新型CaB_4晶体的生长与物理性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硼化物陶瓷由于其高的熔点和化学稳定性及良好的耐高能粒子轰击性等,通常被应用作为具有优良性能的特殊功能材料。由于MgB_2超导电性的发现,碱土金属硼化物受到了人们极大地关注,而钙-硼体系化合物作为碱土金属硼化物的重要一员,自然也引起众多科学家的研究热情。在常压Ca-B相图中,仅有立方结构CaB6一种化合物。尽管有报道指出可能存在与稀土元素四硼化物结构一致的CaB_4化合物,但一直没在实验上成功合成出这种晶体。Schmitt等人采用固态反应法制备了CaB_(4-x)C_x化合物(0< x <5%),这种晶体的合成与碳的掺杂有关,使用不同的原料,改变反应条件都未能得到纯CaB_4化合物。我们小组采用高温高压的方法成功合成了纯的CaB_4单晶体,研究表明CaB_4是一种高压下的稳定相。研究成果丰富了Ca-B体系的相形成规律,并为获得新型硼化物提供了有效的新途径。
     本文对CaB_4晶体的形成规律和物理性质作了系统性研究。研究结果表明在CaB_4晶体形成过程中,硼首先以固液反应方式溶入液态钙中,然后与钙反应形成CaB_4晶体析出。当反应温度较低时,合成的晶体多为细长棒状,获得的晶体数量相对较少。当反应温度较高时,溶入的硼量增多,进而能获得尺寸较大的块状晶体,且晶体形成的产率较高。实验获得的CaB_4晶体密度为2.62(±0.03) g/cm3。采用电感耦合等离子体(ICP)法测定CaB_4晶体中元素含量比为Ca∶B = 1∶4.1。
     CaB_4晶体电性能测试发现,其电阻率随着温度的变化规律符合金属性导电机制,其剩余电阻为ρ(2 K) = 6.7μ(?)cm,霍尔测量表明晶体的多数载流子是电子。应用德拜和爱因斯坦两个模型,对CaB_4晶体的热容和电阻率随温度变化规律进行了表征。晶体的磁性测量表明纯净CaB_4晶体为顺磁性。通过对喇曼实验偏光配置,测量到了四条散射谱。
     对CaB_4晶体进行Mn元素掺杂研究表明:采用高温高压方法制备Ca-Mn合金能有效抑制钙的挥发和氧化。通过对掺杂晶体喇曼散射测量发现,A1g和Eg模式的高频部分的散射峰位移较为明显,位移量与合金中的掺杂元素的量有关系,并且由掺杂Mn量大的合金合成的晶体电阻率小,晶体的导电性比由掺杂量少的合金合成晶体的好,可以判定晶体内部有掺杂元素进入。
     通过第一性原理计算研究了CaB_4晶体的能带结构、光学常数、弹性常数、声子谱等。指出了CaB_4的晶格振动中的两类红外吸收激活振动模式(A2u和Eu),四类喇曼散射激活振动模式(A_(1g)、B_(1g)、B_(2g)和E_g)。通过第一性原理研究了掺杂CaB_4晶体的能带和自旋极化。
Borides were usually applied with as special function materials because of its high melting point, chemical stability and hardness. Alkaline earth metal borides are greatly concerned reaserchers attention since the discovery of superconductivity in MgB2. Calcium - boron system as a key member of the alkaline earth metal boron compounds attrced researcher’attention. In the binary phase diagram of Ca-B at the ambient pressure, only CaB6 can be found. Although some articles point out that there should be a calcium tetraboride like the rare earth boride of CeB4, any reports have not been found up to now. Schmitt et. has obtained the compound of CaB_(4-x)C_x (0 < x < 5%) by solid state reaction. The crystals were in the reference to the doped carbon element; no pure CaB_4 crystal was obtained even by changed the reaction materials at the atbient pressure. We have successfully synthesized CaB_4 crystals under High-Temperature High-Pressure (HPHT) condition, making up the P-T phase diagram of CaB_4, and pointing ou a potential synthesis method for the CaB_2 crystal.
     Investigations on the physical properties of the novel crystal CaB_4 were carried out in this paper. Experiments shows that in HPHT condition, boron atoms were dissolved into the Ca liquid then forms CaB_4 crystal. Needle like crystals were obtained when the reaction temperature was low in the synthesize experiment and quantity were much small. While, granular crystals were obtained when the reaction temperature was higher, and a large number of crystal can be obtained. Density of crystals was 2.62(±0.03) g/cm3. The average element composition ratio in the crystal were Ca:B=1:4.1 by the inductively coupled plasma (ICP) analysis.
     The resistivity of CaB_4 single crystal decreases as the temperature decreases, approaching to the residual resistivityρ(2 K) = 6.7μ(?)cm, shows a was metallic conductance property. Hall coefficient measurement shows that the majority carrier is electrons. The resistance and heat capacity of CaB_4 crystal can be described by the Debye and Einstein combined models. Measurement shows that pure CaB_4 crystal is paramagnetism. Four Raman scattering modes were obtained by using different light polarization configurations.
     Doping experiments show that the alloy precursors prepared by High-Temperature High-Pressure method are valid, the volatilization and oxidation can be effectively suppressed. Raman shift of A_(1g) and Eg modes at high frequency parts were clearly observed for the Mn-doped CaB_4 crystals, electric conductivity for Mn-doped crystal becomes higher than that for the pure CaB_4 crystal, which indicating that Mn element is successfully doped in the CaB_4 crystal.
