纳滤处理电镀废水实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的电镀废水治理方法多为氧化-还原法和(或)沉淀法,虽然处理后的废水能够达到排放标准,但是许多有价值的重金属离子不能回用,而且污泥还会造成新的污染。若能采用物理法把重金属离子与废水分离,那么二者都可以回用,意义重大。
     本文利用自制的实验装置,开展了纳滤膜技术处理电镀废水的研究,系统地考察了纳滤过程中的各种影响因素。实验选用了三种不同渗透系数的亲水性纳滤膜:DL、DK、NTR-7450以筛选出适合处理电镀废水的膜。
     首先对某厂的电镀漂洗废水进行纳滤实验。该废水所含重金属离子主要为Cr和Cu。实验结果表明,重金属离子的去除受压力、流速、温度、pH和料液浓度等因素的影响。随压力的增加,膜通量逐渐增大,由于浓差极化和膜污染的影响,通量上升到一定值后开始下降,而膜对重金属离子的截留率比较稳定。预压会对纳滤膜结构产生影响,既可能使纳滤膜截留率增大,也可能使纳滤膜截留率降低;预压压力越高,纳滤膜渗透系数越低。膜面流速增大、料液温度升高会使通量增大,而流速和温度对截留率影响较小。由于随pH的变化,膜表面荷电和料液物性改变,pH值对离子的截留率影响较大,但pH值对膜通量影响较小。对于本实验体系,适宜的操作压力为0.6-1.2 MPa,温度为30-45℃,pH为中性或碱性。实验发现,DL和DK膜有较高的通量和截留率,适合处理电镀废水。DL膜渗透液中Cr平均浓度为0.52 mg/L,Cu平均浓度为0.95 mg/L;DK膜渗透液中Cr平均浓度0.80 mg/L,Cu平均浓度为1.63 mg/L,调节pH后可直接排放或返回电镀槽作漂洗水。
     电镀废水纳滤浓缩实验表明,随浓缩过程的进行,通量呈下降趋势。浓缩过程中DL和DK膜对Cr和Cu的截留率都在90%以上,分别把Cr和Cu由15.55和16.54 mg/L浓缩至107.75和129.45 mg/L,两种离子的浓缩倍数分别为6.93和7.83倍。
     DL膜在酸性电镀废水中耐受性较差,浸泡70天后,对Cr离子平均截留率由原来的96.6%降到60%以下,而DK膜则有较好的耐受性,对Cr离子的截留率始终保持在92%以上。DL和DK膜在中性电镀废水中都有较好的耐受性,浸泡70天后,两膜对Cr离子截留率都在90%以上。由于纳滤膜在溶剂中长时间浸泡可能发生溶涨,使得膜孔径增大,因此两膜的通量随浸泡时间延长而增大。
The electroplating waste water is generally treated by conventional techniques such as oxidation-reduction and/or precipitation to make the effluents meet the standards for discharge to the sewage systems. However, many valuable heavy metals will be lost and new contaminants may be produced. If the heavy metals in the waste water can be separated by physical methods, both the water and collected heavy metals can be reused.
     In this work, the nanofiltration of electroplating waste water was investigated. Some key parameters which may influence the process were studied systematically. Three NF membranes—DL, DK and NTR-7450, which have different hydraulic permeabilities—were selected for the experiments.
     Experiments on the treatment of a real electroplating waste water containing Cr and Cu were carried out. The results indicate that the removal of heavy metals is influenced by pressure, crossflow velocity, pH, concentration and temperature of the feed solution. Cr rejection is higher than Cu rejection. As the operating pressure increases, Cr and Cu rejections keep steady. Permeate flux increases with increasing pressure, but declines at higher pressure due to concentration polarization and membrane fouling. The performance of NF membrane will change after precompaction, this may be due to the variation of the membrane structure. Increasing crossflow velocity and temperature will increase the permeate flux, and not affect the heavy metal rejections obviously. The varying of pH value will cause the great varying of heavy metal rejections, but small varying of permeate flux. The suitable operating pressure range is 0.6-1.2 MPa, temperature range is 30-45℃, pH range is 6-9. DL and DK membranes have high heavy metal rejections and high permeate flux, thus these two membranes can be selected as the suitable membranes for the treatment of electroplating waste water.
