牙鲆淋巴囊肿病毒细胞受体的鉴定与特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鱼类淋巴囊肿病(lymphocystis disease, LCD)是由淋巴囊肿病毒(lymphocystisdisease virus, LCDV)引起的一种典型的皮肤和浅表组织慢性病毒性疾病,已知可感染至少42科140种以上的海水、半咸水和淡水鱼类,尤其在我国养殖的牙鲆中流行较为广泛。有报道表明淋巴囊肿病毒可能通过细胞吞噬和受体介导作用进入宿主细胞。通过封闭细胞受体从而阻断病毒入侵是防治病毒病的一个有效途径。因此,本文旨在通过分离鉴定牙鲆淋巴囊肿病毒受体,促进对淋巴囊肿病毒侵染机制及其在宿主体内传播途径的认识,将对防治淋巴囊肿病有重要意义。
     本文利用免疫共沉淀技术和病毒铺覆蛋白印迹技术(VOPBA)对牙鲆淋巴囊肿病毒的细胞受体进行分离与鉴定,并用双向电泳、质谱分析及生化方法等对受体蛋白的特性进行分析;制备了病毒受体的单克隆抗体;通过病毒阻断实验确定了淋巴囊肿病毒的细胞受体,并利用所制备的受体单抗研究了病毒受体蛋白在牙鲆各组织中的分布情况。具体结果如下:
     (1)LCDV及其敏感细胞系牙鲆鳃细胞(Flounder gill cell line,FG)是本文研究LCDV细胞受体的两大关键材料。通过差速离心和蔗糖密度梯度离心得到了LCDV病毒粒子,形态完整,纯度较高;FG细胞用含10%胎牛血清的Eagle's MEM培养基在22℃、2%CO2条件下培养,生长迅速,状态良好。高纯度的LCDV与生长良好的FG细胞为后续研究打下坚实的基础。
     (2)首先利用NP-40和差速离心抽提出FG细胞膜蛋白,并通过免疫共沉淀法用抗LCDV单克隆抗体和LCDV从FG细胞膜蛋白中沉淀下一个分子量为27.8kDa的LCDV受体蛋白。对该受体蛋白进行质谱分析,结果表明27.8kDa受体蛋白与β-actin蛋白有较强的相关性;利用切胶回收方法提纯该受体蛋白,制备了其多抗,Western blotting显示该多抗主要与FG细胞膜蛋白中的27.8kDa蛋白结合,但也与42.7kDa蛋白微弱结合;用抗β-actin抗体与FG细胞膜蛋白反应,发现其中42.7kDa蛋白有较强反应,而27.8kDa蛋白有较弱反应。因β-actin在不同的物种间高度保守,其分子量大小为42-43kDa左右,故推测27.8kDa蛋白可能是β-actin蛋白的一部分或是一种与β-actin蛋白有某些相似结构域的未知蛋白。
     (3)利用提纯的27.8kDa受体蛋白免疫Balb/c小鼠,采用单克隆抗体技术经细胞融合、筛选、克隆等,得到了2株单克隆抗体(2G11和3D9)。Westernblotting分析显示这2株单抗均可与FG细胞膜上的27.8kDa蛋白结合,且与其他蛋白无交叉反应。利用2株单抗进行共聚焦免疫荧光和胶体金免疫电镜研究,结果显示FG细胞上与单抗特异性结合的阳性信号主要分布在细胞膜表面,呈点状或线状不连续分布,证实27.8kDa蛋白主要位于细胞膜上。阻断ELISA实验发现单抗2G11和3D9均可部分阻断LCDV与FG细胞膜蛋白的结合,阻断率分别为83.6%和79.4%;病毒体外感染阻断实验结果显示,单抗2G11和3D9可以有效阻断LCDV对FG细胞的感染。
     (4)采用非变性VOPBA在FG细胞上分离出135kDa受体蛋白,经SDS-PAGE与双向电泳发现135kDa蛋白由58.3kDa、44.6kDa及37.6kDa三个蛋白组成,其中起病毒结合活性为37.6kDa蛋白。采用免疫共沉淀联合VOPBA的方法分析27.8kDa和37.6kDa蛋白的关系,结果发现在免疫共沉淀中,虽然仅出现27.8kDa蛋白,未出现37.6kDa蛋白,但在用免疫共沉淀结果进行VOPBA时显示出了37.6kDa蛋白,但未出现27.8kDa蛋白,说明FG细胞膜上的27.8kDa蛋白与37.6kDa蛋白均为LCDV的受体蛋白,其中27.8kDa蛋白仅在天然状态下具有病毒结合能力,且在细胞内含量较高;而37.6kDa蛋白的病毒结合能力与其蛋白的二级结构无关,但其在细胞内含量较低。
     (5)利用免疫共沉淀方法对牙鲆鳃、胃、肠和表皮组织上的LCDV受体蛋白进行分离,发现牙鲆鳃、胃与肠组织蛋白中均有一个分子量为27.8kDa的蛋白能与LCDV特异结合,而表皮中LCDV结合蛋白分子量为37.6kDa。通过能够特异性显示糖蛋白的阿尔新蓝染色法对该免疫共沉淀结果进行染色,发现鳃、胃与肠中的27.8kDa蛋白为非糖蛋白,而表皮中的37.6kDa蛋白为糖蛋白。用Western blotting分析抗27.8kDa蛋白单抗与牙鲆各组织蛋白的结合情况,结果显示该单抗可与牙鲆鳃、胃、肠、肝组织上的27.8kDa蛋白反应,但与表皮、肾和脾组织上的蛋白均无反应。
Lymphocystis disease virus (LCDV) is the causative agent of lymphocystisdisease (LCD), an infectious virosis of fish manifested by hypertrophy ofconnective cells mainly in the integument of the fish body surface and fins. Thedisease has affected over140different wild and cultured fish species worldwide,including species of particular commercial importance, e.g. flounder Paralichthysolivaceus. Electron microscopic observations showed that the virus could attach tothe cell surface and then penetrate the cells by membrane fusion or by endocytosis,suggesting that there were probable virus-specific receptors located on theflounder gill (FG) cell surface. Research on host cell receptors of LCDV willcontribute to the understanding of viral replication and pathogenesis.