     The band structure, optical constants, elastic constants, phonon spectrum were calculated by first principles calculatioin. Infrared ablsorption (A2u, Eu) and Raman scattering (A_(1g), B_(1g), B_(2g), E_g) active vibrations modes were given. The band structure and spin polarization were calculated by first principles calculatioin.
引文
1.张青莲and顾学民,无机化学丛书,第二卷.铍.碱土金属,硼,铝,镓分族. (科学出版社, 1990).
    2.陈昌明and张立同,硼化物陶瓷及其应用.兵器材料科学与工程, 1997, 20 (002): 68-71
    3.刘然,薛向欣,姜涛,张淑会,段培宁,杨合and黄大威,硼及其硼化物的应用现状与研究进展.材料导报, 2006, 20 (006): 1-4
    4.李华and胡国程,超导材料.湖南冶金, 2000, (005): 44-47
    5.张士勇,超导研究与未来超导技术.陕西师范大学学报:自然科学版, 2003, 31 (002): 120-122
    6.冯勇,闫果,张平祥and周廉,实用化MgB2超导材料研究进展.低温物理学报, 2005, 27 (A02): 819-823
    7.龚伦军,傅正义,张金咏and苗明清, TiB2基复合材料的研究进展.材料导报, 2004, 18 (F04): 293-295
    8.章桥新, TiB2的价电子结构及其性能研究.陶瓷学报, 2000, 21 (003): 159-161
    9.向新and秦岩, TiB2及其复合材料的研究进展.陶瓷学报, 1999, 20 (002): 112-117
    10.林志贤and郭太良,场致发射材料的特性.福州大学学报:自然科学版, 2000, 28 (004): 22-25
    11.蒋学华,场致发射的研究进展.南阳师范学院学报, 2003, 2 (009): 33-36
    12.李俊涛and雷威,场致发射显示技术研究进展.电子器件, 2002, 25 (004): 332-339
    13.朱长纯and史永胜,场致发射显示器的现状与发展.真空电子技术, 2002, 5 15217-15217
    14.王本莲,电子科技大学, 2009.
    15.王汉斌,中国工程物理研究院, 2005.
    16.姚剑峰and李季,单晶和多晶LaB6阴极发射性能的实验研究.真空电子技术, 2002, (001): 1-4
    17.王小菊,林祖伦,祁康成,王本莲and蒋亚东,单晶LaB6场发射阵列的电化学腐蚀工艺.强激光与粒子束, 2008, 20 (007): 1195-1198
    18.朱炳金,陈泽祥and张强,六硼化镧薄膜的制备及发射特性的研究.真空电子技术, 2007, 5
    19.王刚,电子科技大学, 2007.
    20.董建康,电子科技大学, 2008.
    21.代令,电子科技大学, 2009.
    22.熊光成, MgB2超导电性的发现及新一轮高临界温度超导研究热潮.物理, 2001, 30 (004): 197-199
    23.林德华,佟存柱,张杰and毋志民,超导理论与应用研究的最新进展.重庆大学学报:自然科学版, 2002, 25 (008): 142-144
    24.黄勇and刘心宇, MgB2基超导材料研究进展.自然杂志, 2003, 25 (001): 31-36
    25.刘心宇and黄勇, MgB2超导电性研究进展.材料科学与工程, 2003, 21 (001): 104-109
    26.张翠萍and汪京荣,高温超导块材的研究进展.稀有金属快报, 2003, 7
    27.杨公安,蒲永平,王瑾菲,庄永勇and韦继锋,超导材料研究进展及其应用.陶瓷, 2009, (007): 56-59
    28.杨宣增and范细东,多元硼化物系金属陶瓷的发展概况.稀有金属与硬质合金, 2000, 2
    29.王永国and李兆前,反应烧结法制备三元硼化物基陶瓷的研究.陶瓷学报, 2000, 21 (004): 209-213
    30.周小平,胡心彬,高博and闫锋,反应烧结三元硼化物金属陶瓷覆层的组织与性能.金属热处理, 2008, 33 (003): 73-75
    31.周小平and徐义胜,感应加热三元硼化物金属陶瓷涂层的组织及耐磨性.表面技术, 2010, (001): 12-14
    32.邓建新and艾兴, Al2O3/TiB2陶瓷材料的高温摩擦磨损特性研究.硅酸盐学报, 1996, 24 (006): 648-653
    33.王永国and李兆前,三元硼化物基金属陶瓷的研究进展.材料导报, 2001, 15 (009): 9-11
    34.王永国and刘曼朗,三元硼化物基钢用耐磨覆层零件的制备方法.粉末冶金工业, 2004, 14 (006): 6-6
    35.董飞,刘福田,芦令超,常钧and李兆前,三元硼化物基金属陶瓷的制备及性能研究.济南大学学报:自然科学版, 2004, 18 (001): 28-30
    36.王永国and武体真,三元硼化物基金属陶瓷覆层材料的制备及磨损性能研究.陶瓷学报, 2002, 23 (003): 187-191
    37.刘福田,黄巍岭,杨俊茹,李文虎,张英才,许坤and李兆前,三元硼化物金属陶瓷覆层材料耐腐蚀性能研究.山东冶金, 2004, 26 (005): 37-41
    38.张波and周小平,三元硼化物强化粉末高速钢的摩擦磨损特性研究.工具技术, 2006, 40 (002): 21-23
    39.张波and周小平,三元硼化物强化相粉末高速钢的研制.河南冶金, 2005, 13 (002): 12-13
    40.董飞,一种新型钢材覆层材料—三元硼化物基金属陶瓷覆层材料.济南大学学报:自然科学版, 2004, 18 (002): 106-108
    41.永年戴,二元合金相图集. (科学出版社, 2009).
