胎压报警器用压电供电系统设计与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提出利用悬臂梁型压电振子作为能量转换器件构造微型发电装置驱动直接式汽车轮胎压力监测系统(Tire Pressure Monitoring System,简称TPMS)的方案,并从理论和试验两方面进行了系统研究。
     首先利用仿真模拟和实验分析的方法得出悬臂支撑压电振子发电能力强于简支支撑压电振子。然后通过对压电振子的动态特性分析,建立压电振子结构参数与其有效机电耦合系数、品质因数、机电转换效率、谐振频率及电能输出量之间的函数关系,优选压电振子的结构参数。
     根据悬臂梁型压电振子理论模型,建立了悬臂梁型压电发电装置的数学模型,提取影响压电振子频率特性的关键要素,定性地分析影响TPMS用压电发电装置发电能力的相关因素(包括端部集中质量块、压电振子安装方式、结构参数等),并进行试验验证;
     利用理论计算和实验分析的方法研究了超级电容和普通电容的充放电特性,通过对比分析得出普通电容更适合作为发电装置输出电量的存储介质的结论。在以普通电容作为存储器的基础上,结合胎压报警器的工作要求,设计了电源控制电路,通过该电路可以将压电发电装置产生的驱动传感器工作的电能进行有效的积累,并在积累到满足TPMS的供电要求时将电能瞬间释放,实现了压电发电的智能控制和利用;
     在理论和实验研究基础上,开发制作了样机并对其相关性能进行了实验分析。实验结果表明,所设计的供电系统(包括压电发电装置和电源控制电路)能够满足TPMS的供电要求,汽车从启动到TPMS发射模块正常工作时间小于5min。
Tire Pressure Monitoring System (TPMS) is mainly used to monitor tire pressure in real-time when driving and to monitoring of on a flat tire and low pressure to alarm driver when meeting a flat tire or loss of air pressure in a tire and to ensure traffic safety, it is a security early warning systems. The mainstream of the TPMS in the market need battery-powered, but there are some unfavorable factors such as limited life and greatly affected by temperature, which reduce the reliability of TPMS. In addition, improper handling of used batteries will pollute the environment. Therefore, the passive of TPMS is the direction of development in the future, while the use of micro-power generatior alternative to battery powered TPMS into a viable technical solutions.
     Piezoelectric power generation device which is use of piezoelectric vibrator to harvest mechanical force to generate electrical energy is called micro-electricity generation device that is an important part and researching focus in micro-power generation , There are more than ten counties and regions all over the world in which there are the research institutions of piezoelectric power generation. With many merits such as simple structure, small body, no interfere of electromagnetism and easy to implement etc, it has broad application prospects in low-power radio frequency field.
     In order to solve the problem of the passive of TPMS, the influences of the composed elements of piezoelectric power generation system driving TPMS on its performance are studied in this paper, such as the PZT vibrator, additional mass block and piezoelectric vibrator installation , and so on.To solve the cantilever-type piezoelectric generating device with limited power output can not be drive TPMS directly, a micro-power power automatic adjustment circuit which can provide high current for TPMS intermittently is designed. To achieve high output ability of piezoelectric generating device, a piezoelectric power generation prototype which include multi-piezo-vibrators is presented and fabricated. And then, the relationships between external excitation conditions and the output performance are investigated theoretically and experimentally, finally the working performance of the piezoelectric power generation device connecting storage and control circuit is tested.
     The PZT vibrator is one of the most important element of piezoelectric power generation device, whose performance influences the output ability of piezoelectric power generation device directly. At first according to Hamilton's principle and relative knowledge of piezoelectricity , a cantilever-type piezoelectric oscillator of the mathematical model has been established, and then its equivalent electromechanical system model was found. Based on this, the relationship between structure parameter (Thickness ratio) as well as material parameter (Young's modulus ratio) of the PZT vibrator and performance parameters (including the resonant frequency, the energy conversion efficiency and energy output etc.) is figured out. The PZT vibrator designed based on the structure parameter and material parameter mentioned above has good comprehensive performance and can achieve the greatest energy conversion efficiency and output power for a piezoelectric power generation device with limited-body.
