成层土中楔形桩的竖向和扭转振动理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于楔形侧面的存在,楔形桩在承受竖向荷载时,桩侧土不仅可以提供侧摩阻力,还会给楔形侧面施加一个斜向挤压的土压力,从而充分发挥桩与土的相互作用,是一种具有良好应用前景的新型桩型。随着楔形桩在工程上逐渐推广使用,它与土体的动力相互作用机理也逐渐引起众多学者的关注。但由于桩土动力相互作用问题本身的复杂特性,以及楔形桩楔形侧面的特殊性会导致桩侧土体性质发生变化,使桩侧土体形成一定范围的扰动圈,楔形桩与土体动力相互作用问题显得十分复杂。因此,开展楔形桩在竖向和扭转动力荷载作用下桩土耦合振动问题的研究不仅是桩基工程自身发展的需要,同时也可以为桩基动态测试、桩基础抗震和防震设计提供更加完善的理论支撑,具有重要的理论研究价值和工程应用意义。
     本文从平面应变理论及(粘)弹性杆件竖向和扭转振动理论出发,采用解析研究方法较系统地建立了复杂条件下成层土中楔形桩与土体的耦合振动理论,基于所得理论解,深入地分析了桩土参数对楔形桩竖向和扭转振动特性的影响机理。论文具体研究内容和成果如下:
     (1)考虑楔形桩的均匀变截面特性和桩侧土的层状特性,基于土体竖向振动平面应变假定和Rayleigh-Love杆模型,建立了桩土体系竖向耦合振动的定解问题。采用积分变换技术和阻抗函数传递技术,先后推导得到了竖向动力荷载作用下楔形桩桩顶频域响应的解析解和相应的时域响应半解析解。由参数分析法的结果可知,在一定频率范围内,楔形桩其他设计参数不变时,楔形桩桩顶动刚度和动阻尼均会分别随着楔角、桩长、桩端截面半径和桩身弹性纵波波速的增大而增大。在一定低频范围内,当上层桩侧土或下层桩侧土由软到硬变化时,楔形桩桩顶动刚度和动阻尼均会逐渐增大,且上层桩侧土性质变化对桩顶动刚度和动阻尼的影响更为敏感。当桩侧土为上下两层时,如果某一层桩侧土逐渐变软,土层界面会出现同向反射,如果某一层桩侧土逐渐变硬,土层界面会出现反向反射,从而给桩基无损检测信号的判断带来一定的干扰。
     (2)综合考虑楔形桩成桩效应引起的桩侧土体施工硬化和施工软化效应,提出竖向剪切复刚度传递模型来描述桩侧扰动土体的径向非均匀特性,建立了考虑成桩效应时桩土系统竖向耦合振动的定解问题。通过竖向剪切复刚度传递方法求得了桩侧土作用在桩身的竖向剪切复刚度的解析式,进一步,结合积分变换技术和阻抗函数传递技术,先后推导得到了考虑成桩扰动效应时楔形桩桩顶频域响应解析解和相应的时域响应半解析解。由参数分析法的结果可知,在一定频率范围内,可以在一定径向范围内加固桩侧土来增强桩土系统抵抗竖向变形和竖向振动的能力。如果成桩效应引起桩侧土体的施工软化,则会导致桩土系统抵抗竖向变形和竖向振动的能力减弱。桩顶速度频域响应曲线共振峰的幅值会随看扰动十体硬化范围和硬化程度的增大而逐渐减小,随着扰动土体软化范围和软化程度的增大而逐渐增大。桩顶速度时域响应曲线一次桩尖反射信号幅值会随着内部区域硬化土体硬化范围和硬化程度的增大而逐渐减小,随着内部区域软化土体的软化范围和软化程度的增大而逐渐增大。
     (3)基于微分思想将楔形桩沿竖向离散为一系列的微元段,对桩侧土采用平面应变模型,对楔形桩采用弹性杆件扭转振动模型,建立了楔形桩与桩侧土耦合扭转振动的定解问题。采用阻抗函数传递方法,通过严格求解得到了扭转激振作用下频域内楔形桩桩顶扭转复刚度和桩顶角速度响应的解析解和相应的时域内桩顶角速度响应的半解析解。由参数分析法的结果可知,在一定低频范围内,随着楔角、桩长、桩端截面半径和桩身剪切波速的增大,楔形桩桩顶扭转动刚度和动阻尼均逐渐增大。当桩侧土具有软弱夹层或坚硬夹层时,桩顶角速度频域响应曲线会出现大峰夹小峰的振荡现象,且软弱土夹层性质越差时,共振峰幅值会越大,坚硬土夹层性质越好时,共振峰幅值会越小。当桩侧土存在软弱夹层时,桩顶角速度时域响应曲线相应位置处会出现类似于缩颈的反射信号,当桩侧土存在坚硬夹层时,桩顶角速度时域响应曲线相应位置处会出现类似于扩颈的反射信号。
     (4)采用环向剪切复刚度传递模型来描述桩侧扰动土体的径向非均匀特性,建立.了考虑成桩效应时楔形桩扭转振动的定解问题。采用环向剪切复刚度传递方法和阻抗函数递推方法,通过严格推导得到了频域内楔形桩桩顶角速度响应的解析解和时域内桩顶角速度响应的半解析解。由参数分析法的结果可知,在一定低频范围内,楔形桩桩顶扭转动刚度和动阻尼均会随着扰动土体硬化范围和硬化程度的增大而有一定程度的增大。随着扰动土体软化范围和软化程度的增大,楔形桩桩顶扭转动刚度和动阻尼均有一定程度的减小。(?)形桩桩顶角速度频域响应曲线共振峰的幅值随着扰动土体硬化范围和硬化程度的增大而逐渐减小,随着扰动土体软化范围和软化程度的增大而逐渐增大。楔形桩桩顶角速度时域响应曲线一次桩尖反射信号的幅值随着扰动土体硬化范围和硬化程度的增大而逐渐减小,随着扰动土体软化范围和软化程度的增大而逐渐增大。
     (5)当楔形桩桩身存在变截面或变模量桩段时,桩顶(角)速度频域响应曲线和桩顶(角)速度时域响应曲线均会与正常楔形桩存在较大的差异,在楔形桩成桩质量分析盯需仔细考虑变截面或变模量桩段的影响。
     (6)综合来说,利用桩土系统扭转振动理论得到的桩顶角速度频域响应曲线和时域响应曲线变化规律与利用桩土系统竖向振动理论得到的桩顶速度频域响应曲线和时域响应曲线变化规律一致,只是变化的幅度会相对较小。因此,利用桩土系统竖向振动理论作为桩基无损检测的理论依据更为可靠。
Due to the existence of wedge side, there are not only lateral friction, but also oblique extrusion earth pressure acting on the shaft of tapered pile which are provided by the pile surrounding soil. It can be seen that tapered pile can maximize the interaction between the pile and the pile surrounding soil. Thus tapered pile is a new type pile which can be widely introduced in the engineering applications. With promoting the use of tapered pile, the dynamic interaction between soil and tapered pile has gradually attracted the attention of many investigators. However, owing to the complexity of soil-pile dynamic interaction and the complicated characteristics of surrounding soil caused by the construction effect of tapered pile, the dynamic interaction between soil and tapered pile is extremely sophisticated. Therefore, investigation on the coupled vibration problem of soil and tapered pile system undergoing vertical and torsional dynamic loading is not only the needs of their own development of pile foundation engineering, but also the theoretical support for seismic resistance of pile foundation and pile nondestructive testing, and the research findings have great significance of theory and valuable application of engineering.