     The average permeate concentration of Cr and Cu is 0.52 and 0.95 mg/L respectively for DL membrane, and 0.80 and 1.63 mg/L respectively for DK membrane. The permeate water can be discharged or reused as rinse water after adjusting the pH.
     The nanofiltration concentration of electroplating waste water by DL and DK
引文
[1] Raman L P, Cheryan M, Rajagapalan N, et al, Nanofiltriatriation for membrane separations.Chemical Engineering Progress, 1994, 5: 68-74
    [2] Bruggen B V, Vandecasteele C, Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible application in the drinking water industry, Environ. Poll., 2003, 122: 435-445
    [3] Lu X, Bian X, Shi L, Preparation and characterization of NF composite membrane. J. Membr. Sci., 2002, 210: 3-11
    [4] Schaep J, Bruggen B V, Uytterhoeven S, et al, Removal of hardness from groundwater by nanofiltration, Desalination, 1998, 119: 295-302
    [5] Levenstein R, Hasson D, Semiat R, Utilization of the Donnan effect for improving electrolyte separation with nanofiltration membranes, J. Member. Sci., 1996, 116: 77
    [6] Linde K, J?nnson A S, Nanofiltration of salt solutions and landfill leachate, Desalination, 1995, 223: 116(1): 77
    [7] Rautenbach R, Gr?schl A, Separation potential of nanofiltration membranes, Desalination, 1990, 77: 73-84
    [8] Childress A E, Elimelech M, Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes, J.Membr.Sci. 1996, 199: 25
    [9] Rautenbach R, Vossenkaul T, Linn T, et al, Waste water treatment by membrane processes-new development in ultrafiltration, nanofiltration and reverse osmosis, Desalination, 1996, 108: 1-3
    [10] Tsuru T, Urairi M, Nakao S I., et al, Reverse Osmosis of single and mixed electrolytes with charged membranes: experiment and analysis, J. Chem. Eng. Jpn. 1991, 24(4): 518
    [11] Schaep J, Bruggen B V, Vandecasteele C, et al, Influence of ion size and charge in nanofiltration, Sep. Purif. Tech. 1998, 14: 155
    [12] Dey T K, Ramachandhran V, Misra, B M, Selectivity of anionic species in binary mixed electrolyte systems for nanofiltration membranes, Desalination, 2000, 127(2): 165
    [13] Gilron J,.Gara N,.Kedem O, Experimental analysis of negative salt rejection in nanofiltration membranes. J. Membr. Sci. 2001,185: 223
    [14] 俞三传, 高从堦, 张建飞, 复合纳滤膜及其应用, 水处理技术, 1997,23(3): 139-145
    [15] Rautenbach R 著, 王乐夫译, 膜工艺——组件和装置设计基础, 化学工业出版社, 1999
    [16] 高从堦, 陈益棠, 纳滤膜及其应用, 中国有色金属学报, 2004, 14(1): 310-316
    [17] Bergman R A, Membrane softening versus lime softening in Florida-a cost comparison update, Desalination, 1995, 102: 11-24
    [18] Winston H W S, Sirkar K K. Membrane Handbook, New York: Van Mostrand, 1992
    [19] Rautenach R, Grodchl A.separation potential of nanofiltration membranes Desalination, 1990,77: 73-84
    [20] 张国亮, 陈益棠, 纳滤膜软化技术在海岛饮用水制备中的应用, 水处理技术, 2000, 26(2): 67-70
    [21] Tan L. Sudak R G, Removing color from a ground water source. J Amer Water Works Assn, 1992, 84: 79-84
    [22] Montovay T, Assenmacher M, Frimmel F H, et al, Elimination of pesticides from aqueous solutions by nanofiltration, Magyar Kemiai Folyoirat, 1996, 102, 241-247
    [23] Ventresque C, Gisclon V, Bablon G, et al. An outstanding feat of modern technology: the Mery-Sur-Oise NF treatment plant (340,000 m3/d), Desalination, 2000,131: 1
    [24] Tan L, Sudak R G., Removing color from a ground water application. J Amer Water Works Assn., 1992, 84: 79-84