     A simplified model of piezoelectric power generation device has been established to analyze theoretically the main factors which include the influence of additional mass block and the installation of piezoelectric vibrator affecting the performance of piezoelectric power generation device, and then the result has been confirmed experimentally. The structural parameters and material properties of piezoelectric monomorph cantilever generator for TPMS are determined, and the quality of added-mass calculation as well as piezoelectric vibrator viable installation is given.
     Charge and discharge characteristics of th super-capacitor and the general capacitor of capacitor are studied theoretically and experimentally, and the general capacitor of capacitor is more suitable as a regular storage medium for piezoelectric power generation. The storage and control circuit which can provide intermittently high current output has been designed according to power generation characteristics of piezoelectric power generation and actual application.
     A piezoelectric power generation prototype which include multi-piezo-vibrators has been fabricated, and then the entire power supply system (piezoelectric power generation device and storage and control circuit) is tested. The results showed that speed and road conditions are the main external factors which affect the performance of piezoelectric power generation device, and the power supply system which is able to meet the work requirements of TPMS in a variety of speed(>25km/h) and road conditions is stable and reliable in addition to car just started a period of time (<5min) outside.
引文
[1]韩建保,陈历冰.汽车轮胎气压电子实时监测系统汽车技术2002, (7):40-41.
    [2]何仁,胡青训,薛翔.汽车轮胎气压监测系统发展综[J].中国安全科学学报, 2005, 15(10): 105-109.
    [3] [作者不详].飞思卡尔轮胎压力监控系统(TPMS)应用参考指南[EB/OL].[2006-07-25]. http://www.ed-china.com/ARTICLES/2006JUL/5/2006JUL25_AE_POW_ TS.PDF?SOURCES=DOWNLOAD
    [4]颜重光. TPMS技术与发展趋势[EB/OL]. [2005-08-12]. http://www.eet-china.com/ARTICLES/2006JUL/PDF/dwq2006072602.pdf
    [5]颜重光. TPMS的设计方案思考[J].电子质量, 2005, (5): 1-4.
    [6]谈宏华,黎爱琼,涂坦.轮胎压力监测系统(TPMS)设计[J].机床与液压2005,(9):19-131.
    [7]李文印,周斌,佟志臣.轮胎压力监测系统设计及实现[D].吉林大学.2004.
    [8]张国恒.轮胎压力监测系统研究传感检测技术[J].传感器检测技术, 2006, (5):60-61.
    [9]孙强,吴黎辉.轮胎压力监测系统射频接收模块设计[J].检测技术2006, (8):66-67.
    [10]彭锴,丁国清.轮胎智能监测系统的研究[J].微计算机信息(测控自动化), 2005, 21(4): 82-83.
    [11]陈余,袁涛.汽车轮胎压力监测系统中无线数据传输的设计与实现[J].电子技术应用, 2006, 32(7):116-117.
    [12] Burgess, Jeff. Tire pressure monitoring: An industry under pressure. Advanstar Communications.2003 (7):20-23.
    [13] National Highway Traffic Safety A.dministration, US Department of transportation. An Evaluation of Existing Tire Pressure Monitoring System. [EB/OL]. [2001-03-13]. http://htsa.dot.gov/vrtc/caleapubs/tpms.pdf
    [14]颜重光. TPMS专用传感器模块技术剖析[J].电子设计应用, 2006,28-30.
    [15]李威,尹术飞. TPMS的无源化发展方向研究[J].重型汽车, 2005, (5): 1-2.
    [16] Suwei Zhou, et al. Review of embedded particle tagging methods for NDC of composite material and structure[C].Proc.of Smart Structures and Materials 1995, SPIE, 1995, 2444:9-11.
    [17] Anon. TechNology focus: Norway implements RF vehicle identification. [C] London: Electronic Engineering, 1989, 61(7): 42-43.
    [18] Robinson Jeiry H. Remote tire pressure monitoring system employing coded tire identification and radio frequency transmission, and enabling recalibration upon tire rotation or replacement [P] European Patent, Patent Number: EP 0 687 225 B1, 1993.
    [19] Wauer. Arrangement for wirelessly transmitting the temperature and for the presence of cookware on a cooktop[P] European Patent, Patent Number: EP 0 883 327 A2, 1998.
    [20] A. Pohl, et al. The“Intelligent Tire”utilizing passive SAW sensor-measurement of tire friction. [C] IEEE Transactions on Instrumentation and Measurement, 1999, 48(6):1041-1046.