     In this paper, on the basis of the plane strain theory and vertical and torsional vibration theory of elastic and viscoelastic rod, the coupled vibration theory of soil and tapered pile system is proposed when there is vertical dynamic load or torsional dynamic load acting on the head of tapered pile. By means of parametric study method, the influence of the properties of soil and tapered pile on the vertical and torsional dynamic response of tapered pile is systematically investigated. The main results are listed as followings:
     (1) Considering the variable cross section of tapered pile and the stratification of soil foundation, the governing equations of soil and tapered pile system undergoing vertical dynamic load are established based on the plane strain assumption of soil and Rayleigh-Love rod model. By means of the integral transform technique and impedance function transfer method, the analytical solutions of complex stiffness and velocity response in frequency domain at the head of tapered pile are derived. By utilizing the convolution theorem and the inverse Fourier transform technique, the velocity response in time domain is also obtained when there is half-cycle sine pulse acting on the head of tapered pile. Using the parametric study method, the main analysis results show that:(1) Within the low frequency range, if other parameters of tapered pile remain unchanged, the vertical dynamic stiffness and dynamic damping at the head of tapered pile increase as the cone-angle, pile length, radius of pile end, and shear wave velocity of tapered increase, respectively.(2) Within the low frequency range, the vertical dynamic stiffness and dynamic damping at the head of tapered pile increase as the upper pile surrounding soil or the lower pile surrounding soil change from soft to hard.(3) When the pile surrounding soil is divided into two layers, there is reflected signal with the same direction as the head wave at the interface of soil layer if the upper pile surrounding soil or the lower pile surrounding soil become softer, but there is reflected signal with the inverse direction as the head wave at the interface of soil layer if the upper pile surrounding soil or the lower pile surrounding soil become harder.
     (2) Considering the hardening effect and softening effect of pile surrounding soil caused by the construction effect of tapered pile, the vertical shear complex stiffness transfer model is presented to simulate the radial inhomogeneity of soil, and the governing equations of soil and tapered pile system undergoing vertical dynamic load are builded. Then, by virtue of the vertical shear complex stiffness transfer method, integral transform technique and impedance function transfer method, the analytical solutions of complex stiffness and velocity response in frequency domain and the semi-analytical solution of velocity response in time domain at the head of tapered pile are obtained. By means of the parametric study method, the main analysis results show that:(1) Within the low frequency range, the ability to resist vertical deformation and vertical vibration of tapered pile can be strengthened if the pile surrounding soil is reinforced within certain radial range. In other words, if the pile surrounding soil becomes softer owing to the construction effect of tapered pile, the ability to resist vertical deformation and vertical vibration of tapered pile can be weakened.(2) With the increase of hardening range and hardening degree of the internal area of soil, the formant amplitude of velocity response in frequency domain will gradually decrease, and the reflected signal amplitude at the pile tip in the curves of velocity response in time domain will also gradually decrease.(3) With the increase of softening range and softening degree of the internal area of soil, the formant amplitude of velocity response in frequency domain will gradually increase, and the reflected signal amplitude at the pile tip in the curves of velocity response in time domain will also gradually increase.