    [25] Hassan A M, Farooque A M, Jamaluddin A M, et al. A demonstration plant based on the new NF-SWRO process. Desalination, 2000, 131(1-3): 157-171
    [26] Al-Sofi M A, Hassan A M, Hamed OA, et al, Optimization of hybridized seawater Desalination process, Desalination, 2000, 31(1-3): 147-156
    [27] Al-Sofi M, Seawater desalination-SWCC experience and vision, Desalination, 2001, 135: 121-139
    [28] Potie M, Diawara C, Rumeau M, et al, Seawater nanofiltration (NF): fiction or reality? Desalination, 2003, 158: 277-280
    [29] 查吕应, 丁志斌, 曹传新, 纳滤技术用于反渗透淡化预处理评述, 工业用水与废水, 2003, 34(2): 18-20
    [30] 苏保卫, 王志, 王世昌, 采用纳滤预处理的海水淡化集成技术, 膜科学与技术, 2003, 23(6): 54-58
    [31] Technical Bulletin, Filtration Engineering, New Hope M N, 1991
    [32] 孙玲新, 戚俊清, 葛虹, 纳滤技术及其应用进展, 化工装备技术, 2004,25(1): 9-12
    [33] Matsubara Y, Iwasaki K, et al. Recovery of oligosaccharides from steamed soybean waste water in tofu processing by reverse osmosis and nanofiltration membranes. Biosci Biotech Biochem, 1996, 60(3): 421-428
    [34] 俞三传, 陈小良, 潘巧明等, 多糖纳滤浓缩初步研究, 水处理技术, 2001, 27(1): 9-11
    [35] 杨刚, 王焕章, 刑卫红, 徐南平, 时钧, 木糖溶液的纳滤浓缩, 膜科学与技术, 2000, 20(5): 21-26
    [36] 袁其朋, 膜分离技术处理大豆乳清废水, 水处理技术, 2001, 27(3): 161-163.
    [37] 李炜怡, 李继定, 陈翠仙等, 纳滤提纯蔗果低聚糖实验研究和渗滤模型, 膜科学与技术, 2004, 24(5): 6-10
    [38] Warczok J, Ferrando M, Lopez F, Concentration of apple and pear juice by nanofiltration at low pressure. Journal of Food Engineering, 2004, 63: 63-70
    [39] Wang X, Zhang C, Ouyang P, The possibility of separating saccharides from a NaCl solution by using Nanofiltration in diafiltration mode, J.Membr.Sci., 2002, 153: 125-131
    [40] Tsuru T, Shutou T, Nakao S, et al. Peptide and amino acid separation by nanofiltration membranes. Sep. Sci. Technol., 1994, 29: 971-984
    [41] Martin-Orue C, Bouhallab S, Garem A. Nanofiltration of amino and peptide solution,mechanics of separation. J Member Sci, 1998, 142: 225-233
    [42] Wang X L, Ying A L, Wang W N, Nanofiltration of L-Phenylalanine and L-Aspartic acid Aqueous Solution. J Membr Sci, 2002, 196: 59-67
    [43] 吴麟华, 分离膜中的新成员-纳滤膜及其在制药工业中的应用, 膜科学与技术, 1997, 7(5): 11-14
    [44] 蔡邦肖, 纳滤膜技术在螺旋霉素生产中应用初探, 膜科学与技术, 1999, 19(5): 55-57
    [45] Su B W, Wang Z, W J X, et al, Concentration of clindamycin phosphate aqueous ethanol solution by nanofiltration, J Membr Sci., 2005, 251: 189-200
    [46] 韩少卿, 叶骥, 薛强, 彭奇均, 超滤和纳滤膜分离技术提取螺旋霉素, 中国抗生素杂志, 2005, 30(1): 52-55
    [47] 李洁妹, 周培艳, 王亚卿, 赵仁兴, 应用膜分离技术改进林可霉素提炼工艺, 化工学报, 2005, 56(4): 738-743
    [48] Wong F S, Qin J J, Wai M N, et al. A pilot study on a membrane process for the treatment and recycling of spent final rinse water from electroless plating, Sep. Purif. Technol, 2002, 29(1): 41-51
    [49] Qdais H A, Moussa H, Removal of heavy metals from wastewater by membrane processes: a comparative study, Desalination, 2004, 164:105-110
    [50] 张显球, 张林生, 吕锡武, 纳滤处理含 Cr(Ⅵ)废水的试验研究, 环境污染治理技术与设备, 2005, 6(3): 25-27
    [51] 楼永通, 陈益棠, 王寿根等, 膜分离技术在电镀镍漂洗水回收中的应用, 膜科学与技术, 2002, 22(2): 43-47
    [52] Manttari M, Jokinen J N, Nystrom M, Influence of filtration conditions on the performance of NF membranes in the filtration of paper mill total effluent, J. Membr. Sci., 1997, 137:187-199
    [53] Tomani P, Seisto A, Separation methods for closed-loop manufacture of bleached kraft pulp overview of a EU project, Desalination, 1999, 124: 217-223.
