Ag(Nb_(1-x)Ta_x)O_3基高频介质材料的合成方法与介电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于目前Ag(Nb 1-x Ta x )O3体系的研究动态,本论文分别采用固相法与液相法(溶胶-凝胶法)制备了Ag(Nb 1-x Ta x )O 3陶瓷,对Ag(Nb 1-x Ta x)O3体系进行了掺杂改性研究,研制出介电性能优良的陶瓷体系。并根据电介质理论、烧结理论及晶格振动等理论深入分析了影响体系介电性能的微观机制。
     在固相法制备Ag(Nb 1-x Ta x )O 3体系方面,主要的研究工作如下:
     (1)成功合成了Ag(Nb1-xTax)O(3x=0.1~0.5)晶相,确定了制备Ag(Nb 1-x Ta x )O3体系的热处理工艺。系统研究了体系的微观结构与介电性能,探讨了体系因Ta含量不同,介电性能存在较大差异的本质原因,为体系介电性能的改性打下了一定的基础。
     (2)通过对添加剂掺杂改性Ag(Nb 1-x Ta x )O3的研究,成功研制出超高介(ε>1000)、低损耗的Ag(Nb 0.8 Ta 0.2 )O 3 -CaF2体系。并将Raman光谱测试技术引入该体系的研究中,建立了体系微观机制中晶格振动模式的振动特性与介电性能之间的联系,完善了Ag(Nb 1-x Ta x )O 3体系介电性能的改性理论。
     (3)对单一氧化物、复合氧化物以及稀土元素掺杂改性Ag(Nb 1-x Ta x )O3基陶瓷体系进行了系统研究,探讨了不同组分氧化物对体系掺杂改性的微观机制,成功研制出介电性能优良的ANT82-4.5wt%Bi 2 O 3陶瓷体系。
     在溶胶-凝胶法制备Ag(Nb 1-x Ta x )O 3体系方面,主要的研究工作如下:
     (1)在溶胶-凝胶法制备工艺中,目前大都采用强腐蚀性的氢氟酸或硝酸,将五氧化二铌、五氧化二钽转化为中间产物氟络合物,进而制备Ag-Nb-Ta溶胶,此方法对周围环境及人体健康造成了极大的危害。本论文提出了一种新的工艺路线,即改用安全型的碱金属盐,通过合成铌(钽)酸盐成功制得了该体系溶胶。
     (2)目前,利用溶胶-凝胶法合成Ag(Nb 1-x Ta x )O3纳米粉体的研究少有报道,本文系统研究了工艺参数对溶胶稳定性及纳米粉体微观结构的影响,并制备出介电性能优良的Ag(Nb 1-x Ta x )O3陶瓷。溶胶-凝胶法实现了分子乃至原子尺度上的均匀混合,为进行材料组分、结构与性能设计奠定了基础。
     (3)分别采用固相法与溶胶-凝胶法制备出Ag(Nb 0.6 Ta 0.4 )O3陶瓷,首次发现在两种不同方法制备的该陶瓷体系中,其介电常数温度特性存在截然不同的变化规律。对导致陶瓷体系这一不同变化规律的微观机制进行了探讨,建立了晶格畸变、界面张力等微观结构与介电特性之间的关系,为材料结构与性能的设计、合成研究奠定了理论与实验基础。
Based on the research trends, the Ag(Nb 1-x Ta x )O3 ceramics were prepared by the solid-state method and liquid phase method (sol-gel method) in this work. The dielectric properties of the ceramics doped with dopants were investigated. In addition, the micromechanisms influencing the dielectric properties of the ceramics were analyzed according to the dielectrics theory, sintering theory and lattice vibration theory.
     For the solid-state preparation of Ag(Nb 1-x Ta x )O3 ceramics, the main researches were shown as follows:
     (1) The main phase of Ag(Nb 1-x Ta x )O3(x=0.1~0.5)without any second phases was obtained by the solid-state method, and the heat-processing was determined. The microstructures and dielectric properties of the ceramics were investigated, and the reasons for leading to the different dielectric properties of the ceramics were discussed. These provided the foundation for improving the dielectric properties of the ceramics.
     (2) The high-performance products of Ag(Nb 0.8 Ta 0.2 )O 3 -CaF2 systems, with ultra high permittivity (ε>1000) and low dielectric loss, were prepared. Meanwhile, Raman testing technology was induced. The relationship between lattice vibration characteristic for the lattice modes and the dielectric properties was established, which completed the modification theory.
     (3) The dielectric properties of the ceramics doped with single oxide or composite oxides and rare earth elements were investigated. The mechanisms of the different dopants improving the dielectric properties were investigated. The high-performance products of ANT82-4.5wt%Bi 2 O 3 ceramics were obtained.
     For the sol-gel preparation of Ag(Nb 1-x Ta x )O3 ceramics, the main research works were shown as follows:
     (1) At the present, for the sol-gel processing techonology, niobium pentaoxide and tantalum pentaoxide were also dissoloved by using the corrosive HF and HNO3, and then the Ag-Nb-Ta precursor sol was prepared. This processing method did harm to the environment and the body health. In this work, a new processing route was proposed. The sol was prepared by using the safety alkali salt, which could dissoloved niobium pentaoxide and tantalum pentaoxide into tantalate and niobate.
     (2) There were rarely reports for the Ag(Nb1-xTax)O3 nanopowders by using sol-gel method. In this work, the influence of processing parameters on the stability of the sol was invesitigated systematacially. And the high-performance Ag(Nb1-xTax)O3 ceramics were obtained. The uniform mixing for the materials in molecular even atomic level was realized by using the sol-gel method, which lay foundation for the design of material compostion, structure and properties.
     (3) The Ag(Nb0.6Ta0.4)O3 ceramics prepared by the solid state method and sol-gel method. In this work, the different dielectric temperature characteristics for the Ag(Nb0.6Ta0.4)O3 ceramics was found for the first time. The mechanism leading to the characteristics was discussed. The realationship between lattice distortion and interfacial tension was established, which lay theoretical and experimental foundations for design and synthesis of materials structure and properties.