     (3) Based on the differential thought, the soil-tapered pile system is divided into a series of segments along the vertical direction. By means of the plane strain theory and torsional vibration theory of elastic rod to simulate the pile surrounding soil and tapered pile, the governing equations of soil and tapered pile system undergoing torsional dynamic load are established. Then, by utilizing impedance function transfer method, the analytical solutions of torsional complex stiffness and angular velocity response in frequency domain are derived. By using the convolution theorem and the inverse Fourier transform technique, the angular velocity response in time domain is also proposed when there is torsional half-cycle sine pulse acting on the head of tapered pile. Utilizing the parametric study method, the main analysis results show that:(1) Within the low frequency range, both the torsional dynamic stiffness and torsional dynamic damping at the head of tapered pile increase with the increase of cone-angle, pile length, radius of pile end and shear wave velocity of tapered pile.(2) If there is soft intercalated soil layer or hard intercalated soil layer in the pile surrounding soil, the curves of angular velocity response in frequency domain may oscillate with big peak and small peak. The softer the intercalated soil layer is, the bigger the formant amplitude of angular velocity response in frequency domain is. By contrast, the harder the intercalated soil layer is, the smaller the formant amplitude of angular velocity response in frequency domain is.(3) If there is soft intercalated soil layer in the pile surrounding soil, a reflected signal with the same direction as the head wave will appear at the interface of soil layer in the curves of angular velocity response in time domain. If there is hard intercalated soil layer in the pile surrounding soil, a reflected signal with the inverse direction as the head wave will appear at the interface of soil layer in the curves of angular velocity response in time domain.
     (4) Utilizing the circumferential shear complex stiffness transfer model to allow for the radial inhomogeneity of soil, the governing equations of soil and tapered pile system undergoing torsional dynamic load are established. Then, by virtue of the circumferential shear complex stiffness transfer method and impedance function transfer method, the analytical solution of angular velocity response in frequency domain and its corresponding semi-analytical solution of angular velocity response in time domain at the head of tapered pile are derived. By virtue of the parametric study method, the main analysis results show that:(1) Within the low frequency range, with the increase of hardening range and hardening degree of the internal area of soil, both the torsional dynamic stiffness and torsional dynamic damping at the head of tapered pile increase. By contrast, with the increase of softening range and softening degree of the internal area of soil, both the torsional dynamic stiffness and torsional dynamic damping at the head of tapered pile decrease.(2) Both the formant amplitude of angular velocity response in frequency domain and the reflected signal amplitude at the pile tip in the curves of angular velocity response in time domain will gradually decrease with the increase of hardening range and hardening degree of the internal area of soil.(3) Both the formant amplitude of angular velocity response in frequency domain and the reflected signal amplitude at the pile tip in the curves of angular velocity response in time domain will gradually increase with the increase of softening range and softening degree of the internal area of soil.
     (5) If there is pile segment with variable cross-section or modulus, both the curves of (angular) velocity response in frequency domain and the curves of (angular) velocity response in time domain are noticeably different from that of normal taped pile. Therefore, we should take the influence of the pile segment with variable cross-section or modulus into account in the construction quality analysis of tapered pile.
     (6) In general, both the curves of angular velocity response in frequency domain and the curves of angular velocity response in time domain calculated by the torsional vibration theory of tapered pile have the same changing regularity with the curves of velocity response in frequency domain and the curves of velocity response in time domain calculated by the vertical vibration theory of tapered pile. But the changing magnitude of the curves obtained by the torsional vibration theory of tapered pile is smaller than the changing magnitude of the curves obtained by the vertical vibration theory of tapered pile. Therefore, the vertical vibration theory of tapered pile is more suitable for pile nondestructive testing.
引文
[1]哈津著,徐祖元译.锥形短桩[M].北京:中国农业机械出版社,1981.
    [2]鹿文东,玉利荣.锥形钻孔灌注桩作用机理与承载力试验研究[J].地基基础工程,2002,12(3):36-41.
    [3]Norlund R L. Bearing capacity of piles in cohesionless soils[J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1963,89(S3):1-34.
    [4]Robinsky E I, Morrison C F. Sand displacement and compaction around model friction piles[J]. Canadian Geotechnical Journal,1964,1(2):81-93.
    [5]Zil'berberg S D, Sherstnev A D. Construction of compaction tapered pile foundations[J]. Soil Mechanics and Foundation Engineering,1990,27(3):96-101.