    [21] Thomas Ostertag, Sascha Kunzmann. Batteryless Tire pressure monitoring system with bulk acoustic resonators [DB].IQ-Mobil GmbH Wolfratshausen Germany, 2003.
    [22] Pat O’Leary. Batteryless tire pressure monitoring system enhances driver safety [DB]. TPMS & RF-Systems and Stefan Hofmann, ALPS, 2004.
    [23]张福华.基于电磁耦合的汽车TPMS无源系统的研究[D] .吉林大学,2008
    [24]何崇中.一种微型振动发电机[P].中国专利号:CN200410067821.3, 2005-04-06.
    [25] M. Duffy, D. Carroll .Electromagnetic generators for power harvesting [C]. Germany: The 35th annual IEEE power electrics specialists conference, 2004.
    [26] T. Sterken, P. Fiorini, K. Baed, et al. An electric-based electrostatic p-generator [C]. Boston:The 12th international conference on solid state sensors, actuators and microsystems, 2003
    [27] HYEOUNG WOOKIM, SHASHANK PRIYA, KENJI UCHINO1, ROBERT E. NEWNHAM. Piezoelectric Energy Harvesting under High Pre-Stressed Cyclic Vibrations[J]. Journal of Electro ceramics, 2005, 15: 27-34.
    [28] Shih-Nung Chen, Gou-Jen Wang, Ming-Chun Chien. Analytical modeling of piezoelectric vibration-induced micro power generator[J]. Mechatronics, 2006, 16: 379-387.
    [29] Loreto Mateu, Francesc Moll. Appropriate charge control of the storage capacitor in a piezoelectric energy harvesting device for discontinuous load operation[J]. Sensors and Actuators, 2006.
    [30] Hua-Bin Fanga, Jing-Quan Liua, Zheng-Yi Xub, etc. Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting[J].Microelectronics Journal, 2006.
    [31] G. Poulin, E. Sarraute, F. Costa. Generation of electrical energy for portable devices Comparative study of an electromagnetic and a piezoelectric system[J]. Sensors and Actuators,2004, 116: 461-471.
    [32] E.Minazara, D.Vasic, F.Costa, etc.. Piezoelectric diaphragm for vibration energy harvesting[J]. Ultrasonics, 2006, 44: 699-703.
    [33] Joseph A. Paradiso, Mark Feldmeier. A Compact, Wireless, Self-Powered Pushbutton Controller[J]. Lecture Notes In Computer Science, 2001, 2201:299-304 .
    [34] W.E.Booij, A.H.Vogl, D.T.Wang, etc.. A simple and powerful analytical model for MEMS piezoelectric multimorphs. Electroceram, 2007, 19:387-393.
    [35] W.J.Choi, Y.Jeon, J.H. Jeong, etc.. Energy harvesting MEMS device based on thin film piezoelectric cantilevers[J]. Electroceram, 2006, 17:543-548.
    [36] Elie Lefeuvre, Adrien Badel, Claude Richard, etc.. Energy harvesting using piezoelectric materials:Case of random vibrations[J]. Electroceram, 2007,19:349-355.
    [37] Elaine Lai, Andrew Redfern, Paul Wright. Vibration Powered Battery-Assisted Passive RFID Tag[C]. Japan: Nagasaki-shi, 2005.
    [38] John Kymissis, Clyde Kendall, Joseph Paradiso, etc.. Parasitic Power Harvesting in Shoes[C]. USA:Proceedings of the 2nd IEEE International Symposium on Wearable Computers,1998.
    [39] Paradiso, J.A. Parasitic Power Shoes Project[J/OL].(2006-7-25). http://www.media.mit.edu/resenv/power.html.
    [40]褚金奎,杜小振,朴相镐.压电发电微电源国外研究进展[J].压电与声光, 2008, 30(1): 22-25.
    [41]李映平,赖百坛,陈荷娟,黄晓毛.一种新型的可蓄能压电电源原理研究[J].兵工学报, 2004, 25(4):421-423.
    [42] B.E.LEWANDOWSKI, K.L.KILGORE, K.J.GUSTAFSON.Design Considerations for an Implantable, Muscle Powered Piezoelectric System for Generating Electrical Power[J]. Annals of Biomedical Engineering, 2007, 35(4).
