弧面凸轮廓面加工误差高效虚拟测量技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以弧面凸轮为核心件的传动机构具有精度高、承载扭矩大、结构紧凑、使用寿命长等特点,已在许多自动机械中广泛应用。目前国内外对弧面凸轮主要采用数控加工方法,很大程度上提高了弧面凸轮加工精度和加工效率。但国产弧面凸轮式传动机构产品的性能与国外同规格产品仍然存在较大差距,市场的占有率还很低。究其原因是弧面凸轮工作廓面为不可展螺旋曲面,其加工与检测对精密数控加工中心、三坐标测量机等昂贵仪器设备严重依赖,而国内弧面凸轮的制造与检测手段不健全,整体水平还很滞后,严重制约了国产弧面凸轮式传动机构产品的高精、高效开发和推广应用。如何降低对三坐标测量机的严重依赖性,实现弧面凸轮廓面加工误差高效、低成本测量是弧面凸轮式传动机构产品制造中的一项重要课题。因此,迫切亟待深入研究弧面凸轮廓面加工误差高效虚拟测量技术,以弥补目前三坐标测量复杂曲面的诸多不足。为此,本文利用虚拟测量原理、弧面凸轮空间啮合理论、UG及其开发工具、VC++等手段,探索弧面凸轮廓面加工误差的虚拟测量方法、模型,进行测量软件开发和实例应用,具体研究工作如下:
     1)综述了弧面凸轮数控加工工艺、数控加工误差测量以及虚拟测量技术的发展现状,分析了虚拟测量技术在弧面凸轮加工误差检测方面的发展趋势;根据弧面凸轮空间啮合理论,推导了弧面凸轮的理论廓面方程,奠定了后续研究基础。
     2)提出了基于虚拟测量原理的弧面凸轮加工误差虚拟测量方法,基于虚拟测量原理,以数控加工仿真模型为虚拟测量对象,利用弧面凸轮理论曲面方程规划虚拟测头的测量离散位置,通过几何干涉判断分析测头与被测加工曲面的空间几何位置关系,依据干涉程度求解加工误差。
     3)依据虚拟测量模型,利用UG平台及其二次开发工具和VC++开发了弧面凸轮加工误差虚拟测量软件,运用VERCUT仿真进行弧面凸轮虚拟测头测量轨迹验证,测量软件实现了与UG系统无缝集成,为弧面凸轮虚拟设计、制造与测量提供了CAD/CAM/CAT有效平台支撑。
     4)基于以上研究进行实例分析,分别对范成法和单侧面偏置法加工的弧面凸轮廓面加工误差进行虚拟测量,实例虚拟测量值与文献理论预报值完全吻合,表明提出的方法正确、建立的模型有效、开发的软件可信。
     综上,本文的研究为弧面凸轮廓面加工误差实现高效、低成本测量提供了有效解决方案,为拓展虚拟测量技术在复杂曲面加工中的应用示范奠定了理论基础。
The actuating mechanism with globoidal cam as the core pieces has the advantages of high precision, heavy load torque, compact structure, long service life, which has been widely used in the automation machinery. Presently, the CNC machining method is the main machining method for globoidal cam at home and abroad ,and this greatly improves the machining precision and efficiency. Compared with abroad, there is still a large gap in the wheeled actuating mechanism of the globoidal cam, and the market share is still very low. The main cause is that the working profile of globoidal cam as a skew helical surface,its machining and measurement heavily rely on some expensive equipments such as precise CNC machining center, Coordinate Measuring Machines(CMMs), the manufacturing level and measuring methods are unsound and the overall level are fairly backward at home. Thus it severely restricts the precision-efficient development and application of globoidal cam at home. How to reduce the severe dependence of the CMMs, achieve the efficient and low-cost measurement for the machining error of globoidal cam is an important issue in the machining of globoidal cam mechanism. Therefore, it is urgent necessary to develop an efficient virtual measuring technique for the profile machining error of the globoidal cam to cover the shortage of complex surfaces measurement by three-coordinates measuring machine. Therefore, based on the virtual measuring principle and the meshing theory of the globoidal cam, this paper has explored a virtual measurement method and model for the machining error of the globoidal cam with the help of UG and its development tools, VC++ , etc, and developed some virtual measurement software, analyzed some examples. Specific studies are as follows:
     1) Review the development of the CNC machining technology of the globoidal cam, the measuring technology for CNC machining errors and virtual measuring technology. Then, analyze the developing trend of the virtual measurement technology in CNC machining technology of the globoidal cam. Finally, the profile equation of the globoidal cam is derived according to the meshing theory and the basis is established for the subsequent study.
