] Grill E,Winnackcr E L, Zenk M H.Phytochelatins: the principal heavy-metal complexing peptides of higher plant[J]. Science, l 985,230: 674-676.
    [79]孙赛初,王焕校,李启任.水生维管束植物受镉污染后的生理变化及受害机制初探[J].植物生理学报,1985,11:113-121.
    [80] Nag P.Heavy metal effects in plant tissue involving chlorophyll,chlorophyllase,hill reaction activity and gel-electrophoretic patterns of soluble proteins[J]. Indian J Exp Biol,1981,19:702-706.
    [81] Spickett C M,Smirnoff N, Ratdiffe R G. Metabolic responses of maize roots to hyperosmotic shock[J].Plant Physiol, 1992, 99: 856-863.
    [82]王娟,李健全.逆境条件下植物体内渗透调节物质的积累与活性氧代谢[J].植物学通报,2001,18(4):459-465.
    [83]邵云,李春喜,李向力等.灌浆期Cd、Cu、Zn胁迫对小麦旗叶生理活性的影响[J].西北农业学报,2006,15(4):108-111.
    [84]佟海英,原海燕,黄苏珍.两种鸢尾幼苗对镉胁迫的生理耐性探讨[J].北方园艺,2008(11):109-112.
    [85]王焕校.污染生态学基础[M].云南:云南大学出版社,1990.
    [86]吴桂容,严重玲.镉对桐花树幼苗生长及渗透调节的影响[J].生态环境,2006,15(5):1003-1008.
    [87]秦天才,吴玉树,王焕校.镉、铅及其相互作用对小白菜生理生化特性的影响[J].生态学报,1994,14:46-50.
    [88] Clarke J M. Inheritance of grain cadmium concenrtation in four durum wheat crosses [J]. Agron. Abstracts. Am. Soc. Agorn. Madison, WI. 1995, pp76.
    [89] Wagner G J. Cadmium in crops and effects on human health [J]. Advance in Agronomy, 1993,51:173-212.
    [90] Clarke J M, Norvell W A, Clarke F R, et al. Concentration of cadmium and other elements in the grain of near-isogenoc durum lines[J]. Canadian Journal of Animal Science,2002,82:27-33.
    [91] McLaughlin M J,Williams C M J,McKay A,et al.Effect of cultivar on uptake of cadmium by potato tubers[J].Australian Jounral of Agricultural Research, 1994, 45:1483-1495.
    [92]赵世杰,史国安,董新纯.植物生理实验指导[M].2002.
    [93]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2000.
    [94]李俊梅,王焕校.镉胁迫下玉米生理生态反应与抗性差异研究[J].云南大学学报(自然科学版),2000,22(4):3l3-3l7.
    [95]肖美秀,林文雄,陈冬梅等.耐Cd水稻种质资源的筛选[J].福建农林大学学报(自然科学版),2006,2(35):117-122.
    [96]林咸永,章永松,罗安程等.铝胁迫下不同小麦基因型根际pH的变化、NH4+和NO3-吸收及还原与其耐铝性的关系[J].植物营养与肥料学报,2002,8(3):330-334.
    [97]王志坤,廖柏寒,黄运湘等.镉胁迫对大豆幼苗生长影响及不同品种耐镉差异性研究[J].农业环境科学学报,2006,25(5):1143-1147.
    [98]段昌群,王焕校.重金属对蚕豆(Vicia faba)根尖的核酸含量及核酸酶活性影响的研究[J].环境科学,1992,13(5):31-35.
    [99] Garmash N Y. Effects of heavy metals on the Content of mineral nutrients in wheat[J].Khin. Selish khy,1987(3):57-60.
    [100]曹德菊,汤斌.铅、镉及其复合污染对蚕豆根尖细胞的诱变效应[J].激光生物学报,2004,13(4): 302-304.
    [101]何俊瑜,任艳芳,王阳阳等.镉对小麦根尖细胞的遗传损伤效应[J].生态环境学报,2009, 18(3): 830-834.
    [102]焦新之,倪晋山.植物质膜中的氧化还原酶[J].植物生理学通讯,1996,32(1):49-58.
    [103]朱红霞,杨小勇,葛才林.重金属对水稻过氧化物酶同工酶的影响[J].核农学报,2004,18(3): 233-236.
