基于UG & VERICUT的弧面凸轮多轴数控加工仿真实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弧面分度凸轮机构具有传动链短,精度高,运动平稳,转位可靠,转位与停歇时间比不受限制等优点,已成为机械行业中应用最为广泛的凸轮机构,尤其在数控机床、自动化生产线等领域应用日益普遍。然而,由于结构复杂,制造难度大,在承载能力、可靠性、使用寿命方面国产弧面分度凸轮机构与国外同类产品相比还存在较大差距。滞后的制造工艺严重影响了我国弧面分度凸轮机构产品的质量、效率和应用。因此,深入开展弧面凸轮的虚拟加工仿真技术研究对弧面凸轮实现快捷、高效、高质开发生产具有重要现实意义。为此,本文基于UG & VERICUT软件,通过阐述不同滚子类型弧面凸轮工作廓面方程,建立弧面凸轮多轴数控加工工艺,确立弧面凸轮多轴数控加工仿真方案,从而实现了弧面凸轮范成法和刀位偏置法的多轴数控加工程序仿真检验。具体研究工作如下:
     1)综述弧面分度凸轮机构基本理论、弧面凸轮加工仿真的研究现状和存在的问题,对不同滚子类型的弧面凸轮工作廓面方程进行了系统阐述,同时建立了弧面凸轮范成法和刀位偏置法多轴数控加工工艺。
     2)建立弧面凸轮多轴虚拟加工仿真环境。利用UG和VERICUT软件建立各相关部件及组件的三维实体模型,包括弧面凸轮零件,毛坯、刀具、用于加工弧面凸轮的DMU80T五轴加工中心的机床简化实体模型等。
     3)完成了不同滚子类型弧面凸轮的范成法和刀位偏置法多轴数控加工自动编程。具体运用UG软件进行刀轨规划,生成刀位文件,并利用UG/Post Builder实现了DMU80T五轴加工中心后置处理器的定制,生成了可供加工仿真检验的NC程序。
     4)实现了弧面凸轮范成法和刀位偏置法的多轴数控加工程序仿真检验。利用VERICUT软件对不同类型滚子弧面凸轮的范成法和刀位偏置法多轴数控加工程序进行仿真,可检查刀具轨迹和加工参数是否正确合理、加工过程是否存在干涉、过切等不合理现象,弧面凸轮在实际加工前其多轴数控加工程序能得到有效完整检验。
     综上,本文的研究为弧面凸轮实现快捷、高效、高质开发生产提供了基于UG &VERICUT的弧面凸轮多轴数控加工编程仿真有效平台,也进一步完善了弧面凸轮的多轴数控加工工艺。
A globoidal cam mechanisim has some advantages of short transmission chain,high precision, smooth movement, reliable translocation, unrestricted ratio of translocation and the idle time, etc. So it has had a widespread availability in the fields such as NC machines, automatic production line, etc. However, the complex structure of globoidal cams makes it very difficult to manufacture. Presently, compared with foreign like products, the globoidal cams made in China have some drawbacks such as bad bearing capacity, unreliable performance, short service life, etc.. The lag manufacturing process has seriously impact on the domestic globoidal cam product quality, efficiency and application. Therefore, deep research on multi-axes CNC machining simulation for globoidal cams has important practical significance for rapid, efficient, and high-quality development and production. For this reason, based on UG&VERICUT, in order to realize the simulation verification of multi-axes CNC machining with the generation method and the tool offset method, globoidal cam profile surface equations for different type rollers are built and the multi-axes CNC machining technology and simulation program for globoidal cams are established in this paper. The main research works are as follows:
     1) The present situation and problems about the design and manufacture theory of the globoidal cam mechanisms have been summarized. Globoidal cam profile surface equations of different type rollers are built and the multi-axes NC machining technology of the generation method and the tool offset method are proposed.
     2) Globoidal cam multi-axes virtual machining simulation environment is built. Based on UG & VERICUT, the 3D solid models of the relevant parts and components are created including globoidal cam, roughcast, cutlery, simplify model of DMU80T five-axis machining center,etc..
     3) The multi-axes CNC automatic programming of machining different type rollers with generation method and tool offset method are accomplished. Specifically, tool path planning is finished and cutter location file is geerated by applying UG software. Then the postprocessor of DMU80T five-axis machining center is by customized through UG/Post Builder. The generated NC program is available for machining simulation verification.
     4)The simulation verification for multi-axes NC program of machining globoidal cams is realized with generation method and tool offset method. Applying VERICUT software, the multi-axes NC program simulation for different type rollers with generation method and tool offset method are realized. Whether the tool paths and processing parameters are reasonable or not and whether interference or gouge phenomenon is exited or not in machining process can all be checked. Then the multi-axes NC program can be effective verified before machining the globoidal cam practically.