    [43] S.M. Allameh, O.Akogwu, M.Collinson, etc..Piezoelectric generators for biomedical and dental applications:Effects of cyclic loading[J].Mater Sci.:Mater Med, 2007, 18:39-45.
    [44]钟正青.压电式轮胎发电机的设计与实验[D].重庆大学, 2009.
    [45]李程.车用无线胎压监测技术[J].测试技术, 2007:59-63.
    [46] J.D.亚当森, G.P.奥布赖恩.利用增强压电材料从旋转轮胎机械能量中产生电能的系统[P].专利号:03800953, 2004-11-3.
    [47]张立勇,马修水,应中阳.基于射频技术的轮胎气压监测系统的设计[J].电子质量, 2006, 6:1-5.
    [48] SODANO H A, INMAN D J, PARK G. A review of power harvesting from vibration using piezoelectric materials [J]. S hock and Vibration Digest, 2004, 36 (3):197-2205.
    [49]张福学,王丽坤.现代压电学(上册)[M].科学出版社,北京: 2002.
    [50]孙慷,张福学.压电学(上册)[M].国防工业出版社.北京: 1984.
    [51] Michael Koch, Nick Harris, Alan G.R. Evans, et al. A novel micromachined pump based on thick–film piezoelectric actuation[J]. Sensors and Actuators A, 1998, 70: 98-103.
    [52]孙亚飞,陈仁文,陈勇等.压电材料电荷能量回收技术研究[J].压电与声光, 2002, 24(1):19-23.
    [53] X.C.Xuan, D.Li.Optimization of a combined thermionic-thermoelectric generator. Journal of Power Sources,2003,115:167-170.
    [54]廖海洋,温志渝等.压电式双振子微型发电机的应用研究[J].仪器仪表学报, 2008, 29(4):446-449.
    [55] A YERS J P, GREVE D W, OPPEN HEIM I J. Energy scavenging for sensor applications using structural strains [J]. SPIE, 2003, 5057:364-375.
    [56] MITCHESON P D, MIAO P, STARK B H, et al. . MEMS electrostatic micropower generator for low frequency operation [J]. Sensors and A ctuators A, 2004, 115:523-529.
    [57] Inman, D.J. Engineering Vibration[M]. Prentice-Hall Inc, Upper Saddle River, NJ.
    [58]陈塑寰,聂毓琴,孟广伟等.材料力学[D].吉林科学技术出版社, 2000, 114-121.
    [59] Chen, G.Y, et al. Adsorption-induced surface stress and its effects on resonancefrequency of microcantilevers [J]. J. Appl. Phys, 1995. 77:3618-3622.
    [60] Stoney, G. The Tension of Metallic Films Deposited by Electrolysis Proceedings of the Royal [J]. Society of London. Series A., 1989, 82(553): 172-175.
    [61] Von Preissig, F.J. Applicability of the classical curvature-stress relation for thin films on plate substrates [J]. J. Appl. Phys, 1989. 66(9): 4262-4268.
    [62] CAMPBELL G A, MU THARASAN R. Sensing of liquid level at micron resolution using self-exited millimeter-sized PZT-cantilever [J].Sensors and Actuators, 2005, 122:326-334.
    [63] WAN G Q M, CROSS L E. Constitutive equations of symmetrical triple layer piezoelectric benders [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1999, 46 (6):1343-1351.
    [64] Kara J.Peters, Gregory D.Buckner, Gianluca Lazzi, Fuh-Gwo Yuan. Vibration energy harvesting by magnetostrictivematerial for powering wireless sensors [D]. North Carolina State University, 2007, 51-54.
    [65]阚君武,唐可红,王淑云,杨志刚,贾杰,曾平.压电悬臂梁发电装置的建模与仿真分析[J].光学精密工程, 2008, 16(1):71-75.
    [66] Shih-Nung Chen, Gou-Jen Wang, Ming-Chun Chien. Analytical modeling of piezoelectric vibration-induced mocro power generator [J]. Mechatronics 2006, 16:379-387.
    [67] Sung Kyu Ha. Admittance matrix of asymmetric piezoelectric bimorph with two separate electrical ports under general distributed loads [J]. IEEE Transactions on Ultrasonics Ferroelectriccs and Frequency Control, 2001,48(4):976-981.
