浅埋暗挖法下穿既有地铁车站的风险控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市地下空间开发力度的加大,地下工程近接施工问题大量涌现。对新建地铁线路近距离穿越既有线工程而言,在施工过程中既要保证既有隧道的运营安全,又要保证新建隧道的施工安全。但是由于地下工程本身的复杂性,难以准确预测地下工程施工对周边环境的影响,这就给近接穿越工程的风险控制带来了严峻的挑战。论文针对城市地下工程中近距离穿越问题进行研究,提出了一整套的城市地下工程安全风险控制体系,综合采用理论分析、数值计算、现场试验等研究方法,主要开展了以下几个方面的工作:
     (1)通过对既有建(构)筑物安全风险影响因素进行分析,提出安全风险评价指标体系;将模糊数学理论应用于既有建(构)筑物安全风险评估,建立适合既有建(构)筑物风险特点的模糊综合评价模型;在此基础上对北京地铁4号线宣武门车站的环境安全风险进行评估,确定隧道施工影响范围内既有建(构)筑物的安全风险等级。
     (2)通过调研分析,提出既有地铁车站破坏模式;针对既有地铁车站典型破坏模式,建立结构变形与破坏之间的对应关系,并对既有车站结构进行承载力极限状态和正常使用极限状态验算,制定其安全使用的控制标准;通过理论分析对地表建(构)筑物、地下管线、交通路面的破坏和变形之间的相互关系进行研究,制定相应的变形控制标准。
     (3)针对浅埋暗挖法地铁车站分部开挖的特点,分析北京地铁既有暗挖工法施工造成的地表沉降规律,得到了在控制环境安全方面较好的双层暗挖车站和单层暗挖车站施工工法,并应用于4号线宣武门车站的施工中;针对所选用的双层段和单层段的暗挖工法,通过正交试验,确定单层段和双层段所选工法的施工顺序、拆撑距离以及施工错距等施工参数。
     (4)对4号线宣武门车站下穿既有线工程进行过程控制,采用数值分析计算各施工步序造成的地层和既有建(构)筑物的变形规律,根据变位分配原理制定地层和既有建(构)筑物的变形阶段控制目标及相应的控制措施,通过各个风险源阶段控制目标的满足来实现对整体环境安全风险的控制。
     (5)结合北京地铁4号线宣武门车站环境风险特点,针对工程中的核心环境风险采取相应的控制措施和监测方案,并按照制定的阶段控制标准进行过程控制,进而保证了既有线结构的运营安全以及地下管线、既有建(构)筑物、路面结构的安全使用;施工结束后,对控制效果和环境风险进行再评估,对存在的超限情况和潜在风险进行工后恢复。
Along with the intensified effort on exploitation of underground space in urban areas, numerous problems about construction closed to existing buildings have arisen. In the present urban metro system, the distances, including line to line, line to station and station to station, are so short that a cloverleaf international metro network has been gradually developed, which results in a string of difficulties like interchange, adjacent tunnelling challenges, etc. In the construction process of a new line passing through an existing one in close proximity to, it is necessary to ensure not only the existing tunnel's operation safety, but also its structural safety. Therefore, construction parameters should be strictly controlled under some criteria. However, in most circumstances, underground works are quite complex, difficult to accurately forecast the impact that underground construction may have on the existing structure. Integrated by the means of theoretical analysis, numerical calculation and field test, this paper put forward to a set of safety risk control methods in allusion to the problems above, mainly in the following aspects:
     (1) By analyzing the factors affecting the safety risks of the existing buildings, the paper put forward to a safety risk assessment index. Fuzzy theory applied in the process of accessing the safety risk of existing buildings, it also put forward to a fuzzy comprehensive assessment model. Based on the index and the model, we made a safety assessment of the environment in Xuanwumen station of Beijing metro line4, and determined the safety risk level of the existing buildings within the sphere of influence induced by the construction of a new tunnel.
     (2) We summarized the failure modes of metro stations systematically, analyzed the existing buildings' deformation properties, at the same time, checked out both the structure bearing capacity limit state and serviceability limit state of the existing buildings, thus working out the control standard to judge whether the existing buildings will be safely used or not. We analyzed the relationship between failure and deformation occurred in upper buildings, underground pipelines and traffic pavement theoretically, and worked out deformation control standard for the three involved above.