     2) Based on the virtual measuring principle and taking the CNC machining simulation model as the virtual measure object, the virtual measuring method for machining error of globoidal cam has been proposed. The discrete position of the virtual gauge head is planed by the theoretical profile equation of globoidal cam and the geometry relationship between the gauge head and the measured surface is judged by the geometric interference function, and finally solving the processing error by the interference level.
     3) According to the virtual measuring model, the virtual measuring software is developed by UG secondary development tools and VC++ based on UG platform. Then, the measurement trace of globoidal cam’s virtual gauge head is verified by VERCUT. This measuring software achieves seamless integration with the UG platform which provides an effective CAD/CAM/CAT platform for the virtual design, virtual manufacturing and virtual measurement of the globoidal cam.
     4) Based on the above research, the example analysis is done. The machining simulation models processed by the generating method and the one-side milling method are separately measured by the virtual measurement software, and the actual value of virtual measurement is consistent with the theoretical predication value. Thus it reflect the proposed method is correct, the established model is effective and the developed software is credible
     To sum up, this paper not only provides some effective solutions to achieve efficient and low-cost measurement for the processing error of globoidal cam, but also lays the theoretical foundation to expand the application of the virtual measurement technology in the processing of complex surface.
引文
[1]牧野洋,胡茂松.自动机械机构学[M].北京:科学技术出版社. 1980.
    [2] D. R. S. Hanson, F. T. Churchill. Theory of Envelope Provided New Cam Design Equation[J]. Product Engineering, 1962, (20): 45-55.
    [3]黄庆成,叶东,刘得军.坐标测量机发展的新方向-虚拟坐标测量机[J].航空计测技术.2001:27-29.
    [4]郭天太,周晓军.基于VR的虚拟测试技术及其应用基础研究[D].杭州:浙江大学. 2005.
    [5]张红杏.弧面分度凸轮的数控加工原理与方法.大连:大连理工大学[D]. 2007.
    [6]邹慧君,何有均,郭为忠.空间凸轮的两重包络法加工原理初探[J].机械传动.1999, 23(4):32-34.
    [7]彭国勋,肖正扬.自动机械的凸轮机构设计[M].北京:机械工业出版社. 1990.
    [8]张纪元.空间凸轮机构的凸轮轮廓设计[J].华东工程学院学报. 1982, (3):47-60.
    [9] H. S. Yan, H. H. Chen. Geometry Design of Roller Gear Cams with Conical Rollers[C]. J. CSME, 1994, 15(5): 479-485.
    [10]滕皓,蔡卫东.圆柱分度凸轮非等径数控加工自动编程[J].济南大学学报,2003,17(2):188-190.
    [11]胡自化,张平,漆瑞.连续分度空间弧面凸轮的多轴数控加工工艺研究[J].中国机械工程, 2005, 16(24):2184-2187.
    [12] H. S. Yan, H. H. Chen. Geometry Design of Roller Gear Cams with Hyperboloidal Rollers[J]. Math. Compute. Model, 1995, 22(8): 107-117.
    [13] Zhiqiang Li, Wuyi Chen. The analysis of correlative error in principal axis method for five-axismachining of sculptured surfaces[J].International Journal of Machine Tools & Manufacture .45 (2005) 1031–1036.