    [6]Wei J Q, EL Naggar M H. Experimental study of axial behavior of tapered piles[J]. Canadian Geotechnical Journal,1998,35:641-654.
    [7]Wei J Q. Experimental investigation of tapered piles[D]. Ontario:Publishing Company of the University of Western Ontario,1998.
    [8]EL Naggar M H, Wei J Q. Response of tapered piles subjected to lateral loading[J]. Canadian Geotechnical Journal,1999,36(1):52-71.
    [9]EL Naggar M H, Mohammed S. Evaluation of axial performance of tapered piles from centrifuge tests[J]. Canadian Geotechnical Journal,2000,37(6):1295-1308.
    [10]ELI Naggar M H, Wei J Q. Axial capacity of tapered piles established from model tests[J]. Canadian Geotechnical Journal,1999,36(6):1185-1194.
    [11]EL Naggar M H, Wei J Q. Uplift behavior of tapered piles established from model tests[J]. Canadian Geotechnical Journal,2000,37:56-74.
    [12]Ladanyi B, Guichaoua A. Bearing capacity and settlement of shaped piles in permafrost[M]. In Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco,1985,4:1421-1427.
    [13]Mohammed M Z. Centrifuge modeling of tapered piles in sand[D]. Ontario:Publishing Company of the University of Western Ontario,1999.
    [14]Mohammed M Z. Construction and performance of FRP-concrete composite piles[D]. Ontario:Publishing Company of the University of Western Ontario,2003.
    [15]Mohammed M Z, EL Naggar M H, Moncef N. Load transfer of fibre-reinforced polymer (FRP) composite tapered piles in dense sand[J]. Canadian Geotechnical Journal,2004, 41(1):70-95.
    [16]Spronken J T. Bearing capacity of tapered piles[D]. Alberta:Publishing Company of Calgary University,1998.
    [17]蒋建平,高广运,顾宝和.扩底桩、楔形桩、等直径桩对比试验研究[J].岩土工程学报,2003,25(6):764-766.
    [18]蒋建平,高广运.桩单位体积承载力问题探讨[J].工业建筑,2006,36(9):43-45,67.
    [19]刘杰,王忠海.楔形桩承载力试验研究[J].天津大学学报,2002,35(2):257-260.
    [20]何杰.软土地基中楔形桩工作特性研究[D].长沙:湖南工业大学,2008.
    [21]何杰,刘杰,陈科良,闵长青.静压楔形桩挤土效应的室内模型试验[J].工业建筑,2008,38(1):74-75,109.
    [22]张可能,何杰,刘杰,吴有平,李冰.静压楔形桩沉桩效应模型试验研究[J].中南大学学报(自然科学版),2012,43(2):638-643.
    [23]何杰,刘杰,张可能,吴有平,曹祚省.夯实水泥土楔形桩复合地基承载特性试验研究[J].岩石力学与工程学报,2012,31(7):1506-1512.
    [24]李冰,刘杰,何杰,吴有平.有无土工格栅-夯实水泥土楔形桩工作性状试验研究[J].湖南工业大学学报,2012,26(2):24-28.
    [25]成立芹,徐德良.锥形桩在天津地区的试验研究[J].西北农林科技大学学报(自然科学版),2003,31(1):135-138.
    [26]成立芹.一种变截面桩的对比试验研究[J].河北建筑工程学院学报,2004,22(1):11-15.
    [27]徐学燕,张培柱,安莹.锥形桩改良土体冻胀性和融沉性研究[J].冰川冻土,1997,19(4):354-358.
    [28]邱明国,徐学燕,李海山.冻结粉质粘土中锥形桩弹性阶段挤扩效应的研究[J].冰川冻土,2002,24(5):668-671.
    [29]邱明国,徐学燕,蔡永立.冻结粉质粘土中锥形桩的应用研究[J].低温建筑技术,2003,5:62-64.
    [30]崔灏,胡璞,汪仁和.冻土中锥形桩承载力特性研究[J].低温建筑技术,2005,6:93-94.
    [31]周天惠,丛强.混凝土锥形管桩技术要点解析[J].低温建筑技术,2005,3:93-94.
    [32]Vesic A S. Expansion of cavity in infinite soil mass[J]. Journal of Soil Mechanics Foundation Division, American Society of Civil Engineering,1972,98(3):265-289.
    [33]Carter J P, Booker J R, Yeung S K. Cavity expansion in cohesive frictional soil[J]. Geotechnique,1986,36(3):349-358.
    [34]Sagaseta C. Analysis of undrained soil deformation due to ground loss[J]. Geotechnique, 1987,37(3):301-320.
    [35]Sagaseta C. Prediction of ground movements due to pile-driving in clay[J]. Geotechnique, 2001,127(1):55-66.
    [36]Randolph M F, Carter J P, Wroth C P. Driven piles in clay the effects of installation and subsequent consolidation[J]. Geotechnique,1979,29(4):361-393.
    [37]Chopra M B, Dargush G F. Finite-element analysis of time-dependent large-deformation problems [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1992,16:101-130.
    [38]Jayantha K K, Moore I D. Axial response of tapered piles in cohesive frictional ground[J]. Journal of Geotechnical Engineering,1993,119(4):675-693.