    42.郑树起,韩建德,闵光辉,邹增大,于化顺,王维倜and王海梅, BaB6陶瓷粉末的反应合成.陶瓷学报, 2002, 2
    43.豆志河,张廷安,侯闯,徐淑香,杨欢and李皇,自蔓延高温合成CaB6的基础研究.中国有色金属学报, 2004, 14 (002): 322-326
    44.豆志河,张廷安,牛仁通and潘蓉,燃烧合成法制备CaB6的研究.无机材料学报, 2008, (001): 150-154
    45.于志强, SHS法制备硼化物陶瓷粉体的表征分析.航空材料学报, 2007, 27 (2):
    46. D. P. Young, D. Hall, M. E. Torelli, Z. Fisk, J. L. Sarrao, J. D. Thompson, H. R. Ott, S. B. Oseroff, R. G. Goodrich and R. Zysler, High-temperature weakferromagnetism in a low-density free-electron gas. Nature, 1999, 397 (6718): 412-414
    47. A. Kelber, Why `false' colours are seen by butterflies. Nature, 1999, 402 (6759): 251-251
    48. V. Matkovich, Boron and refractory borides. (Springer-Verlag, Berlin ;New York, 1977).
    49. R. Schmitt, B. Blaschkowski, K. Eichele and H. J. Meyer, Calcium Tetraboride-Does It Exist? Synthesis and Properties of a Carbon-Doped Calcium Tetraboride That Is Isotypic with the Known Rare Earth Tetraborides. Inorganic Chemistry, 2006, 45 (7): 3067-3073
    50.王旭and翟玉春,熔盐电解法制备CaB6及阳极保护的实验研究.稀有金属, 2008, 32 (005): 649-653
    51.纪武仁, CaB6陶瓷制备技术的研究进展.甘肃冶金, 2009, 31 (002): 62-65
    52.于志强and杨振国,硼化物陶瓷粉末的合成与分析.中国体视学与图像分析, 2006, 11 (004): 252-257
    53. M. B. Yahia, O. Reckeweg, R. g. Gautier, J. Bauer, T. Schleid, J.-F. o. Halet and J.-Y. Saillard, Can Undoped Calcium Tetraborides Exist? An Answer from the Comparison of Its Density Functional Theory Electronic Structure with that of Rare-Earth Metal Tetraboride. Inorganic Chemistry, 2008, 47 (14): 6137-6143
    54.孙雅馨, Ca掺杂MgB2和CaB4的高温高压合成及性能研究.秦皇岛燕山大学工学博士论文, 2007,
    55. D. Ceperley, Condensed-matter physics: Return of the itinerant electron. Nature, 1999, 397 (6718): 386-387
    56. L. Balents and C. M. Varma, Ferromagnetism in Doped Excitonic Insulators. Physical Review Letters, 2000, 84 (6): 1264-1264
    57. A. Hasegawa and A. Yanase, Electronic structure of CaB6. Journal of Physics C: Solid State Physics, 1979, 12 (24): 5431-5440
    58. S. Massidda, A. Continenza, T. M. de Pascale and R. Monnier, Electronic structure of divalent hexaborides. Zeitschrift für Physik B Condensed Matter, 1996, 102 (1): 83-89
    59. D. Hall, D. P. Young, Z. Fisk, T. P. Murphy, E. C. Palm, A. Teklu and R. G. Goodrich, Fermi-surface measurements on the low-carrier density ferromagnet Ca1-xLaxB6 and SrB6. Physical Review B, 2001, 64 (23): 233105-233105
    60. H. J. Tromp, P. van Gelderen, P. J. Kelly, G. Brocks and P. A. Bobbert, CaB6: A New Semiconducting Material for Spin Electronics. Physical Review Letters, 2001, 87 (1): 016401-016401
    61. J. D. Denlinger, J. A. Clack, J. W. Allen, G. H. Gweon, D. M. Poirier, C. G. Olson, J. L. Sarrao, A. D. Bianchi and Z. Fisk, Bulk Band Gaps in Divalent Hexaborides. Physical Review Letters, 2002, 89 (15): 157601-157601
    62. V. Barzykin and L. P. Gor'kov, Ferromagnetism and Superstructure in Ca1-xLaxB6. Physical Review Letters, 2000, 84 (10): 2207-2207
    63. L. Balents, Excitonic order at strong coupling: Pseudospin, doping, and ferromagnetism. Physical Review B, 2000, 62 (4): 2346-2346
    64. M. Y. Veillette and L. Balents, Weak ferromagnetism and excitonic condensates. Physical Review B, 2001, 65 (1): 014428-014428
    65. E. Bascones, A. A. Burkov and A. H. MacDonald, Theory of Ferromagnetism in Doped Excitonic Condensates. Physical Review Letters, 2002, 89 (8): 086401-086401
    66. T. Moriwaka, T. N. Sato and K. Noriaki, Ferromagnetism Induced by Ca Vacancy in CaB6. Journal of the Physical Society of Japan, 2001, 70 341-344
    67. H. R. Ott, J. L. Gavilano, B. Ambrosini, P. Vonlanthen, E. Felder, L. Degiorgi, D. P. Young, Z. Fisk and R. Zysler, Unusual magnetism of hexaborides. Physica B: Condensed Matter, 2000, 281-282 423-427
    68. S. Kunii, Surface-Layer Ferromagnetism and Strong Surface Anisotropy in Ca1-xLaxB6 (x= 0.005) Evidenced by Ferromagnetic Resonance. Journal of the Physical Society of Japan, 2000, 69 3789-3791
    69. M. C. Bennett, J. van Lierop, E. M. Berkeley, J. F. Mansfield, C. Henderson, M. C. Aronson, D. P. Young, A. Bianchi, Z. Fisk, F. Balakirev and A. Lacerda, The Origin of Weak Ferromagnetism in CaB6. cond-mat/0306709, 2003,