    [14]王其超,马丽敏,肖正扬.新型点啮合式弧面分度凸轮机构的设计与制造[J].机械科学与技术.1996,15(2):203-206.
    [15]何有均,邹慧君,郭为忠.空间凸轮廓面曲率分析的等距曲面法[J].机械设计与研究. 2000,16(4):34-35.
    [16]杨延峰,张跃明,张玲爱.弧面分度凸轮廓面的加工[J].现代制造工程. 2005,(5): 69-72.
    [17]郭培全,黄传真.弧面分度凸轮的非等径数控加工自动编程[J].工艺与检测. 2004,(6):53-55.
    [18]高秀兰,雷改丽,白静.圆柱滚子空间凸轮的两重包络法加工分析与改进[J].轻工机械. 2005,(2):78-80.
    [19]唐伟,周以齐.用于加工高速弧面凸轮的直接插补技术研究[J].机械科学与技术. 2006, 25(2):139-141.
    [20]尹明富,赵镇宏.弧面分度凸轮单侧面加工原理及刀位控制方法研究[J].中国机械工程. 2005,16(2):127-130.
    [21]孔马斌,胡自化.基于等距曲面的弧面凸轮单侧面数控加工刀位优化算法[J].机械工程学报. 2008,44(11):277-282.
    [22]姚英学,李荣彬.面向加工质量预测的虚拟加工检测单元的研制[J].中国机械工程. 2000,11(5):520-524.
    [23] H. S. Yan, H. H. Chen. Geometry design and machining of roller gear cams with cylindrical rollers [J].Mechanism and Machine Theory, 1994, 29(6): 803-812.
    [24]赵仲生,毛军红,林其骏.神经网络用于数控系统误差预报补偿技术的研究[J].西安工业学院学报. 1996,03(02):198-203.
    [25]尹明富,褚金奎,吕传毅.弧面凸轮两旋转坐标联动数控加工中心距误差对廓面误差的影响[J].机械科学与技术. 2003,22(2):236-237.
    [26]尹明富,楮金奎,吕传毅.蜗型凸轮加工刀具摆角误差对廓面误差及回转盘运动精度的影响[J].机械科学与技术. 2001,20(5):687-689.
    [27] R. S. Lee, Chen-Hua She. Tool Path Generation and Error Control Method for Multi-Axis NC Machining of Spatial Cam [J]. Int. J. Mach. Tools. Manufacture.1998, 38(4): 277-290.
    [28] R. S. Lee, J. N. Lee. Interference-Free Tool path Generation Using Enveloping Element for Five-Axis Machining of Spatial Cam[J]. Journal of Materials Processing Technology.2007,187/188: 10-13.
    [29]刘祚时,倪潇娟.三坐标测量机(CMM)的现状和发展趋势[J].机械制造. 2004,08(11):34-37.
    [30] P.B. Dhanish, Jose Mathew. Effect of CMM point coordinate uncertainty on uncertainties in determination of circular features [J].2005,12(005) 522-531.
    [31]尹明富,楮金奎,吕传毅.空间凸轮廓面检测的接触点回归法与误差评定的数学解析[J].计量学报. 2003,24(4).
    [32]尚锐,华学兵,胡秉辰.计算机辅助弧面分度凸轮的检测及误差分析[J].机械传动. 2006:25(08):1004-2539.
    [33]宋丽娟,梁延德.弧面分度凸轮的三坐标机测量[D].大连:大连理工大学. 2006.
    [34]张国雄.三坐标测量机[M] .天津大学出版社.
    [35]黄庆成,叶东,刘得军.坐标测量机发展的新方向-虚拟坐标测量机[J] . 1999,9(6) :27-29.
    [36]薛红前,田惠民.圆柱凸轮廓面的不完全坐标测量与范成法加工[J].机械科学与技术. 1996, 15(4): 598-600.
    [37] H.J. Pahk, Y.H. Kim, Y.S. Hong, S.G. Kim. Development of Computer-Aided Inspection System with CMM for Integrated Mold Manufacturing [J].1993:S0007-8506.