    [104]王阳阳,任艳芳,周国强等.镉胁迫对不同抗性水稻品种幼苗生长和生理特性的影响[J].中国农学通报,2009,25(24): 450-454.
    [105]曹莹,李建东,赵天宏等.镉胁迫对玉米生理生化特性的影响[J].农业环境科学学报,2007, 26(增刊):8-11.
    [106]廖飞雄,潘瑞炽.热胁迫下菜心脯氨酸含量变化及其在耐热中的作用[J].华南师范大学学报(自然科学版),2001,2:45-49.
    [107]王波,宋凤斌.燕麦对盐碱胁迫的反应和适应性[J].生态环境,2006,15(3):625-629.
    [108]扬书运,严平,梅雪英.水分胁迫对冬小麦抗性物质可溶性糖与脯氨酸的影响[J].中国农学通报,2007,12(23):229-233.
    [109] Singh T N, Aspinall D, Palag L G. Proline accumulatin and varietal adaptability to drought in barley: A potential metabolic measure of drought resistance[J].Nature New boil,1972,236:188-190.
    [110]郭智,王涛,奥岩松.镉对龙葵幼苗生长和生理指标的影响[J].农业环境科学学报,2009,28(4):755-760.
    [111]邵国胜,MUHAMMAD Jaffar Hassan,章秀福等.镉胁迫对不同水稻基因型植株生长和抗氧化酶系统的影响[J].中国水稻科学,2004,18(3):239-244.
    [112]黄冬芬,奚岭林,杨立年等.不同耐镉基因型水稻农艺和生理性状的比较研究[J].作物学报,2008,34(5):809-817.
    [113]关丽,刘湘南.镉污染胁迫下水稻生理生态表征高光谱识别模型[J].生态环境学报,2009, 18(2):488-493.
    [114]陈娟,孙鉴坤,方元平.镉胁迫对水稻颖果胚乳细胞增殖和粒重的影响[J].湖北农业科学,2009,48(6):1311-1314.
    [115]范仲学,单世华,杨志艺等.重金属镉在五类花生不同部位的分布特征及其对产量的影响[J].中国农业科技导报,2009,11(5):102-107.
    [116]李友军,黄明.不同耕作方式对旱作区冬小麦旗叶衰老代谢及籽粒产量的影响[C].中国科学技术协会年会论文集,2007,武汉.
    [117]郑丕尧.作物生理学导论[M].北京:北京农业大学出版社,1992,121-127.
    [118]王月福,姜东,于振文等.氮素水平对小麦籽粒产量和蛋白质含量的影响及其生理基础[J].中国农业科学,2003,36(5):513-520.
    [119] Ewa Gajewska, Maria Sklodowska. Nickel-induced changes in nitrogen metabo1ism in wheat shoots[J]. Journal of Plant Physiology, 2009,166:1034-1044.
    [120]于方明,仇荣亮,周小勇等.镉对超富集植物圆锥南芥氮素代谢的影响研究[J].土壤学报,2008,45(3):497-501.
    [121] Nell S.Harris, Gregory J.Taylor. Remobilization of cadmium in maturing shoots of near isogenic lines of durum wheat that differ in grain cadmium accumulation[J].Journal of Experimental Botany,2001,52:l473-l481.
    [122] Smith G R,Brennan E G.Cadmium-zinc interrelationship in tomato plant[J]. Phytopathology, 1983, 73: 879-882.
    [123] Abdel-Sabour M F,Mortvedt J J and Kelose J J. Cadmium-zinc interactions in plants and extractable cadmium and zinc fraction in soil [J]. Soil Sci,1988,145:424-431.
    [124]覃都,陈铭学,周蓉等.锰-镉互作对水稻生长和植株镉、锰含量的影响[J].中国水稻科学,2010,24(2):189-195.
    [125]安志装,王校常,施卫明等.重金属与营养元素交互作用的植物生理效应[J].土壤与环境,2002,11(4):392-396.
    [126]李得孝,侯万伟,员海燕.玉米叶片叶绿素快速浸提方法研究[J].西北农林科技大学学报(自然科学版),2006,34(11):65-66.
    [127]张志良,翟伟菁.植物生理学实验指导[M].北京:高等教育出版社,2003.