引文
[1] Klein N., Schuster M. Vitusevich S., et al. Novel dielectric resonator structures for future microwave communication systems, J. Eur. Ceram. Soc., 2001, 21(15): 2687~2691
    [2] Kim E.S., Jeon J.S., Yoon K.H., Effect of sintering method on the microwave dielectric properties of (Pb 0.45 Ca 0.55 )(Fe 0.5 Nb 0.5 )O3 ceramics, J. Eur. Ceram. Soc., 2003, 23(14): 2583~2587
    [3] Klein N., Schuster M., Parkot D., Ceramic electromagnetic bandgap structures formicrowave and millimetre wave applications, J. Eur. Ceram. Soc., 2003, 23(14): 2449~2453
    [4] Yoon K.H., Kim E.S., Jeon J.S., Understanding the microwave dielectric properties of (Pb 0.45 Ca 0.55 )[Fe 0.5 (Nb 1-x Ta x ) 0.5 ]O3 ceramics via the bond valence, J. Eur. Ceram. Soc., 2003, 23(14): 2391~2396
    [5]曲秀荣,贾德昌,微波介质陶瓷的研究进展,硅酸盐通报,2006,25(6):144~147
    [6]章锦泰,许赛卿,周东祥等,微波介质材料与器件的发展,2004,23(6):6~9
    [7] Kim W.S., Yoon K.H., Kim E.S., Far-infrared reflectivity spectra of CaTiO 3–Li 1/2 Sm 1/2 TiO3 microwave dielectrics, Materials Research Bulletin, 1999, 34(14-15): 2309~2317
    [8] Samoukhina P., Kamba S., Santhi S., et al. Infrared and terahertz dielectric spectra of novel Bi 2 O 3 -Nb 2 O5 microwave ceramics, J. Eur. Ceram. Soc., 2005, 25: 3085~3088
    [9] Wang H., Wang X.L., Yao X., Phase equilibrium in Bi 2 O 3 -ZnO-Nb 2 O5 system, Ferroelectrics, 1997, 195: 19~22
    [10] Yan M.F., Ling H.C., Rhodes W.W. Low-firing, temperature-stable dielectric comositions based on bismuth nickel zinc niobates, J. Am. Ceram. Soc., 1990, 73(4): 1104~1107
    [11]姚尧,赵梅瑜,王依琳等,Zn含量高的Bi 2 O 3 -ZnO-Nb 2 O5系高频介质陶瓷,硅酸盐学报,1999,27:208~213
    [12]汪宏,王晓莉,姚熹,Bi 2 O 3 -ZnO-Nb 2 O5三元系统中焦绿石结构及相变,西安交通大学学报,1995,29:24~29
    [13] Valant M., Davies P.K., Synthesis and dielectric properties of pyrochlore solid solutions in the Bi 2 O 3 -ZnO-Nb 2 O 5 -TiO2 system, J. Mater. Sci., 1999, 34: 5437~5442
    [14] Bolton R.L., Temperature compensating ceramics capacitors in the system baria-rare-earth-oxide titania, Urbana, Illinois: Ceramics Engineering, University of Ullinois, 1968
    [15] Kolar D., Stadler Z., Gabersck S., et al. Ceramic and dielectric properties of selected compositions in the BaO-TiO 2 -Nd 2 O5 system, Ber. Dtsch. Keram. Ges., 1978, 55: 346~352
    [16] Matveeva R.G., Varfolomeev M.B., Refinement of the composition and crystal structure of Ba 3.75 Pr 9.5 Ti 18 O 54, Russ. J. Inorg. Chem., 1984, 29: 17~19
    [17] Ohsato H., Ohhashi T., Kato H., Microwave dielectric properties and structure of the Ba 6-3x Sm 8+2x Ti 18 O54 solid solutions, Jpn. J. Appl. Phys., 1995, 34(1): 187~191
    [18] Wada K., Kakimoto K., Ohsato H., Control of temperature coefficient of resonant frequency in Ba 4 Sm 9.33 Ti 18 O54 ceramics by templated grain growth, Sci. Tech. Advanced. Mater., 2005, (6): 54~60
    [19] Nishigaki S., Kato H., Yano S., Microwave dielectric composites for microwave application, J. Eur. Ceram. Soc., 2001, 21(10-11): 1693~1697
    [20] Fu Y.P., Liu C.W., Effect of TiO 2 ratio on BaO-Nd 2 O 3 -TiO2 microwave ceramics, Ceram. Inter., 2005, 31(5): 667~670
    [21] Ichinose N., Amda H., Preparation and microwave dielectric properties of the BaO·(Sm 1-x La x ) 2 O 3·5TiO2 ceramic system, J. Eur. Ceram. Soc., 2001, 21:2751~2753
    [22] Qin N., Chen X.M., Effects of Sm/Bi Co-substitution on microstructures and microwave dielectric characteristics of Ba 6-3x La 8+2x Ti 18 O54 (x=2/3) solid solution, Mater. Sci. Eng. B., 2004, 111(1): 90~94
    [23]方亮,杨俊峰,黄涛华等,新铌酸盐Ba 5 LaZnNb 9 O30(Ln=Y,La)的合成、结构与介电性能,高等学校化学学报,2004,25:806~809
    [24] Zhu W.F., Hu C.Z., Wu B.L.,et al. Characterization and properties of new dielectric ceramics Ba 5 LnZnNb 9 O30 (Ln=La, Nd and Sm), Trans. Nonferrous Met. Soc. China, 2006, 16: 534~537
    [25] Fang L., Yu Q., Hu C.Z., Zhang H., High dielectric constant and low-loss dielectric ceramics of Ba 5 LnZnNb 9 O30 (Ln=La, Nd and Sm), Mater. Lett., 2007, 61: 4140~4143
    [26] Chen X.M., Dielectric characteristics of composite ceramics in the Ba(Mg 1/3 Ta 2/3 )O 3 -BaO·Nd 2 O 3·5TiO2 system, J. Mater. Sci., 1996, 31: 4853~4857
    [27] Chen X.M., Dielectric composite ceramics in Ba(Mg 1/3 Ta 2/3 )O 3 -BaO·Nd 2 O 3·5TiO2 system, J. Mater. Sci. Lett., 1995, 14: 1041~1042
    [28] Sebastian M.T. New low loss microwave dielectric ceramics in the BaO-TiO 2 -Nb 2 O 5 /Ta 2 O5 system, J. Mater. Sci.: Mater. Electron., 1999, 10: 475~478
    [29] Chen X.M., Yang J.S., Dielectric characteristics of ceramics in BaO-Nd 2 O 3 -TiO 2 -Ta 2 O 5 system, J. Eur. Ceram. Soc., 1999, 19: 139~142
