基于多体系统的弧面凸轮廓面误差系统分析与预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弧面凸轮机构能够实现多种复杂运动形式,已在许多自动机械中广泛应用。作为其关键部件,弧面凸轮的加工精度和表面质量直接决定了该机构的工作性能和品质。目前国内外弧面凸轮加工主要采用数控加工方法,但我国精密弧面凸轮的研发能力与国外相比还有较大差距。究其原因主要是弧面凸轮工作廓面结构复杂,加工难度大,特别是数控编程仅基于纯几何的刀具轨迹规划方法未能充分考虑机床误差、工装误差、刀具误差等多项原始误差的综合影响,弧面凸轮廓面误差无法实现科学预测和有效控制。如何揭示机床误差、工装误差、刀具误差等多项原始误差对弧面凸轮加工精度的综合影响,实现弧面凸轮廓面误差高效、科学预测和有效控制是精密弧面凸轮机构产品研发中的一项重要课题。因此,迫切亟待开展弧面凸轮廓面误差系统分析与预测研究,为弧面凸轮加工刀轨优化和误差有效控制提供科学依据。为此,本文利用多体系统误差建模理论、弧面凸轮机构空间啮合原理、Matlab等手段,探索弧面凸轮廓面误差综合模型,深入分析各原始误差对弧面凸轮廓面加工精度的影响规律。具体研究工作如下:
     1)综述了弧面凸轮加工误差分析、多体系统理论在切削加工误差分析中的应用和数控机床几何误差建模的研究现状,并推导了弧面凸轮理论廓面方程,奠定了后续研究基础。
     2)分析了机床空间几何误差因素。针对DMU80T五轴立式镗铣加工中心,在分析机床结构特点和运动几何误差的基础上,建立了该数控机床的空间几何误差模型。
     3)建立了弧面凸轮廓面误差综合模型。根据范成法和单侧面加工方法并结合具体机床的结构和配置条件,以多体系统误差建模理论和弧面凸轮机构空间啮合原理为基础,分别推导出范成法加工和单侧面加工的包含机床各轴运动误差在内的弧面凸轮误差廓面方程,同时给出了弧面凸轮廓面法向误差的定义、计算方法和计算过程。
     4)进行实例仿真分析。基于上述研究工作,利用Matlab编制了弧面凸轮廓面多轴数控加工误差综合分析程序,实例仿真计算结果反映出各原始误差对弧面凸轮廓面误差的综合影响规律。
     综上,本文的研究为弧面凸轮廓面误差高效、科学预测提供了理论依据,为弧面凸轮加工刀轨优化和基于误差补偿的高效精密加工奠定了基础。
Globoidal cam mechanism has been extensively applied in many automatic machines for its ability of achieving many complex moving forms. As the key parts, the machining precision and surface quality of globoidal cam directly determine the working performance and quality of this mechanism. At present, the NC machining is the main processing method for globoidal cam at home and abroad. Compared with abroad, there is still a large gap in the R&D capabilities about precise globoidal cam. The main causes are that the structure of globoidal cam working profiles are complex and difficult to machining, especially the NC programs are only based on the simple geometry tool path strategy and without considering the synthetic influence of other original errors, such as machine tool error, clamping error, tool error, etc. The profile machining error of globoidal cam is unable to realize scientific prediction and available control. How to reveal the synthetic influence of original errors on globoidal cam machining precision, realize efficient-scientific prediction and available control to profile machining error of globoidal cam have become a key task in the R&D about precision globoidal cam mechanisms. Thus, it is urgent necessary to do some researches on systematic analysis and prediction for globoidal cam profile error to provide scientific basis for tool path optimization and error effective-control. Therefore, the profile error synthetic model of globoidal cam has been built in this paper with the help of multi-body error-modeling theory, meshing theory of spatial mechanisms and Matlab tool, etc.. And the influence law of each original error on profile machining precision of globoidal cam has been deeply analyzed. The main works in this thesis can be concluded as the following:
     1) This paper provides an overview for the machining error analysis about the globoidal cam, the application of multi-body system to machining error analysis and the geometric error modeling of NC machine tool. Then, the theoretical profile equation is deduced and the basis is established for the subsequent study.