     (3) For the sequential excavation characteristic of the shallow tunnelling method applied to metro stations, the paper systematically analyzed the laws that surface subsidence induced by construction of this method followed. And then the paper came to the conclusion that the combination of single deck and double deck subway station construction method should be adopted in the construction of Xuanwumen metro station. Furthermore, by orthogonal experiment, the paper specified many construction parameters, such as construction sequence, temporary lining dismantle distance, construction cutting face distance, etc.
     (4) We implemented the process control over the construction of Xuanwumen metro station which is beneath the existing line2, and calculated the amount of deformation of the strata and existing buildings induced by each construction step through the approach of numerical analysis. During the phrase of deformation, we finalized our control objective and control measures, according to the deformation distributing principle.
     (5) Combined with the construction of Xuanwumen station in line4passing through the existing line2, we took corresponding monitoring measures and implemented the process control which successfully guaranteed both the operation safety of existing line2and the safety of existing ground pipelines, upper buildings and roadbed structure. The assessment on the control effect was necessary when the construction was completed. For those deformations which exceeded the allowed limits, appropriate measures were required to be taken.
引文
[1]闫朝霞,李振辉.北京新建地铁近距离穿越既有线施工技术[J].铁道勘察,2010(2):96-99.
    [2]关继发.新建地铁隧道穿越既有地铁安全风险及其控制技术的研究[D].西安:西安建筑科技大学,2008.
    [3]王春苗,张彦斌,孔祥利.新建地铁线穿越运营地铁线的评估方法研究[J].城市轨道交通,2011(12):56-69.
    [4]仇文革.地下工程近接施工力学原理与对策的研究[D].成都:西南交通大学,2003:2-8.
    [5]张路青,杨志法.两平行的任意形状洞室围岩位移场解析法研究及其在位移反分析中的应用[J].岩石力学与工程学报,2000,19(5):584-589.
    [6]杉本光隆,松本嘉司,西罔龙.用能量理论对平行双洞隧道进行稳定分析[J].隧道译丛,1990(2):30-40.
    [7]房营光,孙钧.地面荷载下浅埋隧道围岩的粘弹性应力和变形分析[J].岩石力学与工程学报,1998,17(3):239-247.
    [8]胡元芳.小线间距城市双线隧道围岩稳定性分析[J].岩石力学与工程学报,2002,21(9):1335-1338.
    [9]陈学峰.隧道下穿铁路时列车荷载在结构设计中的作用研究[J].铁道标准设计,2004,1:55-57.
    [10]张昀青,刘维宁,张振刚.列车荷载作用下周围物体的动力响应解[J].铁道学报,2003,25(4):85-88.
    [11]刘维宁,张昀青.轨道结构在移动荷载作用下的周期解析解[J].工程力学,2004,21(5):100-102
    [12]刘维宁,张弥,邝明.城市地下工程环境影响的控制理论及其应用[J].土木工程学报,1997,30(5):66-75.
    [13]刘维宁,邝明,张弥.地下工程环境影响的动态最优控制[J].地下空间,1995,15(3):161-166.
    [14]白李妍.隧道工程施工对城市管网和建筑物的影响及控制[D].北方交通大学,2002,2.
    [15]陈少华,刘伟.小净距隧道的结构受力特点及工程措施[C].国际隧道研讨会论文集,北京:2002.
    [16]张兴来,钟云健.小净距并行隧道围岩稳定的分析方法及应用[J].重庆交通学院院报,2003,22(1):123-127.
    [17]何川,苏宗贤,曾东洋.盾构隧道施工对已建平行隧道变形和附加内力的影响研究[J].岩石力学与工程学报,2007,26(10):2063-2069.
    [18]吴波,高波,漆泰岳,蒋正华.城市地铁区间隧道洞群开挖顺序优化分析[J].中国铁道科学,2003,24(5):23-28.
    [19]王泳嘉.边界元法在岩石力学中的应用[J].岩石力学与工程学报,1986,5(2):12-14.
    [20]王泳嘉.离散元法及其在岩石力学中的应用,北京:冶金工业出版社,1986.
    [21]王泳嘉.离散单元法—一种适用于节理岩石力学分析的数值方法.第一届全国岩石力 学数值模拟及模型试验讨论论文集,1986:32-46.