    [30] Kato J., Kagata H., Nishimoto K., Dielectric properties of lead alkalinge-earth zirconate at microwave frequencies, Jpn. J. Appl. Phys., 1991, 30: 2343~2349
    [31] Yang Q.H., Kim E.S., Meng Z.Y., Effect of La3 + and Nd3 + on the microwave dielectric properties of (Pb 1-x Ca x )(Fe 0.5 Nb 0.5 )O3 ceramics, Mater. Sci. Eng., 2003, B99: 256~261
    [32]胡明哲,周东祥,姜胜林,Nd3 +取代对(Pb,Ca)(Fe,Nb)O3介质陶瓷微波特性及晶体铁影响研究,无机材料学报,2005,20(1):126~132
    [33]周东祥,胡明哲,姜胜林,CeO 2添加对(Pb,Ca)(Fe,Nb)O3介质陶瓷微波结构及微波性能的影响,硅酸盐学报,2004,32(6):709~713
    [34] Yang Q.H., Kim E.S., Xu J., Effect of Nd 3+on the microwave dielectric properties of (Pb 0.5 Ca 0.5 )(Fe 0.5 Nb 0.5 )O 3 ceramics, Mater. Sci. Eng., 2004, B113: 224~227
    [35] Qin C.B., Yue Z.X., Gui Z.I., Low-fired (Pb,Ca)(Fe, Nb)O3 ceramics for multilayer microwave filter applications, Mater. Sci. Eng., 2003, B99: 286~289
    [36] Takahashi H., Baha Y., Ezaki K., et al. Dielectric characteristics of (A1+ 1/2 A3+ 1/2 )TiO3 ceramics at microwave frequencies, Jpn. J. Appl. Phys., 1991, 30: 2339~2342
    [37] Ezaki K., Bada Y., Takahashi H., Microwave dielectric properties of CaO-Li 2 O-Ln 2 O 3 -TiO 2 ceramics, Jpn. J. Appl. Phys., 1996, 35(9B): 4319~4322
    [38] Huang C.L., Tsai J.T., Li J.L., Microwave dielectric properties of (1-x)CaO-xBaO-Li 2 O-(1-y)Sm 2 O 3 -yNd 2 O 3 -TiO2 ceramics system, J. Mater. Sci., 2000, 35(19): 4901~4905
    [39] Yue Z., Zhang Y., Gui Z., et al. Preparation and characterization of CaTiO 3 -(Li 1/2 Nd 1/4 Sm 1/4 )TiO3 microwave ceramics by a sol-gel combustion process, Appl. Phys. A, 2005, 1757~1761
    [40] Zimmermann F., Menesklou W., Ivers-Tiffee E., Electrical properties of silver-tantalate-niobate thick films, Integr. Ferroelectric., 2002, 50: 181~188
    [41] Kim H., Shrout T., Randall C., et al. Low-temperature sintering and dielectric properties of Ag(Nb,Ta)O3 composite ceramics, J. Am. Ceram. Soc., 2002, 85(1), 2738~2744
    [42]吴国祯,拉曼峰强作为分子晶体相变的有序度,光散射学报,1994(6):1~5
    [43] Babu G.S., Subramanian V., Murthy V.R.K., et al. Far-infrared, Raman spectroscopy, and microwave dielectric properties of La(Mg 0.5 Ti (0.5-x) Sn x)O3 ceramics, J. Appl. Phys., 2007, 102, 064906.
    [44] Chang C.B., Leou K.C., Chia C.T., et al. Effect of milling process on the microwave dielectric properties of Ba 2 Ti 9 O20 materials, J. Phys. D: Appl. Phys., 2006, 39: 4457~4465
    [45] Camargo E.R., Long E., Leite E.R., Synthesis of ultra-fine columbite powder MgNb 2 O6 by the polymerized complex method, J. Sol-Gel Sci. Tech., 2000, 17: 111~121
    [46] Francombe M.H., Lewis B., Structural and electric properties of silver niobate and silver tantalate. Acta Crys., 1958, 11: 175~178
    [47] Reisman A., Holtzberg F., Heterogeneous equilibria in the systems Li 2 O-Ag 2 O-Nb 2 O 5 and oxide-models. J. Am. Chem. Soc., 1958, 80: 6503~6507
    [48] Kania A., Roleder K., Kugel G.E., et al. Raman scattering, central peak and phase transitions in AgNbO 3, J. Phys. C: Solid State Phys. 1986, 19: 9~20
    [49] Kugel G.E., Fontana M.D., Hafid M., et al. A Raman study of silver tantalate (AgTaO3) and its structural phase transition sequency, J. Phys. C: Solid State Phys. 1987, 20: 1217~1230
    [50] Belyaev I.N., Lupeiko T.G., Nalbandyan V.B., Orthorhombic silver metatantalate and solid-solutions of system (Ag,Na)TaO 3 , Ag(Nb,Ta)O3. Kristallografiya, 1978, 23(3): 620~621
    [51] Kania A., AgNb 1-x Ta x O3 solid solutions-dielectric properties and phase transition. Phase Transit., 1983, 3: 131~140
    [52] Pawe?czyk M., Phase transition in AgTa x Nb 1-x O3 solid solutions. Phase Transit. 1999, 8: 273~292
    [53] Hafid M., Kugel G.E., Kania A., et al. Study of the phase tranistion sequence of mixed silver tantalate-niobate (AgTa 1-x Nb x O3) by inelastic light scattering, J. Phys.: Condens. Matter., 1992, 4: 2333~2345
    [54] Kania A., Kwapulinski J., Ag 1-x Na x NbO3(ANN) solid solutions: from disordered antiferroelectric AgNbO 3 to normal antiferroelectric NaNbO3, J. Phys.: Condens. Matter., 1999, 11: 8933~8946
    [55] Valant M., Suvorov D., Microwave ceramics with permittivity over 400, The 9th International Meeting on Ferroelectricity Abstract Book ( Seoul, South Korea, 1997) (Paper No. P-05-TH-067)
    [56] Valant M., Suvorov D., New high-permittivity AgNb 1-x Ta x O3 microwave ceramics: PartⅠ, crystal structures and phase-decomposition relations, J. Am. Ceram. Soc., 1999, 82(1): 81~87
    [57] Valant M., Suvorov D., New high-permittivity AgNb 1-x Ta x O3 microwave ceramics: PartⅡ, dielectric characteristics, 1999, 82(1): 88~93
    [58] Zimmermann F., Menesklou W., Tiffee E.I., Investigation of Ag(Nb,Ta)O3 as tunable microwave dielectrics, J. Eur. Ceram. Soc., 2004, 24: 1811~1814