     In conclusion, in order to achieve rapid, efficient, and high-quality exploitation and production for globoidal cams, this paper provides an effective platform for multi-axes CNC programming and machining simulation for Globoidal cams based on UG & VERICUT. Also the multi-axes CNC machining technique for globoidal cams can be more improved.
引文
[1]GB/10853-89,机器理论与机构学术语[S].北京:中国标准出版社,1989.
    [2]郑武.弧面分度凸轮的廓面误差补偿及基于SolidWorks的运动仿真[D].西安:西安理工大学,2002.
    [3]陆金贵.凸轮制造技术[M].北京:机械工业出版社,1986.
    [4]杨冬香.弧面分度凸轮机构CAD/CAM/CNC集成研究[D].湘潭:湘潭大学,2007.
    [5]刘艳申,朱航科.弧面凸轮专用数控机床的研究[J].机械工程师,2008,(6):64-65.
    [6]刘艳申,曹巨江.弧面凸轮专用数控机床的研究与开发[J].机床与液压,2008,36(9):81-82.
    [7]韩伟.五坐标加工弧面凸轮数控铣床的虚拟样机研究与开发[D].陕西:陕西科技大学,2004.
    [8]刘向红.弧面凸轮专用数控机床方案研究[J].制造技术与机床,2005,(7):22-23.
    [9]曹巨江,赵云龙等.一种加工弧面凸轮及复杂曲面零件用数控铣床[P].中国专利:03218823,2004-05-19.
    [10]杨延峰,张跃明,张玲爱,等.弧而分度凸轮廓而的加工[J].现代制造工程,2005,(5):69-72.
    [11]Tsay D M, Ho H C. Consideration of Manufacturing Parameters in the Design of Grooved Glohoidal Cam Indexing Mechanisms[J]. Journal of Engineering Manufacture,2001,215(1): 95-103.
    [12]滕皓,蔡卫东等.圆柱分度凸轮非等径数控加工自动编程[J].济南大学学报,2003,17(2):188-190.
    [13]杨玮,曹巨江.弧面凸轮机构的压力角与曲率分析[J].机械科学与技术,2004,23(1):74-76.
    [14]高秀兰,雷改丽,白静,等.圆柱滚子空间凸轮的两重包络法加工分析与改进[J].轻工机械,2005,(2):78-80.
    [15]彭国勋,肖正扬,王其超.滚子齿传动机构空间凸轮的数控加工[J].组合机床与自动化加工技术,1990,(6):12-14.
    [16]薛红前,田惠民.圆柱凸轮廓面的不完全坐标测量与范成法加工[J].机械科学与技术,1996,15(4):598-600.
    [17]何有钧,邹慧君,郭为忠,等.空间凸轮廓面的非等价加工方式的基本原理[J].制造材料,2001,39(444):35-37.
    [18]郭培全,黄传真.弧面分度凸轮的非等径数控加工自动编程[J].工艺与检测,2004,(6):53-55.
    [19]邹慧君,何有均,郭为忠.空间凸轮的两重包络法加工原理初探[J].机械传动,1999,23(4):32-34.
    [20]金石.弧面凸轮单侧加工原理初探[J].大连轻工业学院学报,1998,17(2):35-39.
    [21]尹明富,赵镇宏.弧面分度凸轮单侧面加工原理及刀位控制方法研究[J].中国机械工程,2005,16(2):127-130.
    [22]Rong-Shean Lee, Chen-Hua She. Tool Path Generation and Error Control Method for Multi-Axis NC Machining of Spatial Cam[J]. Int. J. Mach. Tools. Manufact.,1998,38(4):277-290.
    [23]佘振华.以雕刻法铣削空间凸轮之研究[J].大叶学报,民国十九年(2001),10(1):29-39.
    [24]R. S. Lee, J. N. Lee. A New Tool-Path Generation Method Using a Cylindrical End Mill for 5.Axis Machining of a Spatial Cam with a Conical Meshing Element[J]. Int. J. Adv. Manuf. Technol., 2001, (18):615-623.
    [25]R. S. Lee, J. N. Lee. Interference-Free Toolpath Generation Using Enveloping Element for Five-Axis Machining of Spatial Cam[J]. Journal of Materials Processing Technology,2007, 187/188:10-13.
    [26]胡秉辰,王夕生.弧面分度凸轮的加工和原始误差分析[J].农业机械学报,1992,23(3):79-83.
    [27]曹维江,解晓梅,宣兆成.弧面凸轮的原始误差分析[J].机械,1995,22(5):8-12.