     In this paper, co-immunoprecipitation and virus overlay protein binding assay(VOPBA) were used to isolate and identify the LCDV cellular receptors in FG andflounder tissues; two-dimensional (2D) electrophoresis, mass spectrometry andbiochemical methods were used to analyze the characteristics of receptors; virusinfection inhibition assay verified the function of the receptor; and thedistributions of LCDV cellular receptor in flounder were studied by receptormonoclonal antibodies. The details are as follow:
     (1) FG cells and LCDV are prepared initially in this study. The LCDV waspurified by differential sucrose density gradient centrifugation, and the virions wereintact, round polygon in shape, with envelope outside. FG cells were derived fromflounder gill tissue and they grew fast and well at22℃,2%CO2in Eagle's MEMsupplemented with10%fetal calf serum.
     (2) The FG cell membrane proteins were extracted by NP-40lysis buffer and separated from other cellular components by differential centrifugation. Theco-immunoprecipitation assay with LCDV and anti-LCDV monoclonal antibodiesdetected a27.8kDa molecule protein from FG cell membrane that bound to LCDV.Mass spectrometric analysis established that the27.8kDa protein had a strongassociation with β-actin. Balb/c mice were immunized by27.8kDa protein to productpolyclonal antiserum. In western blotting, the antiserum were able to react stronglywith the27.8kDa protein and weakly cross-react with the42.7kDa protein; and theβ-actin antibody reacted strongly with42.7kDa protein band and weakly with the27.8kDa protein band. Of interest, β-actin protein in different species has highhomology as well as a molecular weight of about42kDa. Thus, the27.8kDa proteinmight be a part of β-actin protein or an unknown protein sharing some epitopes withβ-actin.
     (3) Monoclonal antibodies (Mabs) very often achieve greater sensitivity thanpolyclonal antibodies. In this study, two MAbs designated as2G11and3D9wereproduced after cells fusion, screened by ELISA and clone by limiting dilution.Analysed by the indirect enzyme-linked immunosorbent assay (ELISA) and westernblotting, the MAbs specifically reacted with the27.8kDa protein of FG cells.Confocal fluorescence microscopy and immunogold electron microscopy (IEM)provided visualized evidence that the epitopes recognized by these MAbs weremainly located on the cell membrane and occasionally in the cytoplasm near the cellmembrane of FG cells. Blocking ELISA results showed that the blocking rate of MAb2G11and3D9was83.6%and79.4%, respectively; for LCDV infection inhibitionassay, the MAbs could inhibit LCDV infection by the MAbs pre-incubation with FGcells. These results strongly supported the possibility that the27.8kDa protein wasthe putative receptor specific for LCDV infection of FG cells.