    [59] Hu X., Valant M., Suvorov D., Phase transitions and dielectric properties of the Ag 1-x Bi x/3 NbO 3 system, J. Appl. Phys., 2006, 99: 124109
    [60] Valant M., Suvorov D., Hoffmann C., et al. Ag(Nb,Ta)O3-based ceramics with suppressed temperature dependence of permittivity, J. Eur. Ceram. Soc., 2001, 21: 2647~2651
    [61] Kim H.T., Shrout T., Randall C., et al. Low-temperature and dielectric properties of Ag(Nb,Ta)O 3 composite ceramics, J. Am. Ceram. Soc., 2002, 85: 2738~2844
    [62]陈长庆,吴霞宛,王鸿儒等,添加物对Ag 2 O-Na 2 O-Nb 2 O-Ta 2 O5介电性能的影响,压电与声光,2003,25(3):221~223
    [63]于韶洁,吴霞宛,陈长庆等,Bi 2 O 3添加剂对Ag 2 O-Nb 2 O 5 - Ta 2 O5介电性能的影响,压电与声光,2004,26(6):492~493
    [64]陈长庆,吴霞宛,袁延志等,(Ag 1-x Na x )(Nb 1-x Ta x )O3陶瓷介电性能的研究,硅酸盐学报,2003,31(3):308~311
    [65] Guo X.Y., Xiao M., Wu X.W., et al. Effect of Sb5+ substitution on the dielectric properties of Ag(Nb 0.8 Ta 0.2 )O 3 ceramics, Mater. Lett., 2006, 60: 3651~3654
    [66]关振铎,张中太,焦金生,无机材料物理性能,清华大学出版社(第一版),1992,332~335
    [67] Volkov A.A., Gorshunov B.P., Komandin G., et al. High-frequency dielectric spectra of AgTaO 3 -AgNbO3 mixed ceramics, J. Phys.: Condens. Matter., 1995, 7: 785~793
    [68] Sugiyama M., Nagai T., Anomaly of dielectric constant of (Ba 1-x Sr x )(Mg 1/3 Ta 2/3 )O3 solid solution and its relation to structural change, Jpn. J. Appl. Phys., Part 1, 1993, 32: 4360~4363
    [69] Iwata M., Hoshino H., Orihara H., et al. Raman scattering in (1-x)Pb(Zn 1/3 Nb 2/3 )O 3-x PbTiO3 mixed crystal system, Jpn. J. Appl. Phys., 2000, 39: 5961~5966
    [70] Chia C.T., Chen Y.C., Cheng H.F., Correlation of microwave dielectric properties and normal vibration modes of xBa(Mg 1/3 Ta 2/3 )O 3 -(1-x)Ba(Mg 1/3 Nb 2/3 )O3 ceramics, J. Appl. Phys., 2003, 94: 3360~3364
    [71] Suvorov D., Valant M., Skapin S., et al. Microwave dielectric properties of ceramics with compositions along the La 2/3 TiO 3 (STAB)–LaAlO3, J. Mater. Sci., 1998, 33: 85~89
    [72] Bian J.J., Yan K., Structure and microwave dielectric properties of La (2-x)/3 Na x TiO 3, J. Electroceram., 2007, 21(4): 132~136
    [73] Inaguma Y., Katsumata T., Itoh M., et al. Crystal structure of a lithium ion-conducting perovskite La 2/3?x Li 3x TiO 3 (x=0.05), J. Solid State Chem., 2002, 166: 67~72
    [74]石锋,BSZN微波介质陶瓷介电常数的异常,压电与声光,2008,30(4):495~497
    [75]刘丹丹,吴顺华,王伟,(Ba 1-x Sr x )(Mg 1/3 Ta 2/3 )O3微波陶瓷介电性能研究,2004, 32(6):679~683
    [76] Chen Y.C., Cheng H.F., Liu H.L., et al. Correlation of microwave dielectric properties and normal vibration modes of xBa(Mg 1/3 Ta 2/3 )O 3 -(1-x)Ba(Mg 1/3 Nb 2/3 )O3 ceramics:Ⅱ. Infrared spectroscopy, J. Appl. Phys., 2003, 94(5): 3365~3370
    [77] Endo K., Fujimoto K., Murakawa K., Dielectric properties of ceramics in Ba(Co 1/3 Nb 2/3 )O 3 -Ba(Zn 1/3 Nb 2/3 )O3 solid solutions, J. Am. Ceram. Soc., 1987, 70(9): C215~218
    [78] Yoon K.H., Jung B.J., Kim E.S., et al., Dielectric properties of ceramics of Sr(Mg 1/3 Nb 2/3 )O 3 -Ba(Mg 1/3 Nb 2/3 )O3 solid solution, J. Mater. Sci. Lett., 1989, 8: 819~822
    [79]王瑾菲,蒲永平,杨公安等,Sm掺杂Bi 4 Ti 3 O12陶瓷晶体结构及电性能的研究,人工晶体学报,2009,38(4):866~892
    [80] Liang M.H., Hua C.T., Cheng H.F., et al. Effect of sintering process on microstructure characteristics of Ba(Mg 1/3 Ta 2/3 )O3 ceramics and their microwave dielectric properties. J. Eur. Ceram. Soc., 2001, 21: 2759~2763
    [81] Kim E.S., Park H. S., Yoon K. H., Porosity dependence of microwave dielectric properties of complex perovskite (Pb 0.5 Ca 0.5 )(Fe 0.5 Ta 0.5 )O3 ceramics. Mater. Chem. Phys., 2003, 79: 213~217
    [82] Yang J.I., Nahm S., Choi C.H., et al., Effect of Ga 2 O3 on microwavestructure and microwave dielectric properties of Ba(Zn 1/3 Ta 2/3 )O3 ceramcis, Jpn. J. Appl. Phys., 2002, 41: 702~706
    [83] Gao F., Liu J.J., Hong R.Z., et al. Microstructure and dielectric properties of low temperature sintered ZnNb 2 O6 microwave ceramics, Ceram. Inter., 2009, 35(7): 2687~2692
    [84] Zhang H., Gy?rgyfalva G.C., Reaney I.M., Microstructure and microwave properties of CaTiO 3 -LaGaO3 solid solutions, J. Mater. Sci., 2005, 40: 5207~5214
    [85] Shen C.H., Huang C.L., Shih C.F., et al. Dielectric properties of Mg 0.95 Ni 0.05 TiO3 ceramics modified by Nd 0.5 Na 0.5 TiO3 at microwave freQuencies, Current Appl. Phys., 2009, 9: 1042~1045
    [86] Huang C.L., Chen J.Y., Low-loss microwave dielectrics using Mg 2 (Ti 1-x Sn x)O4(x=0.01-0.09) solid solution, J. Am. Ceram. Soc., 2009, 92(10): 2237~2241
    [87]吴顺华,赵玉双,张志萍等,Ba 2 Ti 9 O20高频介质陶瓷结构和介电性能,硅酸盐通报,2001,6:21~24
    [88]黄雯雯,凌志远,欧瑞江等,低温烧结0.5CaTiO 3 -0.5CaTiSiO5高频介质陶瓷,电子元件与材料,2003,6:14~16