    [128]何照范.双波长法测定谷物中直链、支链及总淀粉含量[A].粮油籽粒品质及其分析技术[M].北京:农业出版社,1985:290-294.
    [129]朱红霞,杨小勇,葛才林等.重金属胁迫对水稻不同品种过氧化物酶同工酶的影响[J].核农学报,2004,18(3):233-236.
    [130]葛才林,杨小勇,金阳等.重金属胁迫对水稻不同品种超氧化物歧化酶的影响[J].核农学报,2003,17(4):286-291.
    [131]何忠效,张树政.电泳[M].北京:科学出版社,1999.
    [132]潘登奎,张丽,张建刚.小麦高分子量麦谷蛋白亚基的SDS-PAGE方法[J].生物技术通报,2006,12:209-222.
    [133]秦天才,吴玉树,黄巧云等.镉铅单一和复合污染对小白菜抗坏血酸含量的影响[J].生态学杂志,1997,16(3):31-34.
    [134]张义贤.汞、镉、铅胁迫对油菜的毒害效应[J].山西大学学报(自然科学版),2004,27(4):410-413.
    [135]朱新广,王强,张其德等.冬小麦光合功能对盐胁迫的响应[J].植物营养与肥料学报,2002,8(2):177-180.
    [136]刘登义,王友保,张徐祥等.污灌对小麦幼苗生长及活性氧代谢的影响[J].应用生态学报,2002,10(13):1319-1322.
    [137]李元,王焕校,吴玉树.Cd,Fe及其复合污染对烟草叶片几项生理指标的影响[J].生态学报,1992,12(2):147-153.
    [138]熊福生,高煜珠,詹勇昌.植物叶片蔗糖、淀粉积累与其降解酶活性关系研究[J].作物学报,1994,20(1):52-58.
    [139]李友军,熊瑛,吕强等.不同类型专用小麦叶、茎、粒可溶性糖变化与淀粉含量的关系[J].中国农业科学,2005,38(11):2219-2226.
    [140]张元培.展望新世纪的优质小麦品种研究与开发(二)[J].粮食与饲料工业,1998(8):1-3.
    [141]罗立新,孙铁珩,靳月华等.镉胁迫下小麦叶中超氧阴离子自由基的积累[J].环境科学学报,1998,18(5):495-498.
    [142]王红镔,王焕校,文传浩等.镉处理下不同小麦品种几种解毒机制探讨[J].环境科学学报,2002,22(4):524-528.
    [143] Milone M T, Sgherd C, Clijsters H et al. Antioxidative responses of wheat treated with realistic concentration of cadmium[J]. Environmental and Experimental Botany, 2003,50(3):265-276.
    [144] Antes S,Wieser H.Effects of high and low molecular weight glutenin subuaits on rheologicaldough properties and breadmaking quality of wheat[J]. Cereal Chem,200l,78: 157-159.
    [145]王月福,于振文,李尚霞等.施氮量对小麦籽粒蛋白质组分含量及加工品质的影响[J].中国农业科学,2002,35(9):1071-1078.
    [146]宋建民,刘爱峰,吴祥云等.高分子量谷蛋白亚基组成及其含量与小麦品质关系研究[J].中国农业科学,2003,36(2):128-133.
    [147]石玉,张永丽,于振文.小麦籽粒蛋白质组分含量及其与加工品质的关系[J].作物学报,2009,35(7):1306-1312.
    [148] Seregin L V, Ivanov V B. Physiological aspects of cadmium and lead toxity effects on higher plants[J]. Russian Journal of Plant Physiology,2001,48(4):606-630.
    [149] Andrei A B,Vera I S,Viktor E T,et al.Genetic variability in tolerance to cadmium and accumulation of heavy metals in pea (Pisum sativum L.) [J]. Euphytica, 2003,131:25-35.
    [150] Abedin M J, Meharg A A. Relative toxicity of arsenite and arsenate on germination and early seedling growth of rice (Oryza sativa L.) [J].Plant and Soil, 2002,243:57-66.
    [151] Peralta J R, Gardea-Torresdey J L, Tiemann K J, et al. Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.) [J]. Environmental Contamination and Toxicology,2001,66:727–734.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700