     2) The machine tool spatial geometric error factors are analyzed. Aimming at the DMU80T (a five-axis vertical boring-milling machining center), the spatial geometric error model of this machining center is built after the structure and kinematic-geometric errors being analyzed.
     3) The profile error synthetic model of globoidal cam is built. According to the generation method and one-side machining method, and combination with the structure and configure of the machine tool , the error profile equations of globoidal cam including machine tools’kinematic errors are deduced for the generation method and one-side machining method respectively based on the multi-body error-modeling theory and spatial meshing theory of globoidal cam mechanisms. Simultaneously, the normal error definition, calculation method and calculation process of globoidal cam are given.
     4) The analysis of example simulation is done. Based on the above research works, the profile error synthetic analysis program of multi-axis NC machining for globoidal cam is compiled by using Matlab tool. The calculation results of example simulation reflect the synthetic influence law of each original error on globoidal cam profile machining error.
     In conclusion, the researches in this paper provide a theoretical basis for the efficient-scientific prediction of the profile error of globoidal cam, and establish basis for the machining tool path optimization and high efficient & precision machining globoidal cam based on error compensation.
引文
[1]杨冬香.弧面分度凸轮机构CAD/CAM/CNC集成研究[D].湘潭:湘潭大学, 2007.
    [2]刘昌祺,牧野洋(日),曹西京.凸轮机构设计[M].北京:机械工业出版社, 2005.
    [3]彭国勋,肖正扬.自动机械的凸轮机构设计[M].北京:机械工业出版社, 1990.
    [4]陈立群. NT-XK5001专用数控立式铣床的研制、安装及其应用软件的开发[D].西北轻工业学院, 1992.
    [5]陈桦,曹西京.弧面凸轮轮廓面的一种精密加工方法[J].机械工艺师, 1998(8):12-13.
    [6]陈立群,王海军,刘兴国.大中心距弧面凸轮的数控加工[J].西北轻工业学院报, 1998, 17(2):35-39.
    [7]周定伍,王建强,周上.弧面凸轮五轴联动数控行星磨削设备应用[J].航空制造技术, 2001,增刊:52-54.
    [8]杨延峰,张跃明,张玲爱.弧面分度凸轮廓面的加工[J].现代制造工程, 2005(5):69-72.
    [9]高秀兰,雷改丽,白静,等.圆柱滚子空间凸轮的两重包络法加工分析与改进[J].轻工机械, 2005(2):78-80.
    [10]漆瑞.连续分度弧面凸轮的多轴数控加工理论研究[D].湘潭:湘潭大学, 2005.
    [11]胡自化,张平,漆瑞.连续分度空间弧面凸轮的多轴数控加工工艺研究[J].中国机械工程, 2005, 16(24):2184-2187.
    [12]邹慧君,何有钧.空间凸轮的两种包络法加工原理初探[J].机械传动, 1999, 23(4):32-34.
    [13]尹明富,赵镇宏.弧面分度凸轮单侧面加工原理及刀位控制方法研究[J].中国机械工程, 2005, 16(2):127-130.
    [14]尹明富.空间凸轮机构设计、误差分析与单侧面加工理论及实验研究[D].西安:西安理工大学, 2003.
    [15] Z H Hu, Xin Y, J L Yuan. Profile Error Synthetic Prediction Model for One-Side Milling of Spatial Cams[J]. Key Engineering Materials, 2011, 455:565-570.
    [16]唐进元,雷国伟. CNC机床运动误差对弧齿锥齿轮齿面接触质量的影响研究[J].中国机械工程, 2010, 21(20):2395-2410.
    [17]唐进元,卢延峰,周超.有误差的螺旋锥齿轮传动接触分析[J].机械工程学报, 2008, 44(7):16-23.
    [18]刘国良,张宏韬,任永强,等.数控机床几何误差综合建模及其专家系统[J].现代制造工程, 2005, 7:1-4.
    [19]王小平,姚英学,荆怀靖.数控机床几何误差建模及误差补偿的研究[J].机械工程师, 2005, 9:14-16.
    [20] D L Leete. Automatic compensation of alignment errors in machine tool [J]. International Journal of Machine Tool Design&Research, 1961, 1(1):293-324.