    70. J.-S. Rhyee and B. K. Cho, 2004 (unpublished).
    71. R. Monnier and B. Delley, Point Defects, Ferromagnetism, and Transport in Calcium Hexaboride. Physical Review Letters, 2001, 87 (15): 157204-157204
    72. C. Hotta, M. Ogata and H. Fukuyama, Ferromagnetism in CaB6. Journal of Physics and Chemistry of Solids, 2002, 63 1505-1509
    73. B. K. Cho, J.-S. Rhyee, B. H. Oh, M. H. Jung, H. C. Kim, Y. K. Yoon, J. H. Kim and T. Ekino, Formation of midgap states and ferromagnetism in semiconducting CaB6. Physical Review B, 2004, 69 (11): 113202-113202
    74. J. M. D. Coey, d0 ferromagnetism. Solid State Sciences, 2005, 7 (6): 660-667
    75. K. Maiti, V. R. R. Medicherla, S. Patil and R. S. Singh, Revelation of the Role of Impurities and Conduction Electron Density in the High Resolution Photoemission Study of Ferromagnetic Hexaborides. Physical Review Letters, 2007, 99 (26): 266401-266404
    76. K. Taniguchi, T. Katsufuji, F. Sakai, H. Ueda, K. Kitazawa and H. Takagi, Charge dynamics and possibility of ferromagnetism in A1-xLaxB6 (A=Ca and Sr). Physical Review B, 2002, 66 (6): 064407-064407
    77. R. R. Urbano, C. Rettori, G. E. Barberis, M. Torelli, A. Bianchi, Z. Fisk, P. G. Pagliuso, A. Malinowski, M. F. Hundley, J. L. Sarrao and S. B. Oseroff, Different Gd3+ sites in doped CaB6: An electron spin resonance study. Physical Review B, 2002, 65 (18): 180407-180407
    78. J.-S. Rhyee, B. K. Cho and H. C. Ri, Electrical transport properties and small polarons in Eu1-xCaxB6. Physical Review B, 2003, 67 (12): 125102-125102
    79. S. Souma, H. Komatsu, T. Takahashi, R. Kaji, T. Sasaki, Y. Yokoo and J. Akimitsu, Electronic Band Structure and Fermi Surface of CaB6 Studied by Angle-Resolved Photoemission Spectroscopy. Physical Review Letters, 2003, 90 (2): 027202-027202
    80. B. Lee and L.-W. Wang, Electronic structure of calcium hexaborides. Applied Physics Letters, 2005, 87 (26): 262509-262503
    81. P. Vonlanthen, E. Felder, L. Degiorgi, H. R. Ott, D. P. Young, A. D. Bianchi and Z. Fisk, Electronic transport and thermal and optical properties of Ca1-xLaxB6. Physical Review B, 2000, 62 (15): 10076-10076
    82. G. A. Wigger, R. Monnier, H. R. Ott, D. P. Young and Z. Fisk, Electronic transport in EuB6. Physical Review B, 2004, 69 (12): 125118-125118
    83. F. Iga, Y. Ueda, T. Takabatake, T. Suzuki, W. Higemoto, K. Nishiyama and H. Kawanaka, Evidence for a ferromagnetic transition in Yb1-xLaxB6 (<~x<~.6). Physical Review B, 2002, 65 (22): 220408-220408
    84. K. Matsubayashi, M. Maki, T. Moriwaka, T. Tsuzuki, T. Nishioka, C. H. Lee, A. Yamamoto, T. O. Sato and K. N, Extrinsic Origin of High-Temperature Ferromagnetism in CaB6. Journal of the Physical Society of Japan, 2003, 72 2097-2102
    85. S. Kunii, Ferromagnetic Resonance in Ca0.995La0.005B6. Journal of the Physical Society of Japan, 1999, 68 3189-3190
    86. J. Kim, S. Jung, J. H. Noh, B. K. Cho and E. J. Choi, Ferromagnetism and infrared conductivity of the homogeneous hexaboride alloy Eu1?xCaxB6. Journal of Physics: Condensed Matter, 2007, 19 (10): 106203-106203
    87. T. Mori and S. Otani, Ferromagnetism in lanthanum doped CaB6: is it intrinsic? Solid State Communications, 2002, 123 (6-7): 287-290
    88. T. Terashima, C. Terakura, Y. Umeda, N. Kimura, H. A. Kunii and Satoru, Ferromagnetism vs Paramagnetism and False Quantum Oscillations in Lanthanum-Doped CaB6. Journal of the Physical Society of Japan, 2000, 69 2423-2426
    89. S. Shang, Y. Wang and Z.-K. Liu, First-principles calculations of phonon and thermodynamic properties in the boron-alkaline earth metal binary systems: B-Ca, B-Sr, and B-Ba. Physical Review B (Condensed Matter and Materials Physics), 2007, 75 (2): 024302-024311
    90. R. R. Urbano, P. G. Pagliuso, C. Rettori, P. Schlottmann, J. L. Sarrao, A. Bianchi, S. Nakatsuji, Z. Fisk, E. Velazquez and S. B. Oseroff, Gradual transition from insulator to semimetal of Ca1 - xEuxB6 with increasing Eu concentration. Physical Review B (Condensed Matter and Materials Physics), 2005, 71 (18): 184422-184429
    91. S. Murakami, R. Shindou, N. Nagaosa and A. S. Mishchenko, Lattice distortion and ferromagnetism in CaB6. Journal of Physics and Chemistry of Solids, 2002, 63 (6-8): 1285-1287
    92. K. Matsubayashi, M. Maki, T. Tsuzuki, T. Nishioka and N. K. Sato, Magnetic properties (Communication arising): Parasitic ferromagnetism in a hexaboride? Nature, 2002, 420 (6912): 143-144
    93. Z. Fisk, H. R. Ott, V. Barzykin and L. P. Gor'kov, The emerging picture of ferromagnetism in the divalent hexaborides. Physica B: Condensed Matter, 2002, 312-313 808-810
    94. S. Murakami, R. Shindou, N. Nagaosa and A. S. Mishchenko, Theory of excitonic states in CaB6. Physical Review B, 2002, 66 (18): 184405-184405
    95. M. C. Bennett, J. van Lierop, E. M. Berkeley, J. F. Mansfield, C. Henderson, M. C. Aronson, D. P. Young, A. Bianchi, Z. Fisk, F. Balakirev and A. Lacerda, Weak ferromagnetism in CaB6. Physical Review B, 2004, 69 (13): 132407-132407
    96. J. Y. Kim, N. H. Sung and B. K. Cho, Weak ferromagnetism in single crystalline YbB6?δ. Journal of Applied Physics, 2007, 101 (9): 09D512-509D512
    97.廖沐真,量子化学从头计算方法. (清华大学出版社, 1984).