     (4) Native-PAGE and virus overlay protein binding assay (VOPBA) were used toidentify the receptor proteins of LCDV on the flounder gill (FG) cells. One135kDaprotein molecule was found to be the LCDV binding protein on the FG cells. SDS-PAGE and two dimensional (2D) gel electrophoresis analysis of this proteinindicated it had three proteins with molecular weight of58.3kDa,44.6kDa and37.6kDa. While VOPBA after SDS-PAGE showed that only37.6kDa polypeptidecould bind to LCDV. The co-immunoprecipitation results were subjected to VOPBAto analyze the relation of27.8kDa and37.6kDa receptor proteins in FG cells. Inco-immunoprecipitation, we observed the27.8kDa protein but no37.6kDa protein.While in VOPBA after co-immunoprecipitation, the37.6kDa protein was presentedbut there was no27.8kDa protein. It suggested that both27.8kDa and37.6kDaproteins were the LCDV receptor proteins in FG cells, and the27.8kDa protein had aLCDV binding activity only in natural state, but the37.6kDa protein could bind theLCDV in non-natural state.
     (5) Co-immunoprecipitation was used to identify the LCDV receptor proteins ongill, stomach, intestine and skin of flounder (P. olivaceus). The results showed that thegill, stomach and intestine tissues were detected to share a binding protein with thesame molecular weight of27.8kDa, and a skin tissue protein of37.6kDa was foundto specifically bind LCDV. Then Alcian blue staining was used to identify theglycoprotein characteristics on the samples of co-immunoprecipition, and the resultsrevealed that the27.8kDa proteins in the gill, stomach and intestine were defined asnon-glycoprotein while the37.6kDa protein in the skin as a glycoprotein. Westernblotting was used to investigate the distribution of the27.8kDa protein in floundertissues, and the results showed the MAbs could react with the27.8kDa protein in thetissues of gill, stomach, intestine and liver. But to other three tissues, including skin,kidney and spleen, no reactions were observed.
引文
[1] Anthony H C C, Ralph W P, Patrick W K L, et al. Reovirus binds to multiple plasmamembrane proteins of mouse L fibroblasts. Virology,1990,178:316-320.
    [2] Arnberg N. Adenovirus receptors: implications for tropism, treatment and targeting. Rev. Med.Virol.2009,19:165–178.
    [3] Bearzotti M, Delmas B, Lamoureux A, Loustau A M, Chilmonczyk S, Bremont M. Fishrhabdovirus cell entry is mediated by fibronectin.Journal of Virology,1999,73:7703–7709.
    [4] Berthiaume, L., Alain, R., Robin, J.. Morphology and ultrastructure of lymphocystis diseasevirus, a fish iridovirus, grown in tissue culture. Virology,1984,135:10-19.
    [5] Catanese M T, Graziani R, von Hahn T, et al. High-avidity monoclonal antibodies against thehuman scavenger class B type I receptor efficiently block hepatitis C virus infection in thepresence of high-density lipoprotein. J Virol,2007,81(15):8063-8071.
    [6] Chen K Y, Hsu T C, Huang P Y, Kang S T, Lo C F, Huang W P, Chen L L. Penaeus monodonchitin-binding protein (PmCBP) is involved in white spot syndrome virus (WSSV) infection.Fish&Shellfish Immunology,2009,27:460–465.
    [7] Chen Y P, Terry M, Ronald E, et al. Dengue virus infectivity depends on envelope proteinbinding to target cell heparan sulfate. Nature Medicine,1997,3:866-871
    [8] Chu J J H, Ng M L. Characterization of a105-kDa plasma membrane associated glycoproteinthat is involved in West Nile virus binding and infection. Virology,2003,312:458–469
    [9] Chu J J H, Leong P W H, Ng M L. Characterization of plasma membrane-associated proteinsfrom Aedes albopictus mosquito (C6/36) cells that mediate West Nile virus binding andinfection. Virology,2005,339:249-260.
    [10] Colonno R J, Condra J H, Mizutani S, et al. Evidence for the direct involvement of therhinovirus canyon in receptor binding. Proc Natl Acad Sci,1988,85(15):5449-5453.
    [11] Colorni A, Diamant A. Splenic and cardiac lymphocystis in the red drum, Sciaenops ocellatus.J Fish Dis,1995,18:467-471
    [12] Corey L, Spear P G. Infections with herpes simplex viruses(1). New England Journal ofMedicine,1986a,314:686–691.