    [22]Gu, UH, Koo, GW and Hwang. A case study on the design of two cross tunnels:numerical analysis and reinforcement[J]. (Re)Claiming the Underground Space, Saveur(ed.)Swets & Zeitlinger, Lisse,2003:1067-1072.
    [23]Clough, C. et al. Finite element analysis of advanced shiled tunneling[J]. Proc.5th. Int. Conf. On Num. Meth. In Geomech. Nagoya,1985:1167-1174.
    [24]Lee. S. L. et al. Analysis of a multiple tunnel internation problem[J]. Num. Meth. In Geomechanics,1988:1487-1492.
    [25]Rodriguez-Roa, F. Numerical analysis of an experimental tunnel[J]. Proe.llth Int. Conf. Soil Mechanies and Foundation Engineering.1985:789-792.
    [26]Adachi, T. et al. Behavior and simulation of sandy ground tunnel[J]. Proe.11th Int. Conf. Soil Mech. Found. Eng.,1985:709-712.
    [27]Adachi, T. and K. Kojioa. Estimation of design parameters for earth tunnels[J]. Proc.12th Int. Conf. Soil Mech. Found. Eng.,1989:771-774.
    [28]Shahrour, I and Mroueh, H. Nonlinear three-dimensional analysis of closely spaeed twin tunnels[J]. Numerieal Models in Geomechanics, Pietruszezak & Pande(eds) Balkema, 1997:481-487.
    [29]何川,张志强.南京地铁区间盾构隧道“下穿”玄武湖公路隧道施工的关键技术研究.第二届中日盾构隧道技术交流会论文集[C],中国,上海,同济大学,2004,6:41-48.
    [30]徐前卫,朱合华,白廷辉等.盾构穿越超近距离运营隧道的施工影响分析.第二届中日盾构隧道技术交流会论文集[C],中国,上海,同济大学,2004.6:216-220.
    [31]张印涛,陶连金等.矿山法开挖近距离下穿越既有线隧道的三维数值模拟[J].北京工业大学学报,2007,33(12):1273-1276.
    [32]王双龙.浅埋暗挖地铁车站地表沉降及既有线变形分析[J].铁道建筑技术,2009(12):74-78.
    [33]陶连金,唐四海,金亮.隧道上穿既有车站结构的变形预测及安全评估.地下空间与工程学报,2008,4(3)
    [34]陶连金,许有君,王文沛.盾构穿越既有地铁车站结构安全评价[J].地下空间与工程学报,2010,6:1513-1516.
    [35]渠昀山.某地铁隧道下穿现有地铁车站出入口变形分析[J].山西建筑,2010,36(12):302-303.
    [36]邓彬,弋珂源,索然绪.地铁新线穿越既有线车站的施工方案优化设计[J].现代交通技术,2010,7(6):76-83.
    [37]张悦,石义军.地铁新线穿越既有地铁车站的设计与施工[J].广州建筑,2005(1):7-10.
    [38]王暖堂.城市地铁复杂洞群浅埋暗挖法的有限元模拟[J].岩土力学,2001.12,22(4):504-508.
    [39]孙军振.“PBA"洞桩法施工技术—以北京地铁为例[J].科技情报开发与经济,2008,18(36):152-154.
    [40]Peck R B. Deep excavations and tunneling in soft ground. Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering[J]. State of the Art Volume, Mexico City. Mexico:Sociedad Maxicana de Mecanica de Suelos,1969: 225-290.
    [41]Clough G W> and Schmidt B. Design and performance of excavations and tunnels in soft clay[J]. Soft Clay Engineering, Elsevier,1981:569-634.
    [42]Attewell P B and Selby A R. Tunneling in compressible soils:large ground movements and structural implications[J]. Tunneling and Underground Space Technology,1989,4(4): 481-487.
    [43]Mair R L Taylor R N and Burland J B. Prediction of ground movements and assessment of risk of building damage due to Bored tunneling[J]. Proceedings of the International Symposium On Geotechnical Aspects of Underground Construction in Soft Ground. London: Balkema,1996:713-718.
    [44]O'Reilly M P and New B M. Settlements above tunnels in the UK -their magnitude and prediction[J]. Tunneling'82,1982:173-181.