    [89]姚尧,王依琳,赵梅瑜等,低温烧结Nb 2 O 5 -Bi 2 O3-ZnO系高频介质陶瓷,无机材料学报,1999,14(4):684~688
    [90]吴顺华,吴国桥,贾桂荣,高频、高QMTZ系统微波陶瓷的研究,硅酸盐通报,1999,6:3~7
    [91] Zhang S.X., Li J.B., Cao J., et al. Preparation, microstructure and microwave dielectric properties of Zr x Ti 1-x O4 (x=0.40-0.60) ceramics, J. Euro. Ceram. Soc., 2001, 21: 2931~2936
    [92] Chu L.W., Hsiue G.H., Chiang Y.J., et al. Ultra-fine Ba 2 Ti 9 O20 microwave dielectric materials synthesized by chemical process, J. Eur. Ceram. Soc., 2004, 24: 1781~1785
    [93] Chu L.W., Hsiue G.H., Lin I.N., Improvement on the characteristic of Ba 2 Ti 9 O20 microwave dielectric materials prepared by modified co-precipitation method, J. Eur. Ceram. Soc., 2006, 26(10-11): 2081~2085
    [94]汤清华,王筱珍,张绪礼等,化学共沉淀法制备Ba 2 Ti 9 O20超微粉的研究,功能材料,1996,27(6):525~527
    [95] Wang Y.G., Xu G., Yang, L.L., et al. Low-temperature synthesis of Bi 2 Fe 4 O9 nanoparticles via a hydrothermal method, Ceram. Inter., 2009, 35: 51~53
    [96] Wang H.F., Ma Y.Q., Yi G.S., et al. Synthesis of Mn-doped Zn 2 SiO4 rodlike nanoparticles through hydrothermal method, Mater. Chem. Phys., 2003(82): 414~418
    [97] Yu J., Liu X.Q., Hydrothermal synthesis and characterization of LiNbO3 crystal, Mater. Lett., 2007(61): 355~358
    [98] Sun W.A., Li J.Q., Ao W.Q., et al. Hydrothermal synthesis and magnetochloric effect of La 0.7 Ca 0.2 Sr 0.1 MnO 3, Powder Tech., 2006, 166: 77~80
    [99] Liu Z.Q., Wang W.L., Liu X.M., et al. Synthesis of nanostructured spinel LiMnO by hydrothermal method at 70℃, Inorg. Chem. Commun., 2007, 7: 308~310
    [100] Chu L.W., Hsiue G.H., Lin I.N., Synthesis of Ba 2 Ti 9 O20 materials via a dissolution precipitation mechanism in a hydrothermal process, Acta. Mater., 2006, 54: 1671~1677
    [101] Komameni S., Roy R., Li Q.H., Microwaver-hydrothermal synthesis of ceramic powder, Mater. Res. Bull., 1992, 27: 1393~1405
    [102] Newalkar B.L., Komarneni S., Katsuki H., Microwave-hydrothermal synthesis and characterization of barium titanate powders, Mater. Res. Bull., 2001, 36: 2347~2355
    [103] Newalkar B.L., Katsuki H., Komarneni S., Microwave-hydrothermal synthesis and characterization of microporous-mesoporous disordered silica using mixed-micellar-templating approach, Microporous Mesoporous Mater., 2004, 73: 161~170
    [104] Caillot T., Pourroy G., Microwave hydrothermal flash synthesis of nanocomposites Fe-Co alloy-cobalt ferrite, J. Solid. State. Chem., 2004, 177: 3843~3848
    [105] Komarneni S., Komarneni J.S., Newalkar B.L., et al. Microwave-hydrothermal synthesis of Al~substituted tobermorite from zeolites, Mater. Res. Bull., 2002, 37: 1025~1032
    [106] Sun W.A., Li C.H., Li J.Q., et al. Microwave-hydrothermal synthesis of tetragonal BaTiO3 under various conditions, Mater. Chem. Phys., 2006, 97: 481~487
    [107] Prado-Gonjal J., Villafuerte-Castrejón M.E., Fuentes L., et al. Microwave-hydrothermal synthesis of the multiferroic BiFeO3, Mater. Res. Bull., 2009, 44: 1734~1737
    [108] Zawadzki M., Synthesis of nanosized and microporous zink aluminate spinel by microwave assisted hydrothermal method (microwave-hydrothermal synthesis of ZnAl 2 O 4), Solid State Sci., 2006, 8: 14~18
    [109] Luan C.N., Yuan D.R., Duan X.L., et al. Synthesis and characterization of Co2 +: MgAl 2 O 4 nanocrystal, J. Sol-Gel Sci. Techn., 2006, 38: 245~249
    [110] Amsei Júnior N.L., Sim?es A.Z., et al. Structural and microstructural characterization of SrBi 2 (Ta 0.5 Nb 0.48 W 0.02 ) 2 O9 powders, J. Alloy. Comp., 2008, 454: 61~65
    [111] Wu K.H., Huang W.C., Yang, C.C., et al. Sol-gel auto-combustion synthesis of Ni 0.5 Zn 0.5 Fe 2 O 4 /(SiO 2 )x (x=10, 20, 30wt.%) nanocomposites and their characterizations, Mater. Res. Bull., 2005, 40: 239~248
    [112] Zhang Y.F., Zhang J.X., Lu Q.M., et al. Synthesis and characterization of Ca 3 Co 4 O9 nanoparticles by citrate sol-gel method, Mater. Lett., 2006, 60: 2443~2446
    [113] Epifani M., Melissano E., Pace G., et al. Precursors for the combustion synthesis of metal oxides from the sol-gel processing of metal complexes, J. Euro. Ceram. Soc., 2007, 27: 115~123
    [114] Miao Y.M., Zhang Q.L., Yang H., et al. Low-temperature synthesis of nano-crystalline magnesium titanate materials by sol-gel method, Mater. Sci. Eng. B, 2006, 128: 103~106
    [115] Jain R., Gupta V., Sreenivas K., Sintering characteristics and properties of sol gel derived Sr 0.8 Bi 2.4 Ta 2.0 O 9 ceramics, Mater. Sci. Eng. B, 2000, 78: 63~69
    [116] Kumar M., Garg A., Kuamr R., et al. Structural, dielectric and ferroelectric study of Ba 0.9 Sr 0.1 Zr x Ti 1-x O3 ceramics prepared by the sol-gel method, Physica B, 2008, 403: 1819~1823