    [39]戴加东,李俊才.楔形桩的工作性能及应用研究[J].建筑技术开发,2004,31(8):64-65,96.
    [40]曾月进,邵力群,冯礼恭,马国祥,王道明,严朝华.楔形桩的承载力[J].西部探矿工程,2004,102(11):6-7.
    [41]孙平平,金炯兰.楔形桩承载力计算公式的推导与应用[J].港工技术,2009,46(5):10-11.
    [42]刘杰,何杰,闵长青.楔形刚性桩与桩周土的非线性相互作用[J].铁道学报,2010,32(2):137-140.
    [43]刘杰,何杰,闵长青.夯实水泥土楔形桩复合地基中桩的合理楔角范围研究[J].土木工程学报,2010,43(6):122-127.
    [44]杨庆光,刘杰,何杰,罗善煌.楔形与等截面静压桩沉桩贯入阻力对比研究[J].岩土工程学报,2013,35(5):897-901.
    [45]胡向奎,秦峰,鲁红军.楔形刚性桩复合地基在工程中的应用[J].煤炭工程,2001,12:47-50.
    [46]叶良.楔形桩的工作性状分析和应用研究[D].杭州:浙江大学,2008.
    [47]王奎华,吴文兵,叶良,高妍.基于极限平衡理论的楔形桩承载力计算方法[J].建筑科学与工程学报,2009,26(4):108-113.
    [48]申国勤.圆楔形灰土井桩及其复合地基的设计计算[J].山西建筑,2006,32(17):97-98.
    [49]Take W A, Valsangkar A J. The elastic analysis of compressible tin-piles and pile groups[J]. Geotechnique,2002,31(4):456-474.
    [50]Yahia E A, Muzamil G M. Finite analysis of axially tin-pile groups[J]. Computers and Geotechnics,2001,26(2):231-243.
    [51]王垠翔,刘杰,何杰.柔性基础楔形桩复合地基变形规律有限元分析[J].土工基础,2010,24(5):39-42.
    [52]孔纲强,杨庆,年廷凯,胡庆春.扩底楔形桩竖向抗压和负摩阻力特性研究[J].岩土力学,2011,32(2):503-509.
    [53]Reissner E. Axialsymmetrische durch eine schuttelnde masse erregte schwingungen eines homogenen elastischen halbraumes[J]. Ing.-Arch.,1936,7:381-396.
    [54]Bycroft G N. Forced vibrations of a rigid circular plate on a semi-infinite elastic space and on an elastic stratum[J]. Philosophical Transaction of the Royal Society of London,1956, 248(948):327-368.
    [55]Awojobi A O, Grootenhuis P. Vibration of rigid bodies on semi-infinite elastic media[J]. Philosophical Transaction of the Royal Society of London,1965,287(1408):27-63.
    [56]Novak M, Beredugo Y O. Vertical vibration of embedded footings[J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1972,98(SM12):1291-1310.
    [57]Novak M. Dynamic stiffness and damping of piles[J]. Canadian Geotechnical Journal, 1974,11(4):574-598.
    [58]Novak M. Vertical vibration of floating piles[J]. Journal of the Engineering Mechanics Division, ASCE,1977,1O3(EM1):153-168.
    [59]Novak M, Aboul-Ella F. Impedance functions of piles in layered media[J]. Journal of the Engineering Mechanics Division, ASCE,1978,104(EM6):643-661.
    [60]Nogami T, Konagai K. Time domain axial response of dynamically loaded single piles[J]. Journal of Engineering Mechanics Division, ASCE,1986,112(11):1241-1252.
    [61]Nogami T, Konagai K. Dynamic response of vertically loaded nonlinear pile foundations[J]. Journal of Geotechnical Engineering Division, ASCE,1987,113(2): 147-160.
    [62]Nogami T, Konagai K. Time domain flexural response of dynamically loaded single piles[J]. Journal Engineering Mechanics Division, ASCE,1988,114(9):1512-1525.
    [63]EL Naggar M H, Novak M. Non-linear model for dynamic axial pile response[J]. Journal of the Geotechnical Engineering Division, ASCE,1994,120(2):308-329.
    [64]EL Naggar M H, Novak M. Nonlinear axial interaction in pile dynamics[J]. Journal of the Geotechnical Engineering Division, ASCE,1994,120(4):678-696.
    [65]EL Naggar M H, Novak M. Nonlinear lateral interaction in pile dynamics[J]. Soil Dynamic and Earthquake Engineering,1995,14(2):141-157.
    [66]EL Naggar M H, Novak M. Effect of foundation nonlinearity on modal properties of offshore towers[J]. Journal of the Geotechnical Engineering Division, ASCE,1995 121(9): 660-668.
    [67]王奎华,谢康和,曾国熙.有限长桩受迫振动问题解析解及应用[J].岩土工程学报,1997,19(6):27-35.
    [68]王奎华,谢康和,曾国熙.变截面阻抗桩受迫振动问题解析解及应用[J].土木工程学报,1998,31(6):56-67.