    98.徐光宪,量子化学:基本原理和从头计算法. (科学出版社, 1989).
    99.朱文涛,物理化学. (清华大学出版社, 1995).
    100. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari and R. M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 2009, 21 (39): 395502-395502
    101. Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno and D. D. Awschalom, Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature, 1999, 402 (6763): 790-792
    102. J. M. Lafferty, Boride Cathodes. Journal of Applied Physics, 1951, 22 (3): 299-309
    103. J. Etourneau, J.-P. Mercurio, R. Naslain and P. Hagenmuller, Structure electronique de quelques hexaborures de type CaB6. Journal of Solid State Chemistry, 1970, 2 (3): 332-342
    104. J. Pelletier and C. Pomot, Work function of sintered lanthanum hexaboride. Applied Physics Letters, 1979, 34 (4): 249-251
    105. J. Etourneau, A. Ammar, A. Villesuzanne, G. Villeneuve, B. Chevalier and M. H. Whangbo, Unusual Hysteresis in the Magnetic Susceptibility of Cubic Hexaboride KB6. Inorganic Chemistry, 2003, 42 (14): 4242-4244
    106. A. Ammar, M. Ménétrier, A. Villesuzanne, S. Matar, B. Chevalier, J. Etourneau, G. Villeneuve, J. Rodríguez-Carvajal, H. J. Koo, A. I. Smirnov and M. H. Whangbo, Investigation of the Electronic and Structural Properties of Potassium Hexaboride, KB6, by Transport, Magnetic Susceptibility, EPR, and NMR Measurements, Temperature-Dependent Crystal Structure Determination, and Electronic Band Structure Calculations. Inorganic Chemistry, 2004, 43 (16): 4974-4987
    107. Z. Liu, X. Han, D. Yu, Y. Sun, B. Xu, X.-F. Zhou, J. He, H.-T. Wang and Y. Tian, Formation, structure, and electric property of CaB4 single crystal synthesized under high pressure. Applied Physics Letters, 2010, 96 (3): 031903-031903
    108.黄昆and韩汝琦,固体物理学. (高等教育出版社, 1988).
    109.沈以赴,固体物理学基础教程. (化学工业出版社, 2005).
    110.陆栋,蒋平and徐至中,固体物理学. (上海科学技术出版社, 2003).
    111.宗祥福and翁渝民,材料物理基础. (复旦大学出版社, 2001).
    112. J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids. (Oxford University Press, USA, 2001).
    113. D. Mandrus, B. C. Sales and R. Jin, Localized vibrational mode analysis of the resistivity and specific heat of LaB6. Physical Review B, 2001, 64 (1): 012302-012302
