石墨砂浆渗浇钢纤维混凝土导电性能影响因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用钢纤维和石墨等材料作为导电相,对渗浇砂浆进行了电性能改良,利用SIFCON制造工艺,成功制成了石墨砂浆渗浇钢纤维混凝土(Graphite Slurry InfiltratedFiber Concrete,简称GSIFCON),并对GSIFCON导电性能的影响因素以及导电机理进行了研究和总结。
     首先,试验对比了两电极法、四电极法和两电极组合法测量电阻的准确性,发现四电极法和两电极组合法都能消除接触电阻的影响,得到比较准确的结果。考虑到两电极组合法的繁琐,本文选用四电极法作为试验的电阻测试方案。在研究GSIFCON导电性能影响因素的试验中,对影响GSIFCON电阻率的内部因素(如钢纤维体积掺量、石墨掺量、阻锈剂、水胶比和胶砂比等)和外部条件(如龄期、外加电压及含水率等)进行了研究,得到以下结论:(1)钢纤维体积掺量是影响GSIFCON电阻率的首要因素;(2)适当的石墨掺量能降低GSIFCON的电阻率;(3)阻锈剂的掺入不仅能降低GSIFCON的电阻率,还能保证GSIFCON导电性能的稳定性,提高它的耐久性;(4)水胶比和胶砂比对GSIFCON的密实度有着重要影响;(5)GSIFCON的电阻率随着龄期的增长而增大;(6)在直流低电压下,GSIFCON的电阻率基本不变;(7)GSIFCON的电阻率随含水率的增大而增大,同一含水率的情况下,掺阻锈剂的GSIFCON的电阻率比不掺阻锈剂的要小得多。本文对这些试验现象及试验结果也进行了简单分析。
     在研究单一导电相的导电混凝土(石墨导电混凝土和钢纤维导电混凝土)导电机理的基础上,本文依据得到的试验现象和数据,总结了GSIFCON的内部导电机理。根据内部导电网络机理,对试验现象进行了较为科学合理的解释,从而进一步验证了导电网络机理的科学性。
After changing the electric conductivity of infiltrated mortar, the graphite slurry infiltrated fiber concrete (GSIFCON) is configured using the processing technique of SIFCON, as well as taking steel fibers and graphite as conductive media in this paper. Moreover, the factors which can affect its electric conductivity performance and its electric mechanism are investigated and summarized in this paper.
     Firstly, the experiment is made to contrast the veracity of the schemes in testing the resistance. The schemes are two- electrode method、four- electrode method and two- electrode compounding method. It is found that both four- electrode method and two- electrode compounding method can eliminate the error the contact resistance arouses. But considering so many steps of the latter, four- electrode method is selected as scheme for testing the resistances of the samples. In the experiments, no matter the inside condition or the external condition, the factors which can affect the electric conductivity performance of GSIFCON are studied. These factors are the inner (including the content of steel fiber,the content of graphite, the rust inhibitor, the binder ratios and cement aggregate ratios) and the external (including age, the power-supply-voltage and humidity). We can gain conclusions as follows: (1) The content of steel fiber is the most principal factor to affect the electric conductivity of GSIFCON; (2) The appropriate content of graphite can make the electric conductivity of GSIFCON lower; (3) Mixing the rust inhibitor into GSIFCON can also make the electric conductivity of GSIFCON lower, and can ensure the electric conductivity performance of GSIFCON stabilized to improve durability; (4) The binder ratio and cement aggregate ratio are significant for the close-grained extent of GSIFCON; (5) The resistance ratios of GSIFCON are larger with the age longer; (6) The resistance ratios of GSIFCON are invariable basically under the low volts d.c; (7) The resistance ratios of GSIFCON are larger with the water ratios longer; The resistance ratios of GSIFCON mixed into the rust inhibitor are lower than GSIFCON not mixed into the rust inhibitor with the same water ratios. In addition, some simple analysis is made on the phenomena and data.
     Afterward, the electric mechanisms of the conductive concretes in which there is only one electric material (the graphite conductive concrete and the steel fiber conductive concrete) are analyzed. Basing on the two kinds of electric mechanisms and the phenomena and data from the experiments, the-electric mechanism of GSIFCON is summarized. In the end, the phenomena are explained scientificly and reasonably by the electric mechanism of the electric network, which validates that the electric mechanism is scientific.
引文
[1] 姚忠伟.智能混凝土的研究及其发展.新型建筑材料,2005,(2):6~9.
    [2] 李长太.钢渣混凝土的导电性研究(硕士学位论文).地点:重庆大学,2004:1~20.
    [3] 梁晖,刘国军.智能材料在混凝土中的应用.工业建筑,2005,(6):655~656.
    [4] 陈兵,吴科如,姚武.损伤自诊断机敏混凝土材料研究.混凝土,2002,(8):45~49.