    [45]New B M and O'Reilly M P. Tunneling induced ground movements:predicting the magnitude and effects in James D Geddes eds[J]. Proceedings of the 4th International Conference On Ground Movements and Structures, Pentech Press, London,1992: 671-697.
    [46]O'Reilly M P. Settlements over tunneling[J], an 11 year study at Grimsby, Tunneling'91, 1991.
    [47]侯学渊,廖少明.盾构隧道沉降预估[J].地下工程与隧道,1993(4):24-32.
    [48]刘建航,侯学渊.盾构法隧道[M].北京:中国铁道出版社,1991.
    [49]SagasetaC. Analysis ofundrained soil deformation due to ground loss[J]. Geotechnique, 1987,37(3):301-320.
    [50]Verruijt A and Booker J R. Surface settlement due to deformation of a tunnel in an Elastic half plane[J]. Geotechnique,1996,46(4):753-756.
    [51]Loganathan N and Poulos H G. Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering 1998, 124(9):846-856.
    [52]Bobet, A. Analytical solutions for shallow tunnels in saturated ground[J]. ASCE J. Eng. Mech.2001, (12):1258-1266.
    [53]Wei-I, Chou and Antonio Bobet. Predictions of ground deformation in shallow tunnels in clay[J]. Tunnelling and Underground Space Technology,2002, (17):3-19.
    [54]施成华,彭立敏等.浅埋隧道施工引起的纵向地层移动与变形[J].中国铁道科学,2003,24(4):87-91.
    [55]陶龙光,刘波等.盾构过地铁站施工对地表沉降影响的数值模拟[J].中国矿业大学学报,2003,32(3):236-241.
    [56]丁锐,范鹏,焦苍,徐成家等.不同开挖步骤引起浅埋隧道地表沉降的数值分析[J].铁道工程学报,2005,(5):62-65.
    [57]Wu B R, Chiou S Y, Lee C J, et al. Soil movement around parallel tunnels in soft ground. Centrifuge 98, Tokyo,1988:739-744.
    [58]周小文,濮家骝.砂土中隧洞开挖引起的地面沉降试验研究[J].岩土力学2002,(5):559-563.
    [59]马亮,高波.隧道施工地表沉降控制的离心模型试验[J].施工技术,2005,34(6):6-8.
    [60]Grant R J and Taylor R N. Centrifuge modeling of ground movements due to tunneling in layerdground[J]. Proc. Int. Symposiun on Geotechnical Aspects of Underground Construction in Soft Ground. Mair R J, Taylor R N. London:Balkema.1996:507-512.
    [61]Chambo J F and Corte J F. Shallow tunnels in cohesionless soil:stability of tunnel face[J]. Journal of Geotechnical engineering, ASCE,1994,120(7):1150-1163.
    [62]Nomoto T, Mito K, Imamura S, et al. Centrifuge modeling of construction processes of shield tunnel[J]. Proc. Int. Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Mair R J, Taylor R N. London:Balkema.1996:567-572.
    [63]Kim S.H, Burd H J and Milligan G W E. Interaction between closely spaced tunnels in clay[J]. Proc. Int. Symposiun on Geotechnical Aspects of Underground Construction in Soft Ground, Mair R J, Taylor R N. London:Balkema.1996:543-548.
    [64]中华人民共和国铁道部.铁路线路修理规则(铁运[2006]146号).北京:中国铁道出版社,2006.
    [65]北京地铁运营有限责任公司.北京地铁工务维修规则(试行).2002.
    [66]Skempton A W and MacDonald D H. Allowable settlement of buildings [J]. Proc. Institution of Civil Engineer,1956,13(6):19-32.
    [67]E. J. Cording, T. D. O'Rourke and M. D. Boscardin. Ground movements and damage to structures [J]. Proe, Int.conf.on Evaluation and Prediction of Subsidence, Florida,1978: 516-537.
    [68]Polshin D E and Tokar RA. Maximum allowable non-uniform settlement of structure [C]. Proceedings Engineering of 4th International Conference on Soil Mechanics and Foundation Butterworth's Scientific, London, England,1957,1:402-405.
    [69]Cording E J and Hansmire W H. Displacements around soft ground tunnels [A]. Proceedings of the 5th Pan American Conference on Soil Mechanics and Foundation Engineering,1975: 571-633.