    [68] Gou-Jen Wang, Wen-Chun Yu, Ying-Hsu Lin, and Hsiharng Yang. Modeling and Fabrication of a Piezoelectric Vibration-induced Micropower Generator[J]. Journal of the Chinese Institute of Engineers, 2006, 29: 697-706.
    [69] Jih-LianHa, Rong-FongFung, Sheng-HsinChang. Quantitative determination of material viscoelasticity using a piezoelectric cantilever bimorph beam[J]. Journal of Sound and Vibration, 2006, 289:529-550.
    [70] Ugura A C1999 Stresses in Plates and Shells (New York: McGraw-Hill).
    [71] Cecilia D Richards, Michael J Anderson, David F Bahr and Robert F Richards.Efficiency of energy conversion for devices containing a piezoelectric component [J].Journal of Micromechanics and Microengineering, 2004, 14:717-721.
    [72]菅新乐.基于压电陶瓷的汽车轮胎压力监测系统无源化研究[D].吉林大学, 2008.
    [73] Yi-Chung Shu. Performance Evaluation of Vibration-Based Piezoelectric Energy Scavengers[D]. National Taiwan University, 2007.
    [74]唐可红,阚君武等.压电发电装置的功率分析与试验[J].吉林大学学报(工学版), 2009, 39(6):1550-1553.
    [75]孙东昌,王大钧.智能板振动控制的分布压电单元法[J].力学学报, 1996, 28(6):692-699.
    [76]周福洪.水声换能器及基阵[M].国防工业出版社, 1984.
    [77]刘巧伶.理论力学[M].长春:吉林科学技术出版社, 1998: 212-226.
    [78]杨兴武.汽车的振动控制设计.客车技术与研究, 2005, 4:1.
    [79]檀润华,陈鹰,姚东方等.路面随机激励下的汽车振动仿真[J].振动、测试与诊断, 2004, 17(3):1-3.
    [80]严世榕.影响汽车振动特性的几个参数研究[J].机械强度, 2006, 8:1.
    [81]葛剑敏,郑联.路面特性对车辆振动影响规律研究[J].中国公路学报, 2004, 17(3):1-2.
    [82]关元洪,董芹.轮胎恒速行驶噪声机理[J].轮胎工业, 1999, 19:1-4.
    [83]金睿臣,宋健.路面不平度的模拟与汽车非线性随机振动的研究[J].清华大学学报(自然科学版), 1999, 39(8):1-2.
    [84]杨国平.汽车的噪音与振动(上)[M].交通世界,2000, 3.
    [85]杨国平.汽车的噪音与振动(下)[M].交通世界, 2000, 4.
    [86] J.Giacomin, F.Fustes. Subjective equivalence of steering wheel vibration and sound[J]. International Journal of Industrial Ergonomics, 2005, 1:517-518.
    [87] J.Giacomin, M.S.Shayaa, E.Dormegnie, etc.. Frequency weighting for the evaluation of steering wheel rotational vibration[J]. International Journal of Industrial Ergonomics, 2004, 33:527-529.
    [88] S.RAKHEJA, I.STIHARU. Seated occupant apparent mass characteristics under automotive postures and vertical vibration[J]. Journal of Sound and vibration, 2002, 253(1):57-59.
    [89] E.Rustighi, J.Elliott. Stochastic road excitation and control feasibility in a 2D linear tyre model[J]. Journal of Sound and Vibration, 2007, 300:490-501.
    [90] Andrew Pytel, Jaan Kiusalaas. Engineering Mechanics-DYNAMICS[M].北京:清华大学出版社, 2001.
    [91] Masaaki Ichiki, Ryutaro Maeda, Tokio Kitahara. A Measurement Method for the Power Generation Characteristics of Piezoelectric Elements[J]. 2004, 124(1): 30-31.
    [92]陆杰,高明煜,余厉阳.基于压电陶瓷的轮胎压力监测系统设计[J].杭州电子科技大学报, 2007, 27(5):5-8.
    [93] Roundy S, Leland E S, Baker J. Improving Power Output for Vibration-Based Energy Scavengers [J].IEEE Pervasive Computing, 2005, 4(1):28-36.
    [94]孙宏伟.汽车轮胎爆胎预警系统的研制[D].吉林大学, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700