    114. J. R. Cooper, Electrical resistivity of an Einstein solid. Physical Review B, 1974, 9 (6): 2778-2778
    115. B. T. M. Willis and A. W. Pryor, Thermal Vibrations in Crystallography. (Cambridge University Press, 1975).
    116. B. C. Sales, B. C. Chakoumakos, D. Mandrus and J. W. Sharp, Atomic Displacement Parameters and the Lattice Thermal Conductivity of Clathrate-like Thermoelectric Compounds. Journal of Solid State Chemistry, 1999, 146 (2): 528-532
    117. J. D. Dunitz, V. Schomaker and K. N. Trueblood, Interpretation of atomic displacement parameters from diffraction studies of crystals. The Journal of Physical Chemistry, 1988, 92 (4): 856-867
    118. V. A. Gasparov and R. Huguenin, Electron-phonon, electron-electron and electron-surface scattering in metals from ballistic effects. Advances in Physics, 1993, 42 393-521
    119. V. A. Gasparov, M. P. Kulakov, N. S. Sidorov, I. I. Zver'kova, V. B. Filipov, A. B. Lyashenko and Y. B. Paderno, On Electron Transport in ZrB12, ZrB2 and MgB2. cond-mat/0406615, 2004,
    120. R. Lortz, Y. Wang, U. Tutsch, S. Abe, C. Meingast, P. Popovich, W. Knafo, N. Shitsevalova, Y. B. Paderno and A. Junod, Superconductivity mediated by a soft phonon mode: Specific heat, resistivity, thermal expansion, and magnetization of YB6. Physical Review B (Condensed Matter and Materials Physics), 2006, 73 (2): 024512-024513
    121. J. E. A. Alderson, T. Farrell and C. M. Hurd, Hall Coefficients of Cu, Ag, and Au in the Range 4.2-300°K. Physical Review, 1968, 174 (3): 729-729
    122. J. E. A. Alderson and T. Farrell, Hall Effect in Li, Na, and K in the Range 6-300°K. Physical Review, 1969, 185 (3): 876-876
    123. B. Hayman and J. P. Carbotte, Hall Coefficients in the Alkali Metals. Physical Review B, 1972, 6 (4): 1154-1154
    124. T. P. Beaulac, F. J. Pinski and P. B. Allen, Hall coefficient in pure metals: Lowest-order calculation for Nb and Cu. Physical Review B, 1981, 23 (8): 3617-3617
    125. T. M. Sato and Takao, Hall Coefficient of Aluminium Rich Alloys. Journal of the Physical Society of Japan, 1966, 21 1494-1503
    126. K. Yonemitsu, Hall coefficient of dilute Al-Ga and Al-Ag alloys. Physical Review B, 1979, 20 (4): 1410-1410
    127. R. Caton, M. P. Sarachik and P. E. Bloomfield, Hall coefficient of dilute Cu-Au(Fe) alloys. I. Experiment. Physical Review B, 1974, 10 (7): 2987-2987
    128. D. A. Lilly and A. N. Gerritsen, Hall resistivity in pure cadmium and dilute crystals of Cd-Ag and Cd-In. Physical Review B, 1974, 9 (6): 2497-2497
    129. V. G. Karpov, M. I. Klinger and F. N. Ignat’ev, Theory of the low-temperature anomalies in the thermal properties of amorphous structures. Sov. Phys. JETP, 1983, 57 439-439
    130. L. Gil, M. A. Ramos, A. Bringer and U. Buchenau, Low-temperature specific heat and thermal conductivity of glasses. Physical Review Letters, 1993, 70 (2): 182
    131. V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman and S. Bennington, Localized vibrational modes in metallic solids. Nature, 1998, 395 (6705): 876-878
    132. B. B. Laird and H. R. Schober, Localized low-frequency vibrational modes in a simple model glass. Physical Review Letters, 1991, 66 (5): 636-636
    133. H. R. Schober and B. B. Laird, Localized low-frequency vibrational modes in glasses. Physical Review B, 1991, 44 (13): 6746-6746
    134. H. Y. Bai, J. L. Luo, D. Jin and J. R. Sun, Particle size and interfacial effect on the specific heat of nanocrystalline Fe. Journal of Applied Physics, 1996, 79 (1): 361-364
    135. W. Gey, W. Eschner and Y. M. Galperin, Low-temperature specific heat of Zr-Rh-Pd metallic glasses. Physical Review B, 1993, 48 (21): 15666-15666
    136. U. Buchenau, Y. M. Galperin, V. L. Gurevich, D. A. Parshin, M. A. Ramos and H. R. Schober, Interaction of soft modes and sound waves in glasses. Physical Review B, 1992, 46 (5): 2798-2798
    137. U. Buchenau, M. Prager, N. Nucker, A. J. Dianoux, N. Ahmad and W. A. Phillips, Low-frequency modes in vitreous silica. Physical Review B, 1986, 34 (8): 5665-5665
    138. R. C. Zeller and R. O. Pohl, Thermal Conductivity and Specific Heat of Noncrystalline Solids. Physical Review B, 1971, 4 (6): 2029-2029
    139. U. Mizutani, K. T. Hartwig, T. B. Massalski and R. W. Hopper, Low-Temperature Specific Heats of Glassy Pd1-x-ySixCuy Alloys. Physical Review Letters, 1978, 41 (9): 661-661
    140. M. B. Tang, H. Y. Bai and W. H. Wang, Tunneling states and localized mode in binary bulk metallic glass. Physical Review B, 2005, 72 (1): 012202-012202
    141. O. N. Senkov, D. B. Miracle, V. Keppens and P. K. Liaw, Development and Characterization of Low-Density Ca-Based Bulk Metallic Glasses: An Overview. Metallurgical and Materials Transactions A, 2008, 39 (8): 1888-1900
    142. M. B. Tang, H. Y. Bai, M. X. Pan, D. Q. Zhao and W. H. Wang, Einstein oscillator in highly-random-packed bulk metallic glass. Applied Physics Letters, 2005, 86 (2): 021910-021913
    143. T. S. Grigera, V. Martin-Mayor, G. Parisi and P. Verrocchio, Phonon interpretation of the `boson peak' in supercooled liquids. Nature, 2003, 422 (6929): 289-292
    144. F. Sette, M. H. Krisch, C. Masciovecchio, G. Ruocco and G. Monaco, Dynamics of Glasses and Glass-Forming Liquids Studied by Inelastic X-ray Scattering. Science, 1998, 280 (5369): 1550-1555
    145. B. Frick and D. Richter, The Microscopic Basis of the Glass Transition in Polymers from Neutron Scattering Studies. Science, 1995, 267 (5206): 1939-1945
    146. R. Lortz, Y. Wang, S. Abe, C. Meingast, Y. B. Paderno, V. Filippov and A. Junod, Specific heat, magnetic susceptibility, resistivity and thermal expansion of the superconductor Zr B12. Physical Review B, 2005, 72 (2): 024547-024547
    147. J. Chatterjee, U. Yu and B. I. Min, Spin-polaron model: Transport properties of EuB6. Physical Review B, 2004, 69 (13): 134423-134423
    148.近角聪信and世慧葛,铁磁性物理. (兰州大学出版社, 2002).