    [21] D French, S H Humphries. Compensation for backlash and alignment errors in numerically controlled machine-tool by a digital computer program[J]. MTDR Conf Proc, 1967, 8:707-726.
    [22] W J Love, A J Scarr. Determination of the volumetric accuracy of multi-axes machine[J]. MTDR Conf Proc, 1973, 14:307-315.
    [23] R Schultschik. The Components of Volumetric Accuracy[J]. Annals of the CIRP, 1977, 26, 1:223-228.
    [24] R Hocken, J A Simpson, B Borchardt, et a1. Three Dimensional Metrology[J]. Annals of the CIRP, 1977, 26(1):403—408.
    [25] P M Ferreira, C R Liu. An Analytical Quadratic Model for the Geometric Errors of a Machine tool[J]. Journal of Manufacturing System, 1986, 5(1):51—62.
    [26] A Donmez. A General Methodology for Machine Tool Accuracy Enhancement by Error Compensation[J]. Precision Engineering, 1986, 8(4):187—196.
    [27] D N Reshetov, V T Portman. Accuracy of machine tools[M]. New York:ASME Press, 1988.
    [28] M Anjanappa, D K Anand, J A Kirk. Error correction methodologies and control strategies for numerical control machines[J]. Control Method for Manufacturing Process, 1988, 7:41-49.
    [29] A K Elshchnawy, I Ham. Performance improvement of in coordinate measuring machines by error[J]. Manufacturing Systems, 1989, 9(2):151-158.
    [30] Kurtoglu A. The accuracy improvement of machine tools[J]. Annals of the CIRP, 1990, 39(1):417-419.
    [31] K Kim, M K Kim. Volumetric accuracy analysis based generalized geometric error model in multi-axes machine tools[J]. Mechanisms and Machine Theory, 1991, 26(2):207-219.
    [32] J A Soons, F C Theuws, P H Schellenkens. Modeling the errors of multi-axis machines: a general methodology[J]. Precision Engineering, 1992, 14(1):5-19.
    [33] Chen J S, Yuan J, Ni J. Compensation of Non-Rigid Body Kinematics Effect of a machining Center[J]. Transaction of NANRI, 1992, 20(2):325-329.
    [34] Shin Y C, Chin H, Brink M J. Characterization of CNC machining centers[J]. Journal of manufacturing systems, 1992, 10(5):407-421.
    [35] V Kiridena, P M Ferreira. Mapping the effects of positioning errors on the volumetric accuracy of five-axis CNC machine tools[J]. International Journal of Machine Tools&Manufacture, 1993, 33(3):417-437.
    [36] P D Lin, K F Ehmann. Direct volumetric error evaluation for multi-axis machines[J]. International Journal of Machine Tools&Manufacture, 1993, 33(5):675-693.
    [37] Mahbubur Rahman, Jouko Heikkala, Kauko Lappalainen. Modeling measurement and error compensation of multi-axis machine tools[J]. Part I: theory.International Journal of Machine Tools&M8nufacture, 2000, 40(10):1535-1546.
    [38]刘丽冰,乔小林,刘又午.多轴数控机床加工误差建模研究[J].河北工业大学学报, 2000, 29(3):l-6.
    [39]刘丽冰,王广彦,刘又午.复杂机械系统运动误差自动建模技术研究[J].中国机械工程, 2000, 11(6):642-646.
    [40]岳红新,章青,王慧清.基于多体理论的加工中心热误差建模及补偿技术研究[J].组合机床与自动化加工技术, 2005, 1:27-29.
    [41]张志飞,刘又午,刘丽冰,等.基于多体理论的五坐标数控机床的热误差建模[J].河北工业大学学报, 2000, 29(5):23-25.
    [42]刘又午,章青,赵小松,等.基于多体理论模型的加工中心热误差补偿技术[J].机械工程学报, 2002, 38(1):127-130.
    [43]张志飞,刘又午,张永,等.加工中心热误差补偿研究[J].制造技术与机床, 2001, l:27-30.
    [44]刘又午,章青,赵小松,等.数控机床全误差模型和误差补偿技术的研究[J].制造技术与机床, 2003, 7:46-49.
    [45]章青,卢腾链,张志飞,等.五坐标联动数控机床的误差建模及仿真[J].机械设计, 2001, 8:13-16.