    [13] Corey L, Spear P G. Infections with herpes simplex viruses(2). New England Journal ofMedicine,1986b,314:749–757.
    [14] Craig R B, Rase L B, Stuart K, et al. Herpes simplex virus glycoprotein D acquires mannose6-phosphate residues and binds to mannose6-phosphate receptors. J Bio Chem,1994,269:17067-17074
    [15] Dalziel R G, Hopkins J, Watt N J, et al. Identification of a putative cellular receptor for thelentivirus visna virus. J Gen Virol,1991,72(8):1905-1911.
    [16] Darai G, Anders K, koch H G, et al. Analysis of the genome of fish lymphocystis disease virusisolated directly from epidermal tumors of Pleuronected. Virology,1983,126:466-479.
    [17] Dimitrov D S. How do viruses enter cells? The HIV coreceptors teach us a lesson ofcomplexity. Cell,1997,91:721–730.
    [18] Dimitrov D S. Cell biology of virus entry. Cell,2000,101:697–702.
    [19] Doms R, Peipert S C. Unwelcomed guests with master keys: how HIV uses chemokinereceptors for cellular entry. Virology,1997,235:179–190.
    [20] Dorig R E, Marcil A, Richardson C D, et al. CD46, a primate-specific receptor for measlesvirus. Trends Microbiol,1994,2:3-12.
    [21] Essbauer S, Fischer U, Bergmann S, et al Investigations on the ORF167L of LymphocystisDisease Virus (Iridoviridae). Virus Genes,2004,28(1):19-39.
    [22] Esterhuysen J J, Prehaud C, Thomson G R. A liquid-phase blocking ELISA for the detectionof antibodies to rabies virus. J Virol Methods,1995,51:31–42
    [23] García-Rosado E, Castro D, Cano I, Pérez-Prieto S I, Borrego J J. Serological techniques fordetection of lymphocystis virus in fish. Aquatic Living Resources,2002,15:179–185.
    [24] Gastka M, Horvath J, Lentz T L. Rabies virus binding to the microtinic acetylcholine receptoralpha subunit demonstrated by virus overlay protein binding assay. J Gen Virol,1996,77(10):2437-2440
    [25] Gavrilovakaya I N, Brown E J, Ginsberg M H, et al. Cellular entry of hantavirus which causehemorrhagic fever with renal syndrome is mediated by β3integrins. J Virol,1999,73(5):3951-3959.
    [26] Golovkina T V, Dzuris J, Hoogen B V D, et al. Novel membrane protein is a mouse mammarytumor virus receptor. Journal of Virology,1998,72:3066–3071
    [27] Hilgard P, Stockert R. Heparan sulfate proteoglycans initiate dengue virus infection ofhepatocytes. Hepatology,2000,32(5):1069-1077.
    [28] Hioe E, Tuen M, Chien C et al. Inhibition of human immunodeficiency virus type1gp120presentation to CD4T cells by antibodies specific for the CD4binding domain of gp120. JVirol,2001,75(22):10950-10956.
    [29] Hong S S, Karayan L, Tournier J, et al. Adenovirus type5fiber knob binds to MHC class Iα2domain at the surface of human epithelial and B lymphoblastoid cells. EMBO J,1997,16(9):2294-2306.
    [30] Horton H M, Burand J P. Saturable attachment sites for polyhedron-derived baculovirus oninsect cells and evidence for entry via direct membrane fusion. J Virol,1993,67(4):1860-1868
    [31] Huang Y H, Huang X H, Zhang J, et al. Subcellular localization and characterization of Gprotein-coupled receptor homolog from lymphocystis disease virus isolated in China. ViralImmunology,2007,20(1):150-159.
    [32] Imajoh M, Yagyu K I, Oshima S I. Early interactions of marine birnavirus infection in severalfish cell lines. Journal of General Virology,2003,84:1809–1816.
    [33] Iwamoto R, Hasegawa O, Lapatra S, et al. Isolation and characterization of the Japaneseflounder (Paralichthys olivaceus) lymphocystis disease virus. J Aquat Anim Health,2002,14:114-123.
    [34] Jon D A, Roya S L. Identification of a putative cell receptor for human cytomegalovirus.Virology,1990,176:337-345
    [35] Lafferty W E, Coombs R W, Benedetti J, et al. Recurrences after oral and genital herpessimplex virus infection. Influences of site of infection and viral type. New England Journal ofMedicine,1987,316:1444–1449.