    [5] Sherif Yehia, Christopher Y Tuan. Conductive Concrete Over-lay for Bridge Deck Deicing. ACI Materials Journal, 1999, 96(3): 382~390.
    [6] 洪乃丰.防冰盐腐蚀与钢筋混凝土的耐久性.建筑技术,2000,31(2):102~104.
    [7] 洪乃丰.我国北方地区冬季撒盐的利害分析与对策.低温建筑技术,2002,3:12~13.
    [8] 沈文忠,张雄.碳纤维功能混凝土研究现状及应用前景.新型建筑材料,2004,(8):30~32.
    [9] 司琼,董发勤.电磁屏蔽混凝土的发展现状.混凝土,2005,(2):8~11.
    [10] 杨大智.智能材料与智能系统.天津:天津大学出版社,2000.
    [11] 吴科如,张东等.建筑材料学报,2000,3(1):14~18
    [12] 沈刚,董发勤.复相导电混凝土的研究.混凝土与水泥制品,2003(6):38~40
    [13] 赵国藩,秦明乐.新型高性能纤维混凝土—砂浆渗浇纤维混凝土的发展.纤维混凝土的研究与应用,赵国藩、黄承逵主编,大连理工大学出版社.1992
    [14] 杨伯科.混凝土实用新技术手册.长春:吉林科学技术出版社,1998:483~486
    [15] Pye Glendon B, Myers Robert E, Arnott Mark R, et al. Conductive Concrete Compositions Containing Carbonaceous Particles. Chemical Abstracts, 2001(58):76
    [16] Kang Seok Hwa, Ko, Ja Sul, Kim, Jae, Jun, et al. Conductive Carbon fiber composite for Concrete Structures. Chemical Abstracts, 2001 (57): 58
    [17] Wang Gang. Electrically Conductive Graphite Containing Concrete, Chemical Abstracts, 2001 (58):57
    [18] Manchuk R V. Electroconducting Concrete as a Material for Protection of Electronic Equipment and Personnel Against Electromagnetic Impact. Chemical Abstracts, 2001(59): 58
    [19] Xie Ping, Mu Ping, Beandon in J J. Electrical Percolation Phenomena in Cement Composites Containing Conductive Fibers. Journal of Materials Science, 1996, 31 (15): 4 093~4 097
    [20] Serif Yehia, Christopher Y Tuan, David Ferdonetal. Conductive Concrete Overlay for Bridge Deck Deicing: Mixture Proportioning Optimization and Properties, ACI Materials, Journal, 2000, 97(2): 172~181
    [21] 孙浦生.英国研制出能快速变热的导电混凝土.石油工程建设1998(6)
    [22] 沈刚,董发勤.导电混凝土及其发展趋势.工业建筑.2004(3):62~64
    [23] 孙旭.导电混凝土在变电站接地网中的应用.高电压技术,2001(51):66~67
    [24] 唐祖全,李卓球,侯作富等.导电混凝土电热层布置对路面除冰效果的影响.武汉理工大学学报,2002(2):45~48
    [25] 李长太,钱觉时,唐祖全.钢渣机敏混凝土的性能研究.混凝土与水泥制品.2005(2):5~8.
    [26] 李长太.钢渣混凝土的导电性与压敏性研究.(硕士学位论文).重庆:重庆大学.2004.
    [27] 吴献,李秀梅,吴勃等.石墨混凝土导电性能的试验研究.建筑技术开发.2004,31(10):56~58.
    [28] 吴献,吴勃,田军等.石墨混凝土应变与电导率关系的理论分析.东北大学学报(自然科学版).2005,26(5):492~495.
    [29] 吴献,李秀梅,王述红等.混凝土电导率与应变关系的试验研究.东北大学学报(自然科学版).2005,26(1):88~91.
    [30] 唐祖全,钱觉时,杨再富.导电混凝土研究进展.重庆建筑大学学报.2006,28(6):135~139.
    [31] D. R. Lankard, D.H. Lease. Highly reinforced precast monolithic refractories. American Ceramic Society Bulletin, 1982,61(7): 728~732.
    [32] 沈蒲生,我国钢纤维混凝土技术展望.中南公路工程,1992:200~207.
    [33] Kosa K, Naaman. A E. Hansen W. Durability of fiber reinforced mortar. ACI Masterials Journal, 1991, 88(3): 310~319.
    [34] 曲福进.高性能纤维硅SIFCON静动态特性研究(博士学位论文),大连理工大学.1995.10
    [35] D. R. Lankard. Slurry Infiltrated Fiber Concrete (SIFCON). Concrete International. Dec. 1984
    [36] 侯作富,融雪化冰用碳纤维导电混凝土的研制及应用研究.(博士学位论文),武汉理工大学.2003.4
    [37] 彭勃,王立华,陈志源.水泥基导电复合材料渗滤阈值的判定方法.湖南大学学报(自然科学版).2000,27(1):97~102
    [38] 唐祖全,钱觉时,李卓球,接触电阻对导电混凝土电热特性的影响,混凝土与水泥制品,2003第4期8月:10~13
    [39] 毛起沼,赵斌元,沈大荣等.极化效应对碳纤维增强水泥(CFRC)导电性的影响.材料研究学报.1997,11(2):195~198
    [40] 陈守洙,江之永,普通物理学,第三册(第三版),人民教育出版社,1979:P314~318.