    [117] Zhao F., Yue Z.X., A novel microwave dielectric ceramic Ca 2 Zn 4 Ti 16 O38: preparation and dielectric properties, J. Solid State Chem., 2006, 179: 1720~1726
    [118] Stearns L.C., Harmer M.P., Particle-inhibited grain growth in Al 2 O3-SiC:Ⅰ, experimental results, J. Am. Ceram. Soc., 1996, 79: 3013~3019
    [119]王宏志,高濂,郭景坤,SiC颗粒尺寸对Al 2 O3-SiC纳米复合陶瓷的影响,无机材料学报,1999,14:679~683
    [120]李杰,唐子龙,张中态,微量掺杂对8%Mg-部分稳定氧化锆晶粒尺寸和相组成的影响,硅酸盐学报,2003,31:25~30
    [121]孙中禹,高纯铝箔再结晶晶粒度对比容的影响,电子元件与材料,1995,14:45~48
    [122] Laura C.S., Martin P.H., Particle-inhibited grain growth in Al 2 O3-SiC: I, experimental results, J. Am. Ceram. Soc., 1996, 79(12): 3013~3019
    [123] Sciau P., Kania A., Dkhil B., et al. Structural investigation of AgNbO3 phase using x-ray and neutron diffraction, J. Phys.: Condens. Matter., 2004, 16: 2795~2810
    [124] Kania A., An additional phase transion in silver niobate AgNbO3, Ferroelectrics, 1998, 205: 19~28
    [125] Pawelczyk M., Phase transition in AgTa x Nb 1-x O3 solid solutions. Phase Transit., 1999, 8: 273~292
    [126] Kania A., Rolder K., Lukaszewski M., The ferroelectric phase in AgNbO3, Ferroelectric, 1984, 52: 265~269
    [127] Lukaszewski M., Pawelczyk M., Handerek J., et al. On the phase transitions in silver niobate, Phase Transitions., 1983, 3: 247~258
    [128] Mohanty G.P., Fiegel L.J. , Healy J.H., On the system niobium pentoxide-tantalum pentoxide, J. Phys. Chem., 1964, 68: 20~210
    [129] Holtzberg F., Reisman A., Sub-solidus eQuilibria in the system Nb 2 O 5 -Ta 2 O5, J. Phys. Chem., 1961, 65(7): 1192~1196
    [130] Shimakawa Y., Kubo Y., Structural distortion and ferroelectric properties of SrBi 2 (Ta 1-x Nb x ) 2 O 9, Appl. Phys. Lett., 2000, 77: 2749~2751
    [131] Cava R.J., Peck W.F., Krajewski J.J., Dielectric properties of the (Nb 1-x Ta x ) 2 O5 solid solution, Materials Research Bulletin, 1996, 31: 295~299
    [132] Shannon R.D., Dielectric polarizabilities of ions in oxide, ?uorides, J. Appl. Phys., 1993, 73(1): 348~366
    [133] Cohen R.E., Origin of ferroelectricity in perovskite oxides, Nature, 1992, 358: 136~138
    [134] Ogawa H., Kan A., Ishihara S., et al. Crystal structure of corundum type Mg 4 (Nb 2-x Ta x )O9 microwave dielectric ceramics with low dielectric loss, J. Eur. Ceram. Soc., 2003, 23: 2485~2488
    [135] Prasad N.S., Varma K.B.R., Structural and dielectric properties of ferroelectric Sr 1-x Ba x Bi 2 (Nb 0.5 Ta 0.5 ) 2 O 9 and Sr 0.5 Ba 0.5 Bi 2 (Nb 1-y Ta y ) 2 O9 ceramics, Materials Research Bulletin, 2003, 38: 195~206
    [136] Remeika J.M., Desgardin G., Dielectric properties of barium titanate-based capacitors with lithium additions, J. Ceram. Trans., 1993, 32: 155~166
    [137] Pollet M., Marinel S., Low temperature sintering of CaZrO3 using lithium fluoride addition, J. Eur. Ceram. Soc., 2003, 23: 1925~1933
    [138] Benziada L., Kermoun H., Structural and nonlinear dielectric properties in fluoride containing SrTiO 3 or BaTiO 3 ceramics, J. Fluor. Chem., 1999, 96: 25~29
    [139] Aydi A., Chkoundali S., Khemakhem H., et al. X-ray diffraction, dielectric measurements and Raman spectroscopy studies of the (1-x)CaSnO 3 -xNaNbO3 solid solution, J. Alloys Compd., 2008, 465: 222~226
    [140]李斌,张其土,万慧荣,掺杂Bi 2 O 3对Ba 4 Sm 28/3 Ti 18 O54微波介质陶瓷性能的影响,电子元件与材料,2007,26(3):44~46
    [141]凌栋,徐国跃,蔡绍,Bi 2 O 3和V 2 O 5复合掺杂BaTi 4 O9微波介质陶瓷,电子元件与材料,2005,24(10):11~13
    [142] Yang C.F., Improvement of quality value and shift ofτf value of BiNbO4 ceramics with addition of CuO-V 2 O5 mixtures (part 1), Jpn. J. Appl. Phys., 1999, 38(12A): 6797~6800
    [143] Petzelt J., Setter N., Far infrared spectroscopy and origin of microwave losses in low-loss ceramics far infrared spectroscopy in low loss ceramics, Ferroelectrics, 1993, 150: 89~102
    [144] Cai X.K., Zhang L.Y., Yao X., Synthesis and dielectric properties of new compounds with pyrochlore type structure, Ferroelectrics, 1994, 154: 319~324
    [145] Zhao H., Wang W., Fu Z., et al. Effect of CaF2 on AlN-BN cermic composites by hot-pressing, J. Inorg. Mater., 2008, 23(1): 99~103
    [146] Zhang Y.C., Yue Z.X., Gui Z.L., et al. Effects of CaF2 addition on the microstructure and microwave dielectric properties of ZnNb 2 O6 ceramics, Ceramics Inter., 2003, 29: 555~559
    [147]姜红梅,张树人,周晓华,(Zn 1-x Mg x ) 2 SiO4基微波陶瓷的介电性能研究,压电与声光,2008,30(5):615~617
    [148] Akbas M.A., Davies P.K., Structure and dielectric properties of the Ba(Mg 1/3 Nb 2/3 )O 3 -LaBa(Mg 1/3 Ta 2/3 )O3 system, J. Am. Ceram. Soc., 1998, 81(8): 2205~2208.