    [36] Li D F, Zhang M C, Yang H J, Zhu Y B, Xu X. β-integrin mediates WSSV infection. Virology,2007,368:122-132.
    [37] Li L Y, Liu X, Zhang P, et al. Cloning and functional identification of measles virus receptoron marmoset cells. Chin Sci Bull,2002,47(16):1217-1225.
    [38] Li W, Moore M J, Vasilieva N, Sui J et al.Angiotensin-converting enzyme2is a functionalreceptor for SARS coronavirus. Nature,2003,426:450–454.
    [39] Li X X, Suresh K, Mitttal, et al. Bovine a denovirus serotupe3utilizes sialic acid as a cellularreceptor for virus entry. Virology,2009,392:162-168.
    [40] Lin Y L, Lei H Y, Lin Y S, et al. Heparin inhibits dengue2virus infection of five human livercell lines. Antiviral Research,2002,56(1):93-96.
    [41] Liu X Y, Collodi P. Novel form of fibronectin from zebra fish mediates infectioushematopoietic necrosis virus infection. J Virol,2002,76(2):492–498.
    [42] Logan D, Abu-Ghazaleh R, Blakemore W, et a1. Structure of a major immunogenic site onfoot and mouth disease virus. Nature,1993,362:566-568
    [43] Lutwyche P,Exner M M,Hancock R E W. A conserved Aeromo nas salmonicida porinpro-vides protective immunity to rainbow trout[J].Infection and Immunity,1995,63(8):3137-3142.
    [44] Maisner A, Schneider-Schanlies J, Liszewski M K, et al.Binding of measles virus tomembrane (CD46): Importance of disulfide bonds and N-glycans for the receptor function.JVirol,1994,68(10):6299-6304.
    [45] Mateu M G. Anti body recognition of picornaviruses and escape from neutralization:astructural view. Virus Research,1995,38:1-24.
    [46] Matrosovich M, Klenk H D. Natural and synthetic sialic acidcontaining inhibitors ofinfluenza virus receptor binding. Rev Med Virol,2003,13(2):85-97.
    [47] Montgomery R I, Warner M S, Lum B J, et al. Herpes simplex virus-1entry into cellsmediated by a novel member of the TNF/NGF receptor family. Cell,1996,87(3):427-436.
    [48] Muňoz M L, Cisneros A, Cruz J, et al. Putative dengue virus receptors from mosquito cells.FEMS Microbiology Letters,1998,168:251-258.
    [49] Nakajima-Iijima S, Hamada H, Reddy P, et al. Molecular structure of the human cytoplasmicβ-actin gene: interspecies homology of sequences in the introns. Proc Natl Acad Sci USA,1985,82:6133–6137.
    [50] Nemerow G R, Stewart P L. Role of αv Integrins in Adenovirus Cell Entry and GeneDelivery. Microbiology and Molecular Biology Review,1999,63(3):725-734.
    [51] Ostrakhovitch E A, Li SS-C. The role of SLAM family receptors in immune cell signaling [J].Biochemistry and Cell Biology,2006,84(6):832-842.
    [52] Pappin D J, Hojrup P, Bleasby A J. Rapid identification of proteins by peptide-massfingerprinting. Current Biology,1993,3:327–332.
    [53] Perez-Prieto S I, Rodriguez-Saint-Jean S, Garcia-Rosado E, et al. Virus susceptibility of thefish cell line SAF-1derived from gilt-head seabream. Dis Aquat Org,1999,35:149-153.
    [54] Persephone B, Michael B A O. Characterization of lymphocytic choriomeringitisvirus-binding protein(s): a candidate cellular receptor for the virus. J Virol,1992,66:7270-7281.
    [55] Rabilloud T. Proteome research: two-dimensional gel electrophoresis and identificationmethods. Berlin: Springer.2000.
    [56] Rajcani J. Molecular mechanisms of virus spread and virion components as tools ofvirulence. Acta Microbiol Immunol Hung,2003,50(4):407-443.
    [57] Reuter J D, Myc A, Hayes M M, et al. Inhibition of viral adhesion and infection bysialic-acid-conjugated dendritic polymers. Bioconjug Chem,1999,10(2):271-278.
    [58] Russell R J, Stevens D J, Haire L F, et al. Avian and human re2ceptor binding byhemagglutinins of influenza A viruses. Glycoconj,2006,23:85-92.