    [41] Zengqiang Shi, D. D. L. Chung. Carbon fiber-reinforced concrete for traffic monitoring and weighing in motion. Cement and Concrete Research. 1999(29). 435~439
    [42] Ruediger Schueler, Shiv P. Joshi, Karl Schulte. Damage detection in CFRP by conductivity mapping Composites Science and Technology. 2001(60). 921~930
    [43] Dragos-Marian Bontea, D. D. L. Chung, G. C. Lee. Damage in carbon fiber-reinforced concrete, monitored by electrical resistance measurement. Cement and Concrete Research. 2000 (30). 651~659
    [44] Sihai Wen, D. D. L. Chung. Damage monitoring of cement paste by electrical resistance measurement. Cement and Concrete Research. 2000(30):1979~1982
    [45] Sihai Wen, D. D. L. Chung. Effect of stress on the electric polarization in cement. Cement and Concrete Research. 2001(31):291~295
    [46] Xiaoping Shui, D. D. L. Chung. Electrical resistivity of submicron-diameter carbon-filament compacts. Carbon. 2001(39):1717~1722
    [47] M. Louis, S. P. Joshi, W. Brockman. An experimental investigation of through-thickness electrical resistivity of CFRP laminates. Composites Science and Technology. 2001(61): 911~919
    [48] Sihai Wen, D. D. L. Chung. Carbon fiber-reinforced cement as a strain-sensing coating. Cement and Concrete Research. 2001(31): 665~667
    [49] 姚武.绿色混凝土.化学工业出版社,2006
    [50] Sihai Wen and D. D.L. Chung. Electrical polarization in carbon fiber-reinforced cement. Cement and Concrete Research. 2001, 31(2): 141~147.
    [51] 袁润章.胶凝材料学.武汉:武汉工业大学出版社,1989.
    [52] 呼素娟,渗浇纤维混凝土(SIFCON)导电性能研究,(硕士学位论文),大连理工大学,2005
    [53] Honglei, Study on the mechanism of the electrical conductivity of infiltrated steel fiber concrete. Journal of Shang Dong Jian Zhu University. 2006, Vol. 21. No 4: 295~300
    [54] Sherif Yehia, Christiopher Y. Tuan, David Ferdon, et al. Conductive Concrete Overlay for Bridge Deck Deicing: Mixture Proportioning, Optimization, and Properties. ACIMaterials Journal. 2000,97(2):172~181
    [55] 何廷树,混凝土外加剂.陕西科学技术出版社,2003.4
    [56] 刘嘉璐,高性能混凝土工作性能及渗透性评价方法研究,大连理工大学(硕士学位论文),2005:101~107
    [57] 曹震,碳纤维水泥砂浆电特性的其他影响因素.(硕士学位论文),汕头大学,2002:37~38
    [58] Etsuzo Ohdaira, Nobuyoshi Masuzawa. Water content and its effect on ultrasound propagation in concrete the possibility of NDE. Ultrasonics. 38 (2000): 546~552.
    [59] M. Saleem, M. Shameem, S. E. Hussain, M. Maslehuddin. Effect of moisture, chloride and sulphate contamination on the electrical resistivity of Portland cement concrete. Construction and Building Materials. 1996, 10(3): 209~214.
    [60] Nikhil Barbare, Arun Shukla, Arijit Bose. Uptake and loss of water in a cenosphere-concrete composite material. Cement and concrete research.. 2003, 33 (2003):1681~1686
    [61] 孙维才,石墨砂浆渗浇钢纤维混凝土的机敏性能研究,(硕士学位论文),2006
    [62] 张雄.建筑功能材料.北京:中国建筑工业出版社,2000:348~352
    [63] 李仁福,戴成琴,于纪寿等.导电混凝土采暖地面.混凝土,1998(1):47~48
    [64] 叶青,胡国君,张泽南.掺石墨水泥基导电材料的物理性能研究.硅酸盐通报.1995(6):37~40
    [65] 沈刚,董发勤.石墨导电混凝土的研究.混凝土.2004(2):21~24
    [66] 魏小胜,肖莲珍,李宗津等.钢纤维水泥基材料的导电机理和水化特性.混凝土,2006(4):12~14
    [67] BONANOS N. LILLEY E. Conductivity Relaxations in Single Crystals of Sodium Chloride Containing Suzuki Phase Precipitatates. Journal of Physical and Chemical Solids, 42(10): 943~952
    [68] FAN Z. A New Approach to the Electrical Resistivity of Two-phase Composites. Acta Metallurgica Et Materialia, 1994, 43(1): 43~49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700