    [54] 刘梅红, 姜坪等, 膜法染料废水处理工艺研究, 2002, 22(4): 43-45
    [55] 郭明远, 杨牛珍, 纳滤膜分离活性染料溶液的研究, 水处理技术, 1996, 22(2): 97-98
    [56] Bruggen B V, Daems B, Wilms D, et al, Mechanisms of retention and flux decline for the nanofiltration of dye baths from the textile industry, Separation and Purification Technology, 2001, 22-23: 519-528.
    [57] 何毅, 苏鹤祥, 李光明等. 染料的纳滤分离性能和机理, 膜科学与技术, 2005, 25 (1): 48-52
    [58] 王锦, 石诚, 王晓昌, 纳滤处理火力发电厂循环冷却排污水的探讨, 工业水处理, 2002, 22(2): 17-19
    [59] 聂锦旭,肖贤明,纳滤膜在火电厂循环冷却水处理中的应用,工业水处理,2005,25(5):72-73
    [60] Choi J H, Dockko S, Fukushi K, et al, A novel application of a submerged nanofiltration membrane bioreactor (NF MBR) for wastewater treatment, Desalination, 2002, 146 (1-3): 413-420
    [61] Bruggen B V, Braken L, Vandecasteel C, Evaluation of parameters describing flux decline in nanofiltration of aqueous solutions containing organic compounds, Desalination, 2002, 147: 281-288
    [62] Schafer A I, Fane A G., Waite T, Fouling effects on rejection in the membrane filtration of natural waters, Desalination, 2000, 131 (1-3): 215-224
    [63] Schafer A I, Fane A G., Waite T D, Nanofiltration of natural organic matter: Removal, fouling and the influence of multivalent ions, Desalination, 1998, 118: 109-112
    [64] Wang Z, Zhao Y Y, Wang J X, et al, Studies on nanofiltration membrane fouling in the treatment of water solutions containing humic acids. Desalination, 2005, 178 (1-3): 171-178
    [65] Flemming H C, Schaule G., Biofouling on membranes-a microbiological approach, Desalination, 1998, 70 (1-3): 95-119
    [66] Vrouwenvelder H, Paassen J V, Folmer H, et al, Biofouling of membranes for drinking water production, Desalination, 118: 157-166
    [67] Bian R, Yamatomo K, Watanabe Y, The effect of shear rate on controlling the concentratin polarization and membrane fouling, Desalination, 2000, 131: 225-236
    [68] Vrijenhoek E M, Hong S, Elimelech M, Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes, J.Membr.Sci., 2001, 188(1): 115-128
    [69] Yoon S H, Lee C H, Kim K J, et al. Effect of calcium ion on the fouling of nanofilter by humic acid in drinking water production, Water Res, 1998, 32(7): 2180-2186
    [70] Bruggen B V, Kim J H, Francis A, et al, Influence of MF pretreatment on NF performance for aqueous solutions containing particles and organic foulant, Separation and Purification Technology, 2004, 36: 203-213
    [71] 王志, 甄寒菲, 王世昌等, 膜过程中防治膜污染强化渗透通量技术进展, (Ⅰ)操作策略, 膜科学与技术, 1999, 19(1):1-11
    [72] 伍艳辉, 王志, 伍登熙等, 膜过程中防治膜污染强化渗透通量技术进展, (Ⅱ)膜组件及膜系统的结构设计, 膜科学与技术, 1999, 19(4):12-19.