    [59] Ryu C J, Cho D Y, Gripon P, et al. An80-kilodalton protein that binds to the pre-S1domainof hepatitis B virus. J Virol,2000,74(1):110-116.
    [60] Salas-Benito J S, Del-Angel R M. Identification of two surface proteins from C6/36cells thatbind Dengue type4virus. J Virol,1997,71(10):7246-7252.
    [61] Samalecos C P. Anslysis of the Structure of Fish Lymphocystis Disease Virions from SkinTumours of Pleuronectes. Arch Virol,1988,91:1-10.
    [62] Sano T, Fukuda H, Komatsu T. Thermal effect on lymphocystis of flounder (Paralichthysolivaceus), International symposium on Aquatic Animal Health: Program and Abstracts. Univ.of California, School of Veterinary Medicine, Davis, CA (usa),1994. PP224.
    [63] Schneider-Schaulies J. Cellular receptors for viruses: links to tropism and pathogenesis.Journal of General Virology,2000,81:1413-1429.
    [64] Seddiki N, Saffar L A. A monoclonal antibody directed to sulfatide inhibits the binding ofhuman immunodeficiency virus type1(HIV-1) envelope glycoprotein to macrophages but nottheir infection by the virus. Biochim Biophys Acta,1994,1225(3):289-296.
    [65] Shukla D, Liu J, Blaiklock P, Shworak N W, Bai X, Esko J D, Cohen G H, Eisenberg R J,Rosenberg R D, Spear P G. A novel role for3-O-sulfated heparan sulfate in herpes simplexvirus1entry. Cell,1999,99:13–22.
    [66] Soma D, Antita D, et al. Heat shock protein70on Neuro2a cell is a putative for Japaneseencephalitis virus. Virology,2009,385:47-57.
    [67] Sommerfelt M. Retrovirus receptors. J. Gen. Virol,1999,80:3049–3064.
    [68] Spear P G, Eisenberg R J, Cohen G H. Three classes of cell surface receptors foralphaherpesvirus entry. Virology,2000,275:1–8.
    [69] Sritunyalucksana K, Wannapapho W, Lo C F, Flegel T W. PmRab7is a VP28-binding proteininvolved in white spot syndrome virus infection in shrimp. J Virol,2006,80(21):10734–10742.
    [70] Ssaengchan S, Amornrat P. Binding of shrimp cellular proteins to Taura syndrome viralcapsid proteins VP1, VP2and VP3. Virus Research,2006,122:69-77.
    [71] Stevenson R A, Huang J A, Studdert M J, et al. Sialic acid acts as flureceptor for equinerhinitis A virus binding and infection. J Gen Virol,2004,85:2535-2543.
    [72] Superti F, Hauttecoeur B, Morelec M J, et al. Involvement of gangliosides in rabies virusinfection. J Gen Virol,1986,67:47-56.
    [73] Tatsuo H,Ono N,Tanka K,et al. SLAM (CDw150) is a cellular receptor for measles virus.Nature,2000,406:893-897.
    [74] Tatsuo H,Ono N, Yanagi Y. Morbilliviruses use signaling lymphocyte activation molecules(CD150) as cellular receptors. J Virol,2001,75:5842-5850.
    [75] Thepparit C, Smith D R. Serotype-specific entry of Dengue virus into liver cells:identification of the37-kilodalton/67-kilodalton high-affinity laminin receptor as a denguevirus serotype1receptor. J Virol,2004,78:12647-12656.
    [76] Thomas LL. The recognition event between virus and host cell receptor: a target for antiviralagents. J Gen Virol,1990,71:751-766.
    [77] Tidona C A, Darai G. The complete DNA sequence of lymphocystis disease virus. Virology,1997,230:207-216.
    [78] Tio P H, Jong W W, Cardosa M J, et al. Two dimensional VOPBA reveals laminin receptor(LAMR1) interaction with dengue virus serotypes1,2and3. J Virol,2005,2(1):25-36.
    [79] Tong S L, Li H, Miao H Z, et al. The establishment and partial characterization of acontinuous fish cell line Fg-9307from the gill of flounder Paralichthys olivaceus.Aquaculture,1997,156:327-333
    [80] Tonganunt M, Saelee N, Chotigeat W, Phongdara A. Identification of a receptor for activatedprotein kinase C1(Pm-RACK1), a cellular gene product from black tiger shrimp (Penaeusmonodon) interacts with a protein, VP9from the white spot syndrome virus. Fish&ShellfishImmunology,2009,26:509-514.