    [69]王奎华.考虑桩体粘性的变阻抗桩受迫振动问题的解析解[J].振动工程学报,1999,12(4):513-520.
    [70]王奎华.变截面阻抗桩纵向振动问题积分变换解[J].力学学报,2001,33(4):479-491.
    [71]Randolph M F, Deeks A J. Dynamic and static soil models for axial pile response[J]. Proceeding of fourth international symposium on the application of stress wave theory to piles, Balkema, Rotterdam,1992:3-14.
    [72]Liao S T, Roesset J M. Dynamic response of intact piles to impulse loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1997,21(4):255-275.
    [73]Wang T, Wang K H, Xie K H. An analytical solution to longitudinal vibration of a pile of arbitrary segments with variable modulus[J]. Acta Mechanica Solid Sinica,2001,14(1): 67-73.
    [74]蒯行成,沈蒲生.层状介质中群桩的竖向和摇摆动力阻抗的简化计算方法[J].土木工程学报,1999,32(5):62-70.
    [75]李炳求,郑镇燮.部分埋入弹性地基的变截面桩的自由振动[J].岩土工程学报,1999,21(5):609-613.
    [76]李耀庄,王贻荪,邹银生.粘弹性地基中桩的动力反应分析[J].湖南大学学报,2000,27(1):92-96.
    [77]刘东甲.不均匀土中多缺陷桩的轴向动力响应[J].岩土工程学报,2000,22(4):391-395.
    [78]刘东甲.纵向振动桩侧壁切应力频率域解及其应用[J].岩土工程学报,2001,23(5): 544-546.
    [79]栾茂田,孔德森.单桩竖向动力阻抗计算方法及其影响因素分析[J].振动工程学报,2004,17(4):500-505.
    [80]周绪红,蒋建国,周银生.粘弹性介质中考虑轴力作用时桩的动力分析[J].土木工程学报,2005,38(2):87-91,96.
    [81]吴志明,黄茂松,吕丽芳.桩-桩水平振动动力相互作用研究[J].岩土力学,2007,28(9):1848-1855.
    [82]Wang K H, Wu W B, Zhang Z Q, Chin J L. Vertical dynamic response of an inhomogeneous viscoelastic pile[J]. Computers and Geotechnics,2010,37(4):536-544.
    [83]Novak M, Sachs K. Torsional and coupled vibrations of embedded footings[J]. International Journal of Earthquake Engineering and Structural Dynamics,1973,2(1): 11-33.
    [84]Novak M, Nogami T. Soil-pile interaction in horizontal vibration[J]. International Journal of Earthquake Engineering and Structural Dynamics,1977,5(3):153-168.
    [85]Novak M, Howell F. Torsional vibration of pile foundations[J]. Journal of the Geotechnical Engineering Division, ASCE,1977,104(GT4):271-285.
    [86]Novak M, Aboul-Ella F. Dynamic soil reaction for plane strain case[J]. Journal of the Engineering Mechanical Division, ASCE,1978,104(EM4):953-959.
    [87]Novak M, Sheta M. Approximate approach to contact problems of piles[C]. Proceedings of the Geotechnical Engineering Division, American Society of Civil Engineering National Convention, Florida,1980:53-79.
    [88]Nogami T, Konagai K. Time domain flexural response of dynamically loaded single piles[J]. Journal Engineering Mechanics Division, ASCE,1988,114(9):1512-1525.
    [89]EL Naggar M H, Novak M. Nonlinear analysis for dynamic lateral pile response[J]. Soil Dynamics and Earthquake Engineering,1996,15:233-244.
    [90]EL Naggar M H. Vertical and torsional soil reactions for radially inhomogeneous soil layer[J]. Structural Engineering and Mechanics,2000,10(4):299-312.
    [91]Militano G, Rajapakse R K N D. Dynamic response of a pile in a multi-layered soil to transient torsional and axial loading[J]. Geotechnique,1999,49(1):91-109.
    [92]燕彬,黄义.群桩刚性承台竖向动阻抗的简化计算[J].岩土工程学报,2004,26(5):465-468.
    [93]栾茂田,孔德森.层状土中单桩竖向简谐动力响应简化解析方法[J].岩土力学,2005, 26(3):375-380.
    [94]王海东,费模杰,尚守平,卢华喜.考虑径向非匀质性的层状地基中摩擦桩动力阻抗研究[J].湖南大学学报(自然科学版),2006,33(4):6-11.
    [95]王海东,尚守平.瑞利波作用下径向非匀质地基中的单桩竖向响应研究[J].振动工程学报,2006,19(2):258-264.
    [96]王海东,尚守平,刘可,周志锦.考虑径向非均质性的层状地基中单桩动力阻抗研究[J].建筑结构学报,2008,29(5):128-134.
    [97]王奎华,杨冬英.基于复刚度传递多圈层平面应变模型的桩动力响应研究[J].岩石力学与工程学报,2008,27(4):825-831.
    [98]王奎华,杨冬英.两种径向多圈层土体平面应变模型的对比[J].浙江大学学报(工学版),2009,43(10):1902-1908.