    [38] Tsay D M, Ho H C. Consideration of Manufacturing Parameters in the Design of Grooved Glohoidal Cam Indexing Mechanisms [J]. Journal of Engineering Manufacture, 2001, 215(1): 95-103.
    [39] Nathanial J. Durlach and Anne S Mavor. Virtual Reality Scientific and Technologycal Challenges. Washington, DC: National Academy Press, 1995.
    [40]郭天太,周晓军,朱根兴.虚拟测试技术概念辨析[J] .机床与液压. 2003,05(01): 3-5.
    [41]郭天太.虚拟现实技术在高等教育中的应用及其意义[J].宁波大学学报. 2006,28(01):103-107.
    [42]郭天太.基于VR的虚拟测试技术及其应用基础研究[D].杭州:浙江大学. 2005.
    [43]陆栋.自动化软件测试框架分析及应用[D] .杭州:浙江大学. 2008.
    [44]姜圣广,姚英学,李建广.基于OpenGL的虚拟检测单元的研究与开发[J].哈尔滨工业大学. 2002(2):134-136.
    [45]黄庆成,车仁生,史艳霞.虚拟坐标测量机构成和实现方法[J].哈尔滨工业大学. 1999,7(2):88-90.
    [46]郭晓波,彭晓南.曲轴多参数虚拟检测仪的研制[J].河南科技大学学报. 2003, 24(02):34-36.
    [47]刘海.基于虚拟仪器技术的弧面分度凸轮机构动态测试试验台的研制[D].武汉:武汉科技大学. 2006.
    [48] Zhiying Zhou,Adrian David Cheok, Xubo Yang, et al. An Experimental Study on the role of 3DSound in Augmented Reality Environment [J].Interacting with Computers. 2004,16:1043-1068.
    [49]杨冬香,胡自化.弧面分度凸轮机构CAD/CAM/CNC集成研究[D].湘潭:湘潭大学. 2005.
    [50]陈慧贤,姚运萍,段利英.基于数控加工的复杂曲面误差分析[J].设计与研究学报. 2006,10(04):35-38.
    [51]石照耀,谢华锟,费业泰.复杂曲面测量模式与关键技术[J].工具技术学报. 2000,34(11):31-35.
    [52]周保珍.曲面测量方法研究及测量仿真[D].无锡:江南大学. 2008.
    [53]催焕勇,李兆前,高琦.自由曲面CMM测量中球头半径空间补偿方法的研究[J].机械与液压. 2006,(03):48-50.
    [54]曲云霞,魏智,徐安平.虚拟测试的理论体系与系统技术研究[J].中国惯性技术学报. 2001,09(04):83-86.
    [55] Z.Q.Liu. Methodology of Programming for Error Compensation on CNC centers [J].The International Journal of Advanced Manufacturing Technology. 2001,17:570-574.
    [56]刘炉山.基于数字化样件的虚拟测试及数据处理技术[D].南京:南京航空航天大学. 2003.
    [57]陈小告.弧面分度凸轮多轴联动加工综合误差分析研究[D].湘潭:湘潭大学. 2009.
    [58]蓝玉琼.计算机集成制造系统的概念、发展及结构改进[J].昆明:昆明理工大学学报. 2002,05(22):86-88.
    [59]展迪优. UG NX5.0曲面设计实例精解(含1DVD)/UG5.0工程应用精解丛书[M].机械工业出版社.
    [60]黄信林,曹巨江.基于UG的弧面凸轮复杂轮廓曲面的构建[J].陕西科技大学学报. 2004, 22(4): 55-59.
    [61]姚英学,李荣彬.面向加工质量预测的虚拟加工检测单元的研制[J].机械制造工艺. 2000,11(05):520-524.
    [62]胡新蕾.基于UG的弧面分度凸轮机构的参数化设计及仿真分析[D].青岛:青岛大学. 2009.
    [63]张玲爱.用于数控加工中心的弧面凸轮的理论研究[D].北京:北京工业大学. 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700