    [81] Villar E, Barroso I M. Role of sialic acid2containing molecules in paramyxovlrus ent ry into the host cell: A minireview. Glycoconj,2006,23:5-17.
    [82] Wittig I, Braun H P, Schagger H. Blue Native PAGE. Nature protocols,2006,1:418-428.
    [83] Wolf K, Carlson C P. Multiplication of lymphocystis virus in the bluegill (Lepomismacrochirus). Ann NY Acad Sci,1965,126:414-419.
    [84] Xie X, Yang F. Interaction of white spot syndrome virus VP26protein with actin. Virology,2005,336:93–99.
    [85] Xing J, Zhan W B, Zeng X H, Cheng S F. Detection of lymphocystis disease virus infectionto flounder gill cells in vitro by monoclonal antibodies. High Technol Letters,2006,12:103-108.
    [86] Xu H, Yan F, Deng X B, Wang J C, Zou T T, Ma X, Zhang X, Qi Y P. he interaction of whitespot syndrome virus envelope protein VP28with shrimp Hsc70is specific andATP-dependent. Fish&Shellfish Immunology,2009,26:414-421.
    [87] Zago A, Spear P G. Differences in the N termini of herpes simplex virus type1and2gDs thatinfluence functional interactions with the human entry receptor Nectin-2and an entryreceptor expressed in chinese hamster ovary cells. J Virol,2003,77(17):9695-9699.
    [88] Zhan WB, Li YQ, Sheng XZ, et al. Detection of lymphocystis disease virus in Japaneseflounder Paralichthys olivaceus and marine teleosts from northern China. Chin J Oceanol andLimnol,2010,28(6):1213-1220.
    [89] Zhan WB, Wang YH, Fryer JL, et al. Production of monoclonal antibodies (MAbs) againstwhite spot syndrome virus (WSSV). J Aquat Anim Health,1999,11:17-22.
    [90] Zhao Z, Shi Y, Ke F, et al. Constitutive expression of thymidylate synthase from LCDV-Cinduces a transformed phenotype in fish cells. Virology,2007,372:118-126.
    [91] Zhang Q Y, Ruan H M, Li Z Q, Yuan X P, Gui J F. Infection and propagation of lymphocystisvirus isolated from the cultured flounder Paralichthys olivaceus in grass carp cell lines. DisAquat Org,2003,57:27-34
    [92] Zhang, Q.Y., Xiao.F., Xie, J., Li, Z.Q., Gui, J.F., Complete genome sequence of lymphocystisdisease virus isolated form China. J. Virology.7.2004(8):6982-6994.
    [93]程顺峰.牙鲆淋巴囊肿病毒单克隆抗体的研制及应用:[博士学位论文].青岛:中国海洋大学,2006.
    [94]常团结,朱桢.植物凝集素及其在抗虫植物基因工程中的应用.遗传,2002,24(4):493-500.
    [95]常藕琴,石存斌,马红,等.军曹鱼淋巴囊肿的病理学研究.中国水产科学,2006,13(6):973-97.
    [96]杜程鹏,汪沐,绳秀珍,等.淋巴囊肿病毒27.8ku受体蛋白在牙鲆组织中的分布.水产学报,2012,36(3):375-382.
    [97]刁菁.牙鲆淋巴囊肿病毒黏附蛋白及受体蛋白的研究:[博士学位论文].青岛:中国海洋大学,2008.
    [98]刁菁,战文斌,绳秀珍.牙鲆淋巴囊肿病毒靶器官上病毒结合蛋白的鉴定.中国海洋大学学报,2009,39(5):913-918.
    [99]独军政,常惠芸,高闪电,等.病毒受体及其研究方法进展.生物技术通讯,2007,05:856-858.
    [100]郭爱珍,陆承平.病毒的细胞膜受体.中国病毒学,1997,12(4):295-301.
    [101]郭爱珍,陆承平.犬瘟热病毒细胞膜受体的鉴定.病毒学报,2000,16(2):155-157.
    [102]郭进军,黄爱龙.病毒受体的研究方法进展.国外医学:流行病学传染病学分册.2004,31:173-175.
    [103]巩俊明,段小波,周晓曼,母志海,董浩,胡桂学.病毒细胞受体研究方法的比较.中国畜牧兽医,2011,38(12):209-213.
    [104]陆春玲,黄倢,李赟.动物病毒受体阻断剂的研究进展.中国水产科学,2004,11(1):82-88.