    149.阿哈龙and杨正,铁磁性理论导论. (兰州大学出版社, 2002).
    150. M. E. Zhitomirsky, T. M. Rice and V. I. Anisimov, Magnetic properties: Ferromagnetism in the hexaborides. Nature, 1999, 402 (6759): 251-253
    151. M. Veillet and L. Balents, Ferromagnetism in doped-hexaborides, edited by (2000), Vol., pp.
    152. A. Sergeev, M. Reizer and J. W. Wilkins, Renormalization of the Drude Conductivity by the Electron-Phonon Interaction. Physical Review Letters, 1996, 76 (13): 2374-2374
    153.方容川,固体光谱学. (中国科技大学出版社, 2001).
    154.郑順旋,激光喇曼光谱学. (上海科学技术出版社, 1985).
    155.张光寅and蓝国祥,晶格振动光谱学. (高等教育出版社, 1991).
    156.程光煦,拉曼布里渊散射. (科学出版社, 2001).
    157. I. R. Lewis and H. G. M. Edwards, Handbook of Raman spectroscopy. (CRC Press, 2001).
    158. B. Schrader, Infrared and Raman spectroscopy. (VCH, 1995).
    159. E. Smith and G. Dent, Modern Raman spectroscopy. (John Wiley and Sons, 2005).
    160. H. Kuzmany, Solid-State Spectroscopy. (Springer, 2009).
    161. C. S. Snow, S. L. Cooper, D. P. Young, Z. Fisk, A. Comment and J.-P. Ansermet, Magnetic polarons and the metal-semiconductor transitions in (Eu,La)B6 and EuO: Raman scattering studies. Physical Review B, 2001, 64 (17): 174412-174412
    162. M. Song, I.-S. Yang, J. Y. Kim and B. K. Cho, Raman scattering study of calcium hexaboride. Vibrational Spectroscopy, 2006, 42 (2): 288-291
    163. T. Kondo, K. Yamamoto, N. Ogita, M. Udagawa, H. Sugawara and H. Sato, Phonon Raman scattering of RFe4P12 and ROs4Sb12. Physica B: Condensed Matter, 2005, 359-361 904-906
    164. H. Werheit, Y. Paderno, V. Filippov, V. Paderno, A. Pietraszko, M. Armbrüster and U. Schwarz, Peculiarities in the Raman spectra of ZrB12 and LuB12 single crystals. Journal of Solid State Chemistry, 2006, 179 (9): 2761-2767
    165. E. Zirngiebl, B. Hillebrands, S. Blumenroder, G. Guntherodt, M. Loewenhaupt, J. M. Carpenter, K. Winzer and Z. Fisk, Crystal-field excitations in CeB6 studied by Raman and neutron spectroscopy. Physical Review B, 1984, 30 (7): 4052-4052
    166. N. Ogita, S. Nagai, N. Okamoto, M. Udagawa, F. Iga, M. Sera, J. Akimitsu and S. Kunii, Raman scattering of RB6 (R=Ca, Ce, Pr, Gd, Dy and Yb). Physica B: Condensed Matter, 2003, 329-333 (Part 2): 661-662
    167.王昆林,材料工程基础. (清华大学出版社, 2003).
    168.林巨才,现代硬度测量技术及应用. (中国计量出版社, 2008).
    169.杜会静, Si-C-N材料的第一性原理研究.秦皇岛燕山大学工学博士论文, 2009,
    170.郭晓菊,硬质晶体归化学键、晶体结构与力学性质研究.秦皇岛燕山大学工学博士论文, 2010,
    171.谢存毅,纳米压痕技术在材料科学中的应用.物理, 2001, 30 (007): 432-435
    172.朱瑛,姚英学and周亮,纳米压痕技术及其试验研究.工程与科学, 2001, 23 (6): 25-29
    173.黎明and温诗铸,纳米压痕技术理论基础.机械工程学报, 2003, 39 (003): 142-145
    174.霍德鸿,梁迎春,程凯and董申,基于原子力显微镜和分子动力学的纳米压痕技术研究.机械工程学报, 2004, 40 (006): 39-44
    175. B. Bhushan and V. N. Koinkar, Nanoindentation hardness measurements using atomic force microscopy. Applied Physics Letters, 1994, 64 (13): 1653-1653
    176.林志贤and郭太良,场致发射显示器研究与进展.光电子技术, 2006, 26 (001): 1-5
    177.祁康成,林祖伦,曹贵川,成建波and D. den Engelsen, LaB6场发射尖锥的场发射特性研究.强激光与粒子束, 2007, 19 (003): 511-514
    178.王本莲,林祖伦,王小菊and曹伟, LaB6场发射阴极阵列的制备工艺研究.电子器件, 2009, 32 (002): 277-280
    179.代令,祁康成,林祖伦,陈文彬and李东方, LaB6场发射阵列牺牲层制备工艺.强激光与粒子束, 2009, 21 (006): 923-926
    180.卢庆亮,闵光辉and于化顺, LaB6单晶体制备方法的特点和进展.材料导报, 2005, 19 (009): 5-7
    181.王汉斌,许州,卢和平,邓仁培,杨肖,甘孔银,金晓,黎明and刘锡三,单晶LaB6热阴极直流发射特性实验研究.强激光与粒子束, 2005, 17 (6):
    182.高瑞兰,于化顺,于普涟,韩建德,闵光辉and杨晓亮, LaB6多晶材料的制备工艺研究.山东大学学报(工学版), 2002,
    183.郑树起and闵光辉, LaB6功能陶瓷材料的研究现状.材料导报, 2000, 14 (003): 50-51
    184.林祖伦,陈泽祥,郭靖扬,曹贵川and祁康成, LaB6在低压强氮气和氦气中的放电特性.强激光与粒子束, 2006, 18 (10):
    185.朱炳金,陈泽祥,张强,王小菊and于涛,六硼化镧薄膜场致发射的特性.发光学报, 2008, 29 (003): 561-566
    186.韦丹,固体物理. (清华大学出版社, 2003).