    [46]桑宏强,刘丽冰,刘芬,等.基于多体系统理论的工件检测模型及其应用[J].机床与液压, 2008, 36(5):114-115.
    [47]粟时平,李圣怡.多体系统理论在数控加工精度软件预测中的应用[J].组合机床与自动化加工技术, 2004, 3:26-28.
    [48]粟时平,李圣怡,王贵林.基于多体系统理论的数控机床空间误差建模[J].长沙电力学院学报(自然科学版), 2001, 16(4):75-78.
    [49]朱建忠,李圣怡,黄凯.超精密机床变分法精度分析及其应用[J].国防科技大学学报, 1997, 19(2):36-40.
    [50]康念辉,李圣怡,郑子文.基于多体系统理论的非球面磨削误差模型与补偿技术[J].机械工程学报, 2005, 44(4):143-149.
    [51]杨建国,潘志宏,薛秉源.数控机床几何和热误差综合的运动学建模[J].机械设计与制造, 1998, 5:31-32.
    [52]王秀山,杨建国,闰嘉钮.基于多体系统理论的五轴机床综合误差建模技术[J].上海交通大学学报, 2005, 42(5):761-764.
    [53]任永强,杨建国.五轴数控机床综合误差补偿解耦研究[J].机械工程学报, 2004, 40(2): 55-59.
    [54]刘润爱.零传动滚齿机关键技术研究与应用[D].重庆:重庆大学, 2001.
    [55]胡秉辰,王夕生.弧面分度凸轮的加工和原始误差分析[J].农业机械学报, 1992, 23(3): 79-83.
    [56]尹明富,褚金奎,吕传毅.蜗形凸轮加工中心距误差对廓面法向误差影响的计算方法[J].机械科学与技术, 2003, 22(2):236-238.
    [57]尹明富,吕传毅,赵镇宏.弧面分度凸轮加工理论研究及凸轮体偏移误差对廓面误差影响的计算方法[J].山东工程学院学报, 2001, 15(3):18-21.
    [58]尹明富,褚金奎,吕传毅.蜗形弧面凸轮加工刀具摆角误差对廓面误差及回转盘运动精度的影响[J].机械科学与技术, 2001, 20(5):687-688.
    [59]朱建忠.精密超精密机床精度分析、建模与精度控制技术研究[D].长沙:国防科学技术大学, 1997.
    [60]盛伯浩.数控机床误差的综合动态补偿技术[J].制造技术与机床, 1997, 6:19-21.
    [61]孟德珍.加工误差统计分析与实现技术研究[D].大连:大连理工大学, 2008.
    [62]贾杏. CAD应用技术综述[J].上海电视技术高等专科学校学报, 2003, 6(2):13-15.
    [63]宫虎.五坐标数控加工运动几何学基础及刀位规划原理与方法研究[D].大连:大连理工大学, 2005.
    [64]孔马斌.典型复杂曲面五轴数控侧铣加工刀位优化理论与实践[D].湘潭:湘潭大学, 2008.
    [65]马欣.基于多轴数控加工运动仿真的编译技术研究[D].天津:天津大学, 2008.
    [66] Ho J, Y L. Direct Path Method for Flexible Multi-body Spacecraft Dynamics[J]. AIAA Journal of Spacecraft &Rocket, 1977, 14(2):102-110.
    [67] Wittenburg J. Dynamics of System of Rigid Bodies[D]. Stuttgart, Teubner, 1977(7).
    [68] R L Huston,刘又午.多体系统动力学(上册)[M].天津:天津大学出版社, 1987.
    [69]全荣.常见五坐标联动数控铣床的结构形式及分析[J].机械工程师, 1994, 6:34-35.
    [70]任军学,刘维伟,汪文虎,等.五坐标数控机床后置处理算法[J].航空计算技术, 2000, 30(1):40-43.
    [71]周济,周艳红.数控加工技术[M].北京:国防工业出版社, 2002.
    [72]李佳,徐燕申,彭泽民.集成CAD/CAM中五轴NC加工后处理关键技术研究[J].天津大学学报, 1998, 31(3):284.289.
    [73]薛雅萍.牛顿迭代法的改进格式及其收敛性[D].北京:北京化工大学, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700