    [28]尹明富,褚金奎,吕传毅.弧面凸轮两旋转坐标联动数控加工中心距误差对廓面误差的影响[J].机械科学与技术,2003,22(2):236-237.
    [29]尹明富,褚金奎,吕传毅.空间凸轮数控加工刀具误差对凸轮轮廓法向误差影响的计算方法[J].机械科学与技术,2002,21(1):37-39.
    [30]尹明富,吕传毅,赵镇宏.弧面分度凸轮加工理论研究及凸轮体偏移误差对廓面误差影响的计算方法[J].山东工程学院学报,2001,15(3):18-21.
    [31]尹明富,楮金奎,吕传毅.蜗型凸轮加工刀具摆角误差对廓面误差及回转盘运动精度的影响[J].机械科学与技术,2001,20(5):687-689.
    [32]常治斌,龚青山,何小龙.基于Pro/ENGINEER的空间弧面分度凸轮3D建模与数控加工仿真[J].制造业自动化,2009,31(2):63-67.
    [33]刘昌祺,牧野洋,曹西京.凸轮机构设计[M].北京:机械工业出版社,2005.
    [34]曹巨江,徐光中,王茜,等.空间凸轮机构滚子从动件研究[J].机械科学与技术,2006,25(10):1238-1240.
    [35]王其超,初嘉鹏.空间分度凸轮机构的通用计算公式[J].机械设计.1995,(9):52-54.
    [36]邹慧君,殷鸿梁.间歇运动机构设计与应用创新[M].北京:机械工业出版社,2008.
    [37]杨冬香,阳大志.基于不同滚子从动件类型的弧面凸轮CAD集成系统开发[J].机电工程技术.2009,38(6):16-18.
    [38]H. S. Yan, H. H. Chen. Geometry design and machinging of roller gear cams with cylindrical rollers[J]. Mechanism and Machine Theory,1994,29(6):803-812.
    [39]Jie-Shing Lo, Ching-Haun Tseng, Chung-Biau Tsay. A study on the bearing contact of roller gear cams[J]. Computer methods in applied mechanics and engineering,2001, (190):4649-4662.
    [40]何有均,邹慧君,郭为忠,等.空间凸轮廓面曲率分析的等距曲面法[J].机械设计与研究,2000,16(4):34-35.
    [41]尹明富.空间凸轮机构设计、误差分析与单侧面加工理论及实验研究[D].西安:西安理工大学,2003.
    [42]王其超,马丽敏,肖正扬.新型点啮合式弧面分度凸轮机构的设计与制造[J].机械科学与技术,1996,15(2):203-206.
    [43]方代正,黄绍服.钢球滚子弧面凸轮分度机构的设计与受力分析[J].煤矿机械,2005,(7):55-57.
    [44]张玲爱.用于数控加工中心的弧面凸轮的理论研究[D].北京:北京工业大学,2005.
    [45]殷鸿梁,朱邦贤.间歇运动机构设计[M].上海:科学技术出版社,1996.
    [46]彭国勋,肖正扬.自动机械的凸轮机构设计[M].北京:机械工业出版社,1990.
    [47]贺炜,刘言松,王涛,等.弧面分度凸轮机构研究的回顾与展望[J].轻工机械,2003,(4):7-10.
    [48]胡自化,张平,漆瑞.连续分度空间弧面凸轮的多轴数控加工工艺研究[J].中国机械工程,2005,16(24):2184-2187.
    [49]赵志鹏,唐玮UGNX5中文版自学手册:入门提高篇[M].北京:人民邮电出版社,2008.
    [50]李云龙,曹岩.数控机床加工仿真系统VERICUT[M]西安:西安交通大学出版社,2005.
    [51]张惠林,轩继花,姜士湖.基于VERICUT的五轴联动数控加工仿真[J].现代制造工程,2006,(7):125-127.
    [52]曹岩UG NX4数控加工实例精解[M].北京:机械工业出版社,2007.
    [53]李军锋.五坐标数控机床的加工仿真[D].北京:北京航空航天大学,2002.
    [54]赵世田,孙殿柱,孙肖霞.基于UG/POST五轴联动加工中心专用后置处理器的研发[J].组合机床与自动化加工技术,2006,(1):26-29.
    [55]刘雄伟,张定华等.数控加工理论与编程技术[M].北京:机械工业出版社,2007.
    [56]何震,马术文.基于Pro/E和VERICUT的数控加工仿真[J].计算机应用技术,2008,1(35):33-36.
    [57]牟世刚.基于VERICUT的整体叶轮五轴数控加工仿真[J].机床与液压,2009,2(37):164-166.
    [58]王德跃,王华侨VERICUT软件在五轴高速铣削加工中的应用[J].现代制造,2006,(6):86-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700