    [73] Wilbert M C, Pellegrino, John, et al, Bench-scale testing of surfactant-modified reverse osmosis/Nanofiltration membranes, Desalination, 2003, 156(1-3): 379-387
    [74] 高以烜, 王黎霓, 膜分离技术用于电镀废水处理的发展与问题, 北京工业大学学报, 1990, 16(3): 86-93
    [75] 毛跟年, 许牡丹, 黄建文, 环境中有毒有害物质与分析检测, 北京: 化学工业出版社, 2004
    [76] Syrtsova D A, Kharitonor A P, Teplyakov V V, et al, Improving gas separation properities of lolymeric membranes based on glassy polymers by gas phase fluorination, Desalination, 2004. 163, 273-279
    [77] Bargeman G, Vollenbroek J M, Straatsma J, et al, Nanofiltration of multi-compotent feeds. Interactions between neutral and charged components and their effect on retention, J.Membr.Sci., 2005, 247: 11-20
    [78] Jorgen Wagner, Membrane filtration handbook practical tips and hints, GE Osmonics Inc, 2001
    [79] 卞晓锴, 陆晓峰, 施柳青, 原子力显微镜及膜科学技术研究中的应用, 膜科学与技术, 2002, 22(5): 36-40
    [80] 赵之平, 王志, 王世昌, 现代分析测试技术在膜结构和性能研究中的应用, 膜科学与技术, 2001, 21(6): 34-39
    [81] Wu Ming, Sun D, Characterization and reduction of membrane fouling duringNanofiltration of semiconductor indium phosphide (INP) wastewater, J.Membr.Sci., 2005, 259: 135-144
    [82] Boussu K, Bruggen B V, Volodin A, et al, Roughness and hydrophobicity studies of Nanofiltration membranes using different modes of AFM, Journal of Colloid and Interface Science, 2005, 286: 632-638
    [83] Bowen W R, Mohammad, Characterization and prediction of Nanofiltration membrane performance-a general assessment, Trans.Ichm 1998, 76 A: 885
    [84] Hameyer G, Gimbel R, Modelling the salt rejection of nanofiltration membrane for ternary ion mixtures and for single salts at different pH values, Desalination, 1998,117: 247-256
    [85] Straatsma J, Bargeman G, Horst H C, et al, Can nanofiltration be fully predicted by a model? J.Membr.Sci., 2002, 198(2): 273-284
    [86] Schaep J, Casteele C V, Mohammad A V, Bowen W R, Analysis of the salt retention of nanofiltration membranes using the Donnan-steric partitioning pore model, Sep. Sci. Technol., 1999, 34:3009
    [87] Qin Jian-Jun, Maung Htun Oo, Lee Hsiaowan, et.al. Effect of feed pH on permeate pH and ion rejection under acidic conditions in NF process. J.Membr.Sci, 2004, 232: 153-159
    [88] Tsure T, Sudou T, Kawahara S-I, et al, Permeation of liquids through inorganic nanofiltration membranes, J. Colloid Interf. Sci., 2002, 228(2): 292-296
    [89] Freger V, Arnot T C,. Howell J A, Separation of concentrated organic/inorganic salt mixtures by nanofiltration, J.Membr.Sci., 2000, 178: 185-193
    [90] Hiroaki Ozaki, Kusumakar Sharma, Wilasinee Saktaywin. Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effect of interference parameters. Desalination, 2002, 144: 287-294
    [91] .Ujang Z, Anderson G K, Performance of low pressure reverse osmosis membrane(LPROM)for separating mono-and divalent ions, Water Sci.Tech., 1998, 38: 521-528
    [92] 薛福连, 乙二胺四乙酸的开发应用, 上海化工, 2005, 30(7): 47
    [93] 岳红, 高等无机化学, 北京: 机械工业出版社, 2002
    [94] 国家计划委员会、建设部发布, 建设项目经济评价方法与参数, 北京: 中国计划出版社, 1993
    [95] 天津市化工设计院, 天津市海水淡化示范工程(10000 吨/天淡水)可行性研究报告, 2001
    [96] 和宏明, 投资项目可行性研究与经济评价手册, 北京: 地震出版社, 2000
    [97] 苏保卫, 克林霉素磷酸酯乙醇水溶液的纳滤浓缩及其传递特性的研究, 天津大学博士学位论文, 2004
    [98] 宋航, 付超, 化工技术经济, 北京: 化学工业出版社, 2002
    [99] 杨华峰, 贾增然, 张勤, 投资项目经济评价, 北京: 中国经济出版社, 1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700