    [149]周焕福,黄金亮,Sm 2 O3掺杂对BZN基陶瓷介电性能的影响,电子元件与材料,2005,24:23~25
    [150] Duguey S., Lebourgeois R., Ganne J.P., et al. High frequency dielectric properties of hot-pressed Ag(Nb x Ta 1-x )O3 solid sulutions E-P-09, J. Eur. Ceram. Soc., 2007, 27: 1087~1091
    [151] Glazer A.M., The classification of titled octahedral in perovskite, Acta Cryst., 1972, B28: 3384~3392
    [152] Reaney I.M., Cola E.L., Seter N., Dielectric and structural characteristics of Ba-and Sr-based complex perovskites as a function of tolerance factor, Jpn. J. Appl. Phys., 1994, 33: 3984~3992
    [153] Valant M., Suvorov D., Rawn C.J., Intrinsic reasons for variations in dielectric properties of Ba 6-3x R 8+2x Ti 18 O54 (R=La-Gd) solid solutions, Jpn. J. Appl. Phys., 1999, 38: 2820~2826
    [154] Petzelt J., Kamba S., Buixaderas E., et al. Infrared and microwave dielectric response of the disordered antiferroelectric Ag(Ta,Nb)O3 system, Ferroelectrics, 1999, 223: 235~246
    [155] Ross S.D., The vibrational spectra of lithium niobate, barium sodium niobate and barium sodium tantalite, J. Phys. C: Solid State. Phys., 1970, 3: 1785~1790
    [156] Kakimoto K., Akao K., Guo Y., et al. Raman Scattering Study of Piezoelectric (Na 0.5 K 0.5 )NbO 3 -LiNbO 3 Ceramics, Jpn. J. Appl. Phys., 2005, 44: 7064~7067
    [157] Ratheesh R., Sreemoolanadhan H., Sebastian M.T., Vibrational analysis of Ba5-xsrxnb4o15 dielectric ceramics, J. Solid State Chem., 1997, 131: 2~8
    [158] Rousseau D.L., Bauman R.P., Porto S.P.S., Normal mode determination in crystals, J. Raman Spectrosc., 1981, 10: 253~290
    [159] Siny I.G., Tao R., Katiyar R.S., et al. Raman spectroscopy of Mg-Ta order-disorder in BaMg 1/3 Ta 2/3 O 3, J. Phys. Chem. Solids, 1998, 59: 181~188.
    [160] Moreira R.L., Matinaga F.M., Dias A., Raman-spectroscopic evaluation of the long-range order in Ba(B` 1/3 B`` 2/3 )O3 ceramics, Appl. Phys. Lett., 2001, 78: 428~430
    [161] Siny I.G., Katiyar R.S., Bhalla A.S., Cation arrangement in the complex perovskites and vibrational spectra, J. Raman Spcetrosc., 1998, 29: 385~390
    [162] Ratheesh R., W?hlecke M., Berge B., et al. Raman study of the ordering in Sr(B` 0.5 Nb 0.5 )O 3 compounds, J. Appl. Phys., 2000, 88:2813~2818
    [163] Jiang F., Kojima S., Zhao C., et al. Chemical ordering in lanthanum-doped lead magnesium niobate relaxor ferroelectrics probed by A1g Raman mode, Appl. Phys. Lett., 2001, 79(24): 3839~3841
    [164] Ravichandran D., Jin B., Roy R., et al. Raman spectroscopy of sol–gel derived Ba(Zn 1/3 Ta 2/3 )O 3 perovskites, Mater. Lett., 1995, 25: 257~259
    [165] Cheng H.F., Chia C.T., Liu H.L., et al. Correlation of the phonon characteristics and microwave dielectric properties of the Ba(Mg 1/3 Ta 2/3 )O 3 materials, J. Eur. Ceram. Soc., 2007, 27: 2893~2897
    [166] Mizoguchi H., Eng H.W., Woodward P.M., Probing the electronic structures of ternary perovskite and pyrochlore oxides containing Sn4+ or Sb5 +, Inorg. Chem., 2004, 43: 1667~1680
    [167] Alves M.C.F., Souza S.C., Lima H.H.S., et al. Influence of the modifier on the short and long range disorder of stannate perovskites, J. Alloys Compd., 2009, 476: 507~512
    [168] Valant M., Suvorov D., New high-permittivity Ag(Nb 1-x Ta x )O3 microwave ceramics: partΙ, crystal structures and phase-decomposition relations, Materials Chemistry and physics., 2003, 79: 104~110
    [169] Templeton A., Wang X., Penn S.J., et al. Microwave dielectric loss of titanium oxide, J. Am. Ceram. Soc., 2000, 83(1): 95~100
    [170] Heidiner R., Nazare S., Influence of porosity on the dielectric properties of AlN in the range of 30-40 GHz, Powder Metall. Int., 1988, 20(6): 30~32
    [171]张东,丁士华,宋天秀等,Li-Zr共掺杂对Bi 2 (Zn 1/3 Nb 2/3 ) 2 O7陶瓷,电子元件与材料,2008,27:11~13
    [172] Cole M.W., Joshi P.C., Ervin M.H., et al. The influence of Mg doping on the materials properties of Ba 1-x SrxTiO3 thin films for tunable device applications, Thin Solid Films, 2000, 374: 34~41
    [173]梁晓峰,吴文彪,孟中岩,顺电态下掺铝钛酸锶钡陶瓷微结构和介电调谐性能,无机材料学报,2003,18:1240~1244
    [174]李亮,沈春英,丘泰,(Mg 1-x Zn x )TiO3系陶瓷微波介电性能的研究,电子元件与材料,2008,27:38~40
    [175]黄平,徐廷献,低温烧结SrBi 4 Ti 4 O15/Ag复合材料的制备及其介电特性,稀有金属材料与工程,2005,34:1154-1157
    [176] Fontana M.D., Métrat G., Servoin J.L., et al. Infrared spectroscopy in KNbO3 through the successive ferroelectric phase transitions, J. Phys. C: Solid State. Phys., 1984, 16: 483~514