    [99]杨冬英,王奎华.任意圈层径向非均质土中桩的纵向振动特性研究[J].力学学报,2009,41(2):243-252.
    [100]杨冬英.复杂非均质土中桩土竖向振动理论研究[D].杭州:浙江大学,2009.
    [101]刘林超,闫启方.饱和土中管桩的纵向振动特性[J].水利学报,2011,42(3):366-378.
    [102]Nogami T, Novak M. Soil-pile interaction in vertical vibration[J]. Earthquake Engineering and Structural Dynamics,1976,4:277-293.
    [103]Nogami T, Novak M. Resistance of soil to a horizontally vibrating pile[J]. International Journal of Earthquake Engineering and Structural Dynamics,1977,3(3):247-261.
    [104]Nogami T. Dynamic group effect axial responses of grouped pile[J]. Journal of the Geotechnical Engineering, ASCE,1983,109(2):228-243.
    [105]Zeng X, Rajapakse R K N D. Dynamic axial load transfer from elastic bar to poroelastic medium[J]. Journal of Engineering Mechanics, ASCE,1999,125(9):1048-1055.
    [106]Senjuntichai T, Rajapakse R K N D. Dynamic Green's functions of homogeneous poroelastic half-space[J]. Journal of Engineering Mechanics, ASCE,1994,120(11): 2381-2404.
    [107]Senjuntichai T, Mani S, Rajapakse R K N D. Vertical vibration of an embedded rigid foundation in a poroelastic soil[J]. Soil Dynamics and Earthquake Engineering,2006, 26(6/7):626-636.
    [108]Wang J H, Zhou X L, Lu J F. Dynamic response of pile groups embedded in a poroelastic medium[J]. Soil Dynamics and Earthquake Engineering,2003,23(3):235-242.
    [109]Zhou X L, Wang J H. Analysis of pile groups in a poroelastic medium subjected to horizontal vibration[J]. Computers and Geotechnics,2009,36(3):406-418.
    [110]Zhou X L, Wang J H, Jiang L F, Xu B. Transient dynamic response of pile to vertical load in saturated soil[J]. Mechanics Research Communications,2009,36(5):618-624.
    [111]胡昌斌,王奎华,谢康和.考虑桩土耦合作用时弹性支承桩纵向振动特性分析及应用[J].工程力学,2003,20(2):146-154.
    [112]胡昌斌,王奎华,谢康和.基于平面应变假定基桩振动理论适用性研究[J].岩土工程学报,2003(b),25(5):595-601.
    [113]李强,王奎华,谢康和.饱和土中端承桩纵向振动特性研究[J].力学学报,2004,36(4):435-442.
    [114]李强,王奎华,谢康和.饱和土桩纵向振动引起土层复阻抗分析研究[J].岩土工程学报,2004,26(5):679-683.
    [115]李强,王奎华,谢康和.饱和土中大直径嵌岩桩纵向振动特性研究[J1.振动工程学报,2005,18(4):500-505.
    [116]阙仁波,王奎华,考虑土体径向位移时桩土耦合振动特性及其应用[J].振动工程学报,2005,24(3):212-218.
    [117]阙仁波,王奎华,考虑土体径三维波动效应时弹性支承桩的振动力理论及其应用[J].计算力学学报,2005(c),22(6):658-664.
    [118]阙仁波,王奎华.考虑土体三维波动效应时黏性阻尼土中桩的纵向振动特性及其应用研究[J].岩石力学与工程学报,2007,26(2):381-390.
    [119]张智卿,王奎华,谢康和.非饱和土层中桩的扭转振动响应分析[J].岩土工程学报,2006,28(6):729-734.
    [120]张智卿.饱和非均质土中桩土耦合扭转振动理论研究[D].杭州:浙江大学,2008.
    [121]张智卿,王奎华,靳建明.轴对称横观各向同性土体中桩的扭转振动响应研究[J].振动工程学报,2011,24(1):60-66.
    [122]尚守平,余俊,王海东,任慧.饱和土中桩水平振动分析[J].岩土工程学报,2007,29(11):1696-1702.
    [123]尚守平,任慧,曾裕林,余俊.非线性土中单桩竖向动力特性分析[J].工程力学,2008,25(11):111-115.
    [124]杨骁,王琛.饱和粘弹性土层中悬浮桩的纵向振动[J].应用力学学报,2009,26(3):490-494.
    [125]杨骁,潘元.饱和粘弹性土层中端承桩纵向振动的轴对称解析解[J].应用数学与力学,2010,31(2):180-190.
    [126]刘林超,苏子平.分数阶黏弹性土层中分数阶三维轴对称桩的竖向振动[J].应用力学学报,2011,28(5):486-492.
    [127]王小岗.层状横观各向同性饱和地基中桩基的纵向耦合振动[J].土木工程学报,2011,44(6):87-97.
    [128]王小岗.横观各向同性饱和层状土中垂直受荷群桩的动力阻抗[J].岩土工程学报,2011,33(11):1759-1766.
    [129]Lysmer J, Richart F E. Dynamic response of footing to vertical load[J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1966,2(1):65-91.