    [70]Borland J B and Wroth C P. Allowable and differential settlement of structure including damage and soil-structure interaction [C], Proc. In. Conf. on settlement of structure,1974.
    [71]Storer J. Boone. Ground-movement-related building damage [C]. Journal of Geotechnical Engineering,1996,11:886-896.
    [72]Mroueh H and Shahrour I. A full 3-D finite element analysis of tunneling-adjacent structures interaction [J]. Computers and Geotechnics,2003,30:245-253.
    [73]Jenck O and Dias D.3-D-finite difference analysis of the interaction between concrete building and shallow tunneling [J]. Geotechnique,2004,54 (8):519-528.
    [74]广州市建设委员会.广州地区建筑基坑支护技术规定(98-02)[S].
    [75]国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[C].北京:煤炭工业出版社,2000.
    [76]Attewell, Yeates and Selby. Soil movements induced by tunneling and their effects on pipelines and structures[J]. Blackie and Sons, London,1996.
    [77]杜建华,高谦,宋卫东等.北京地铁隧道下切穿越1号线施工过程模拟研究[J].铁道建筑,2008(3):50-53.
    [78]钱双彬,董军,陈方权等.既有隧道受邻近盾构施工作用的变形行为研究[J].建筑技术, 2009,40(1):78-81.
    [79]姚捷,杨光华,张玉成等.相邻线路盾构施工对既有隧道的影响[J].岩石力学与工程学报,2009,28(2):3945-3951.
    [80]李喆,张子新.相邻隧道施工对上海地铁二号线的影响分析[J].岩石力学与工程学报,2005,24(1):5125-5129.
    [81]钱七虎,戎晓力.中国地下工程安全风险管理的现状、问题及相关建议[J].岩石力学与工程学报,2008,27(4):649-655.
    [82]姜忻良,崔奕,赵保建.盾构隧道施工对邻近建筑物的影响[J].天津大学学报,2008,41(6):725-730.
    [83]张顶立,王梦恕等.复杂围岩条件下大跨隧道修建技术研究[J].岩石力学与工程学报,2003,22(2):290-296.
    [84]杨丽明.邻近暗挖地铁建筑物安全评价方法[J].中国铁道科学,30(2):77-81.
    [85]房倩,张顶立.浅埋暗挖地铁车站下穿既有线结构施工方法研究[J].中国铁道科学,2007,28(5):71-77.
    [86]张晓丽.浅埋暗挖法下穿既有地铁构筑物关键技术研究与实践[D].北京:北京交通大学,2007.6.
    [87]施成华,彭立敏等.浅埋隧道开挖对地表建筑物的影响[J].岩石力学与工程学报,2004,23(19):3310-3316.
    [88]黄宏伟.隧道及地下工程建设中的风险管理研究进展[J].地下空间与工程学报,2006,2(1),13-20.
    [89]赵海平,陈俊.框架结构-箱形基础-地基土共同作用分析[J].建筑技术开发,2005,32(3):61-63.
    [90]彭振斌.托换工程设计计算与施工.武汉:中国地质大学出版社,1997.
    [91]叶书麟,汪益基,涂光祉等.基础托换技术.北京:中国铁道出版社,1991.
    [92]H.F.温特科恩[美]著,方晓阳,钱鸿缙,叶书麟等译校(1975).基础工程手册.北京:中国建筑工业出版社,1983.
    [93]周志伟.深圳地铁大轴力桩基托换技术.铁道建设,2003,23(4):39-41.
    [94]Drooff, ER, Dobbels DJ and Wheeler JR. Role and performance of chemical grout in the underpinning of an active subway station[J]. Rapid Excavation and Tunneling Conference Proceedings-1999, Hayward Baker Inc.1999:381-401.
    [95]Hoskins W. The safety consideration of introducing new rolling stock on an adjacent railway system[J]. Getting Trains into Service-International Railtech Congress-1998. London: Professional Engineering Publishing LTD,1998:101-112.
    [96]Harris DI, Menkiti CO, Pooley AJ and Stephenson JA. Construction of low-level tunnels below Waterloo Station with compensation grouting for the Jubilee Line Extension Geotechnical Aspects of Underground Construction in Soft Ground-International[J]. London: Geotech Construction GRP,1996:361-366.