    187. N. Ogita, S. Nagai, N. Okamoto, M. Udagawa, F. Iga, M. Sera, J. Akimitsu and S. Kunii, Raman scattering investigation of RB6 (R=Ca, La, Ce, Pr, Sm, Gd, Dy, and Yb). Physical Review B, 2003, 68 (22): 224305-224305
    188. N. Ogita, S. Nagai, N. Okamoto, F. Iga, S. Kunii, T. Akamtsu, J. Akimitsu and M. Udagawa, Raman scattering study of CaB6 and YbB6. Journal of Solid State Chemistry, 2004, 177 (2): 461-465
    189. N. Ogita, S. Nagai, N. Okamoto, F. Iga, S. Kunii, J. Akimitsu and M. Udagawa, Raman scattering study of hexaboride crystals. Physica B: Condensed Matter, 2003, 328 (1-2): 131-134
    190. N. Ogita, S. Nagai, M. Udagawa, F. Iga, M. Sera, T. Oguchi, J. Akimitsu and S. Kunii, Raman scattering study of rare-earth hexaboride. Physica B: Condensed Matter, 2005, 359-361 941-943
    191. R. Asahi, W. Mannstadt and A. J. Freeman, Optical properties and electronic structures of semiconductors with screened-exchange LDA. Physical Review B, 1999, 59 (11): 7486-7486
    192. C. W. Chen, C. C. Huang, Y. Y. Lin, L. C. Chen, K. H. Chen and W. F. Su, Optical properties and photoconductivity of amorphous silicon carbon nitride thin film and its application for UV detection. Diamond and Related Materials, 2005, 14 (3-7): 1010-1013
    193. J.卡拉韦, J. Callaway,以铭王and顺华杨,固体量子理论. (科学出版社, 1984).
    194. J. Haines, J. Leger and G. Bocquillon, SYNTHESIS AND DESIGN OF SUPERHARD MATERIALS. Annual Review of Materials Research, 2001, 31 (1): 1-23
    195. J. P. Watt and L. Peselnick, Clarification of the Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries. Journal of Applied Physics, 1980, 51 (3): 1525-1525
    196. J. F. Nye, Physical properties of crystals: their representation by tensors and matrices. (Oxford University Press, 1985).
    197.基泰尔,项金钟and吴兴惠,固体物理导论. (化学工业出版社, 2005).
    198. J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov and L. L. Boyer, Superconductivity of Metallic Boron in MgB2. Physical Review Letters, 2001, 86 (20): 4656-4656
    199. A. Bosak, M. Hoesch, M. Krisch, D. Chernyshov, P. Pattison, C. Schulze-Briese, B. Winkler, V. Milman, K. Refson, D. Antonangeli and D. Farber, 3D Imaging of the Fermi Surface by Thermal Diffuse Scattering. Physical Review Letters, 2009, 103 (7): 076403-076403
    200. O. Rader, H. Wolf, W. Gudat, A. Tadich, L. Broekman, E. Huwald, R. C. G. Leckey, J. D. Riley, A. M. Shikin, F. Matsui, H. Miyata and H. Daimon, Apparent "three-dimensional" Fermi surface of transition-metal monolayers. Physical Review B, 2009, 79 (24): 245104-245104
    201. G. Wang, M. Zhang, L. Zheng and Z. Yang, Band structure and Fermi surface of ( Sr2 VO3 )2 Fe2 As2 and ( Sr2 ScO3 )2 Fe2 As2. Physical Review B, 2009, 80 (18): 184501-184501
    202. A. Carrington and E. A. Yelland, Band-structure calculations of Fermi-surface pockets in ortho-II YBa2 Cu3 O6.5. Physical Review B, 2007, 76 (14): 140508-140508
    203. K. Charles, Introduction to solid state physics. (Wiley, 1986).
    204. T. L. Makarova, B. Sundqvist, R. Hohne, P. Esquinazi, Y. Kopelevich, P. Scharff, V. A. Davydov, L. S. Kashevarova and A. V. Rakhmanina, Magnetic carbon. Nature, 2001, 413 (6857): 716-718
    205. P. Esquinazi, A. Setzer, R. Hohne, C. Semmelhack, Y. Kopelevich, D. Spemann, T. Butz, B. Kohlstrunk and M. Losche, Ferromagnetism in oriented graphite samples. Physical Review B, 2002, 66 (2): 024429-024429
    206. T. Makarova, Magnetic properties of carbon structures. Semiconductors, 2004, 38 (6): 615-638
    207. A. N. Kolmogorov and S. Curtarolo, Theoretical study of metal borides stability. cond-mat/0607654, 2006,
    208. M. Llunell, P. Alemany and I. r. d. P. R. Moreira, Electronic Structure and Magnetic Properties of Potassium Ozonide KO3. Inorganic Chemistry, 2009, 48 (13): 5938-5945
    209. X. Han, Z. Liu, D. Yu, S. Xin, J. He, B. Xu and Y. Tian, Mechanism for the metal-conducting behavior of a single crystal. Solid State Communications, 2010, 150 (29-30): 1317-1320

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700