    [130]王宏志,陈云敏,陈仁朋.多层土中桩振动半解析解[J].振动工程学报,2000,13(4):660-665.
    [131]王腾,王奎华,谢康和.成层土中桩的纵向振动理论研究及应用[J].土木工程学报,2002(b),35(1):83-87.
    [132]Gazetas G, Makris N. Dynamic pile-soil-pile interaction. Ⅰ:Analysis of axial vibration[J]. Earthquake Engineering and Structure Dynamics,1991,20(2):115-132.
    [133]Gazetas G, Fan K, Kaynia A M, Kausel E. Dynamic interaction factors for floating pile groups[J]. Journal of Geotechnical Engineering, ASCE,1991,117(10):1531-1548.
    [134]陈嘉熹.虚土桩法可行性初步研究与分析[D].杭州:浙江大学,2008.
    [135]杨冬英,王奎华.非均质土中基于虚土桩法的桩基纵向振动[J].浙江大学学报(工学版),2010,44(10):2021-2028.
    [136]王奎华,吴文兵,马少俊,许进军.桩底沉渣对桩的纵向振动特性影响研究及应用[J].岩土工程学报,2011,33(8):1227-1234.
    [137]吴文兵,王奎华,张智卿,陈嘉熹.半空间地基中虚土桩模型的精度分析及应用[J].应用基础与工程科学学报,2012,20(1):121-129.
    [138]吴文兵,王奎华,杨冬英,马少俊,马伯宁.成层地基中基于虚土桩模型的桩基纵向振动响应[J].中国公路学报,2012,25(2):72-80.
    [139]吴文兵.基于虚土桩法的桩土纵向耦合振动理论及应用研究[D].杭州:浙江大学,2012.
    [140]Sudhendu S, Ghosh D P. Vertical vibration of tapered piles[J]. Journal of Geotechnical Engineering, ASCE,1986,112(3):290-302.
    [141]Xie J, Vaziri H H. Vertical vibration of nonuniform piles[J]. Journal of Engineering Mechanics, ASCE,1991,117(5):1105-1118.
    [142]Ghazavi M. Analysis of kinematic seismic response of tapered piles[J]. Geotechnical and Geological Engineering,2007,25(1):37-44.
    [143]Mohammed M Z, EL Naggar M H, Moncef N. Wave equation analyses of tapered FRP-concrete piles in dense sand[J]. Soil Dynamics and Earthquake Engineering,2007,27: 166-182.
    [144]王靖涛,李国成,丁美英.桩基完整性检测的模型试验研究[J].岩石力学与工程学报,1998,17(S1):808-812.
    [145]刘东甲.指数型变截面桩中的纵波[J].岩土工程学报,2008,30(7):1066-1071.
    [146]蔡燕燕,俞缙,郑春婷,戚志博,宋博学.楔形桩桩顶纵向振动阻抗的解析解[J].岩土工程学报,2011,33(S2):392-398.
    [147]吴文兵,王奎华,武登辉,马伯宁.考虑横向惯性效应时楔形桩纵向振动阻抗研究[J].岩石力学与工程学报,2011,30(S2):3618-3625.
    [148]吴文兵,王奎华,窦斌.任意层地基中粘弹性楔形桩纵向振动响应研究[J].振动与冲击,2013,32(8):120-127.
    [149]Randolph M F, Steenfelt J S, Worth C P. The effect of pile type on design parameter for driven piles [C]//Proceedings of the Seventh European Conference on Soil Mechanics and Foundation in Engineering. Brighton,1979:114-207.
    [150]Steenfelt J S, Randolph M F, Worth C P. Instrumented model piles jacked into clay [C]// Proceedings of the 10th International Conference on Soil Mechanics and Foundation in Engineering. Stockholm. Sweden,1981:857-864.
    [151]罗战友,龚晓南,王建良,王伟堂.静压桩挤土效应数值模拟及影响因素分析[J].浙江大学学报(工学版),2005,39(7):992-996.
    [152]徐建平,周健,许朝阳,张春雨.沉桩挤土效应的模型试验研究[J].岩土力学,2000,21(3):235-238.
    [153]罗战友,王伟堂,刘薇.桩-土界面摩擦对静压桩挤土效应的影响分析[J].岩石力学与工程学报,2005,24(18):3299-3304.
    [154]彭劫,施建勇,黄刚.考虑挤土效应的桩基承载力分析[J].河海大学学报,2002,30(2):105-108.
    [155]张雪松,屠毓敏,龚晓南,潘巨忠.软粘土地基中挤土桩沉降时效性分析[J].岩石力学与工程学报,2004,23(19):3365-3369.
    [156]Veletsos A S, Dotsos K W. Impedance of soil layer with disturbed boundary zone[J]. Journal of Geotechnical Engineering, ASCE,1986,112(3):363-368.
    [157]Dotson K W, Veletsos A S. Vertical and torsional impedance for radially inhomogeneous viscoelastic soil layer[J]. Soil Dynamics and Earthquake Engineering,1990,9(3):110-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700