    [97]Lundardi P., and G.Gassani. Construction of an underpass at the Ravone railway yard in the city of Bologna, aspects of the design and construction, progress in tunneling after 2000[J].Teuscher P.and A.Colombo(eds), Vol. Ⅲ,2001:319-328.
    [98]金立坚,王志刚.“遂上站”—地铁线上轻轨站的改造与托换施工—上海地铁一号线南 站改建工程(二).建筑施工,2005,27(9):4-7.
    [99]楼根达,陈朝晖.上海地铁体育场站穿越1号线冻结施工风险控制.地下工程施工与风险防范技术—2007第三届上海国际隧道工程研讨会文集.上海:同济大学出版社,2007.
    [100]曹伟庵,姚燕明.上海市轨道交通8号线(曲阜路—人民广场)区间隧道盾构穿越2号线影响分析.地下工程与隧道,2005,3:7-12.
    [101]扈森.广州地铁体育西路站立体交叉方案探讨.现代隧道技术,2004,41(4):59-63.
    [102]张洪威.崇文门车站下穿地铁既有线的设计与施工.岩土工程界,2006,9(4):71-74.
    [103]王伟东.北京地铁东单站暗挖大跨段过既有线施工技术.西部探矿工程,2006,122(6):132-133.
    [104]张晓丽,张顶立,王梦恕.浅埋暗挖法穿越既有地铁车站结构的影响分析.可持续发展的中国交通—2005全国博士生学术论坛(交通运输工程学科)论文集(下册).北京:中国铁道出版社,2005:1208-1213.
    [105]房倩,张顶立.浅埋暗挖地铁车站下穿既有线结构施工方法研究[J].中国铁道科学.2007,28(05):71-77.
    [106]杨文栋.新地铁穿越工程的风险管理研究[D].北京:北京交通大学,2011.
    [107]杜彬.地铁车站浅埋暗挖法施工对邻近桩基的影响及控制措施[D].北京:北京交通大学,2007.
    [108]于丹丹.地铁隧道施工邻近建筑物安全风险研究[D].大连:大连理工大学,2011.
    [109]陈洁金.下穿既有设施城市隧道施工风险管理与系统开发[D].长沙:中南大学,2009.
    [110]安永林.结合邻近结构物变形控制的隧道施工风险评估研究[D].长沙:中南大学,2009.
    [111]朱维申,李术才,白世伟,刘泉声.施工过程力学原理的若干发展和工程实例分析[J].岩石力学与工程学报.2003.10.22(10):1586-1591.
    [112]朱维申,何满朝.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社.1996.
    [113]丁锐,范鹏,焦苍,徐家成,张文强.不同开挖步骤引起浅埋隧道地表沉降的数值分析[J].铁道工程学报.2005.5:62-65.
    [114]吴波,高波,蒋正华,仝学让,周振强.地铁隧道施工对地表沉降影响的优化控制分析[J].现代隧道技术,2003,40(3):42-46.
    [115]王后裕,陈上明,言志信编著.地下工程动态设计原理[M].北京:化学工业出版社,2008.
    [116]Jaquard P. Permeability distribution from field pressure data[J]. Soc. Pet. Eng. J.,1965. 5(4):281-294.
    [117]Nakao S. Sensitivity study on hydraulic well testing inversion using simulated annealing[J]. Groud Water,1999,37(5):736-747.
    [118]Leec S R. Identifying probable failure modes for underground openings using a neural network Int. J of Rock Mech.& Geomech[C]. Abstr,1991,28(6):377-386.
    [119]李守巨,刘迎曦,王登刚.基于遗传算法的岩体初始应力场反演[J].煤炭学报,2001,26(1):13-17.
    [120]田明俊,周晶.岩土工程参数反演的一种新方法[J].岩石力学与工程学报,2005, 24(9):1492-1496.
    [121]贾善坡,伍国军,陈卫忠.基于粒子群算法与混合罚函数法的有限元优化反演模型及应用[J].岩土力学,2011,32(8):598-603.
    [122]李金凤,杨启贵,徐卫亚.基于改进粒子群算法CHPSO-DS的面板坝堆石体力学参数反演[J].岩石力学与工程学报,2008,27(6):1229-1235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700