    [105]陆荫英,陈天燕,成军,等.乙型肝炎病毒X蛋白与去唾液酸糖蛋白受体2突变体相互作用的研究.世界华人消化杂志,2003,11(8):1126-1130.
    [106]吕宏旭,汪岷,李红岩,等.利用牙鲆鳃细胞系分离和培养淋巴囊肿病毒.青岛海洋大学学报,2003,33(2):233-239.
    [107]李强.牙鲆免疫球蛋白单克隆抗体的研制及其在牙鲆淋巴囊肿病研究中的应用:[博士学位论文].青岛:中国海洋大学,2007.
    [108]李琼,岳志芹,凌宗帅,等.淋巴囊肿病毒环介导等温扩增检测方法的建立与应用.华中农业大学学报,2009,28(3):341-345.
    [109]刘美德,赵彤言,董言德等.登革2型病毒在C6/36细胞上受体蛋白的鉴定.寄生虫与医学昆虫学报,2003,10(4):233-235.
    [110]刘小玲,严安生.黄颡鱼外周血细胞的组成及其显微与超显微结构.华中农业大学学报,2006,25:659-663
    [111]莽克强.基础病毒学.北京:化学工业出版社,2005.85~86.
    [112]曲凌云,孙修勤,张进兴.养殖牙鲆淋巴囊肿病的电镜观察.青岛海洋大学学报,2000,30(2):105-110.
    [113]绳秀珍,战文斌.鱼类淋巴囊肿病毒靶器官的组织病理研究.中国海洋大学学报,2006,36(5):749-753.
    [114]石锐,孙凯,王秀荣,等.生物芯片在疾病诊断中的应用.畜牧兽医科技信息,2005,5:7-8.
    [115]宋晓玲,黄倢,杨冰,史成银,张立敬.牙鲆淋巴囊肿病的病理和病原分离.中国水产科学,2003,10(2):117-120.
    [116]孙修勤,洪旭光,张进兴,张士璀,汪敏,童尚亮.牙鲆淋巴囊肿病毒在牙鲆鳃细胞系FG-9307中的增殖.高技术通讯,2002,12:94-96.
    [117]孙修勤,黄倢,刘允坤,等.牙鲆淋巴囊肿病的诊断技术研究.高技术通讯,2003,1:89-94.
    [118]孙修勤,郑风荣,李继业,等.牙鲆淋巴囊肿病毒主要衣壳蛋白基因片段真核表达载体的构建、表达与免疫效果评价.高技术通讯,2006,16(7):740-745.
    [119]王冰,柯丽华,江红,等.从随机噬菌体肽库中筛选抗草鱼出血病病毒多肽的研究.中国病毒学,1998,13(4):351-357.
    [120]王向东.对虾白斑综合症病毒(WSSV)细胞膜受体及高分子量蛋白的初步研究:[硕士学位论文].青岛:中国海洋大学,2004
    [121]吴金炉,曾志南.鱼类病毒病与鱼类病毒疫苗.海洋科学,1999,4:37-42
    [122]徐宋娟,邢婧,程顺峰,等.应用免疫技术检测牙鲆组织内的淋巴囊肿病毒.水产学报,2004,28:101-105.
    [123]徐晓丽.对虾白斑症病毒和鱼类淋巴囊肿病毒检测抗体芯片的制备与应用:[博士学位论文].青岛:中国海洋大学,2011.
    [124]战文斌.水产动物病害学.北京:中国农业出版社,2004.
    [125]赵青,李冬.病毒受体及其研究现状.动物医学进展,2009,30(7):95-100.
    [126]张志栋.用对虾血细胞单克隆抗体研究分析白斑症病毒的受体:[博士学位论文].青岛:中国海洋大学,2006.
    [127]张淑琴,马学恩,周建华.病毒受体研究进展.中国预防兽医学报,2008,30(7):575-578.
    [128]郑风荣,刘洪展,张进兴,等.脂质体对牙鲆淋巴囊肿病毒核酸疫苗免疫活性的影响.高技术通讯,2006a,16(6):643-647.
    [129]郑风荣,孙修勤,张进兴,等.淋巴囊肿病毒核酸疫苗在牙鲆体内的表达及免疫效果评价.高技术通讯,2007,17(8):863-868.
    [130]郑风荣,孙修勤,刘洪展,等.牙鲆淋巴囊肿病毒核酸疫苗的安全性研究.高技术通讯,2006b,16(1):106-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700