    [177] Chen Y.C., Yao Y.D., Hsien Y.S., et al. Microwave dielectric mechanism studied by microwave near-field microscopy and Raman spectroscopy, J. Electroceram., 2004, 13: 281~286
    [178]石峰,吴顺华,王宇新,B位Sn4 +取代铌锌酸钡陶瓷及其介电性能,电子元件与材料,2005,24:48~50
    [179]陈志雄,周方桥,付刚,钙钛矿结构陶瓷N型半导化评述,材料导报,2000,14:44~47
    [180] Huang C.L., Tsai J.T., Effects of sintering temperature on CaO-Li2O--Sm 2 O 3 -TiO2 microwave dielectric ceramics, Proc. Natl. Sci. Counc. Roc(A), 2001, 25: 317~321
    [181]全学军,李大成,高纯CaCO3的合成及其对PTCR电性能的影响,电子元件与材料,1996,15(4):40~42
    [182]石勇,靳正国,程志捷,添加SrO或SnO 2对Ba 4.5 Nd 9 Ti 18 O54微波介电性能的影响,硅酸盐学报,2003,31(6):571~574
    [183]王焕茹,分子拉曼峰强中的电子结构信息与激发振动态共振的研究:[博士学位论文],北京,清华大学,2006
    [184]林曼红,吴霞宛,李玲霞等,添加Co 2 O3对微波低介电常数陶瓷机械品质因数的影响,硅酸盐学报,2003,31:1175~1183
    [185] Chou X.J., Zhai J.W., Jiang H.T., et al. Dielectric properties and relaxor behavior of rare-earthe(La, Sm, Eu, Dy, Y) subsitituted barium zirconium titanate ceramics, J. Appl. Phys., 2007, 102: 084106
    [186]肖谧,吴霞宛,郭秀盈等,钽铌酸银钠陶瓷粉体的液相合成,压电与声光,2004,26(5):390~392
    [187]宋宽秀,严玉清,李金花等,(Ag 0.9 Na 0.1 )(Nb 0.6 Ta 0.4 )O3纳米粉体结构与介电性能,天津大学学报,2004,37(11):1018~1021
    [188]宋宽秀,李金花,肖谧等,(Ag 0.9 Li 0.1 )(Nb 1-y Ta y )O3纳米瓷粉的制备与表征,无机化学学报,2005,21(2):273~276
    [189] MustafaB.T., Susan T.M., David I.W., et al. Chemical solution deposited silver tantalite niobate, Ag x (Ta 0.5 Nb 0.5 )O 3-y, thin films on (111)Pt/Ti/SiO2/(100)Si substrates, J. Sol-Gel. Techn., 2007, 42: 407~414
    [190] Zhao J.P., Liu X.R., Qiang L.S., Characteristics of the precursors and their thermal decomposition during the prepartation of LiNbO3 thin films by the Pechini method, Thin Solid Films, 2006, 515: 1455~1460
    [191] Yanovskaya M.I., Turevskaya E.P., Leonov A.P., et al. Formation of LiNbO3 powders and thin films by hydrolysis of metal alkoxides, J. Mater. Sci., 1998, 23: 395~399
    [192] Dong H.W., Nam H.H., Kwangsoo N., Effects of sol-gel processing variables on the texture growth of LiNbO 3 thin film, Jpn. J. Appl. Phys., 1996, 35: 210~215
    [193] Emerson C.R., Masato K., Low temperature synthesis of lithium niobate powders based on water-soluble niobium malato complexes. Solid State Ionics 2002, 151(1-4): 413~418
    [194]王歆,庄志强,齐雪君,PMN-PT弛豫铁电粉体的溶胶-凝胶法制备及其性质,无机材料学报,2007,17(2):306~310
    [195]陈强,肖定全,吴家刚等,Pechini法制备铌酸锂陶瓷的结晶性能研究,功能材料,2004,4:477~482
    [196]钟涛,非醇盐前驱物制备铌酸盐基功能陶瓷和薄膜(北京工业大学硕士论文),2006,11~12
    [197] Duan X.L., Yuan D.R., Wang X.Q., et al. Synthesis and characterization of nanocrystalline zinc aluminum spinel by a new sol-gel method, J. Sol-gel Sci. Tech., 2005, 35: 221~224
    [198] Barros B.S., Barbosa R., os Santos N.R., et al. Synthesis and x-ray diffraction characterization of nanocrystalline ZnO obtained by Pechini method, Inorg. Mater., 2006, 42: 1348~1351
    [199] Jiang X.N., Lan Z.W., Yu Z., et al. Sintering characteristics of LiZn ferrites fabricated by a sol–gel process, J. Magn. Magn. Mater., 2009, 321: 52~55
    [200] Kalyana Lakshmi Y., Venugopal Reddy P., Influence of sintering temperature and oxygen stoichiometry on electrical transport properties of La 0.67 Na 0.33 MnO3 manganite, J. Alloys Comp., 2009, 470: 67~74
    [201]朱建锋,罗宏杰,黄秀娟等,纳米陶瓷的素坯成型与烧成,陕西科技大学学报,2003,21(3):1~5
    [202] Telli.M.B., Mckinstry S.T., Woodward D.I., et al. Chemical solution deposited silver tantalite niobate, Ag x (Ta 0.5 Nb 0.5 )O3-y, thin films on (111)Pt/Ti/SiO 2/(100)Si substrates, J. Sol-Gel. Sci. Techn., 2007, 42: 407~411
    [203]李道华,忻新泉,Zn(Oxin) 2·2H2O纳米晶的固相化学反应合成及表征,无机化学学报,2004,20:873~877
    [204] Lang J.P., Xin X.Q., Solid state synthesis of Mo(W)-S cluster compounds at low heating temperature, J. Solid State Chem., 1994, 108: 118~127
    [205]余永宁,材料科学基础,北京:高等教育出版社,2006,46~47
    [206] Wei Z.Q., Xia T.D., Ma J., et al. Investigation of the lattice expansion for Ni nanoparticles, Mater. Characterization 2007, 58(10): 1019~1024
    [207]叶锡生,沙键,焦正宽等,纳米MgO微晶的晶格畸变和反常红外特性功能材料,1998,29(3):287~289
    [208] Shen Z.X., Kuok X.B., Tang M.H., Raman scattering investigations of the antiferroelectric-ferroelectric phase transition of NaNbO3, J. Raman. Spectrosc., 1998, 29(5): 379~384
    [209] Hu Y.M., Gu H.S., Hu Z.L., et al. Structural and optical properties of KTa 0.77 Nb 0.23 O 3 nanoplates synthesized by hydrothermal method, J. Colloid Interface Sci., 2007, 310: 292~296
    [210] Kania A., On the phase transitions in silver niobate AgNbO3, Phase Transit., 1983, 3: 247~258
    [211]郑锦清,压电陶瓷制造工艺对温度系数正负值的控制,华南理工大学学报,1978,6(1):22~28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700