呫吨类化合物的光敏生物活性、光降解及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光敏化合物在环境工程上有着重要的应用潜力,在污水处理、环境友好型农用化学品和水华控制上都能发挥重要的作用。由于植物源光敏化合物不稳定、含量低、效果差等一系列固有的缺陷,本论文着重研究了一类化学合成的光敏化合物——呫吨类化合物的光敏生物活性、光降解及开发利用。
     呫吨类化合物已经应用于实际生产和生活中,但对其光敏生物活性和光降解机理的研究还很不系统和充分。同时,文献对光敏化合物的活性测试的方法和结论也千差万别。通过前人的研究无法全面评价该类化合物的光敏活性的构效关系以及其生物安全性,这对于全面开发呫吨类化合物形成了很大的局限性虼耍韭畚慕?研究这类化合物的分子结构规律,生物活性规律和光降解规律,为实际应用提供理论基础。同时,本论文还研究了呫吨类化合物对铜绿微囊藻的生长以及叶绿素a含量的影响,探讨了其应用为环境友好型灭藻剂的可能性。研究成果主要如下: 1.呫吨类化合物的物化性质的变化规律为:最大吸收峰在490 nm到539 nm之间,随着取代卤原子的相对原子质量的增加或者卤原子数的增加,最大吸收峰朝长波方向移动;供试呫吨类化合物亲脂性从大到小依次为FlI2>FlBr2>Na2FlBr4Cl4>Na2FlI4>Na2FlBr4>Na2Fl,其中亲脂性最大的FlI2的正辛醇-水分配能力是Na2Fl的正辛醇-水分配能力的约32倍;供试呫吨类化合物的相对单线态氧产率从大到小依次为Na2FlBr4Cl4(1)>Na2FlI4(0.92)>Na2FlBr4(0.81)>FlI2(0.69)>FlBr2(0.67)>Na2F(0.02)。
     2.呫吨类化合物的生物活性的变化规律为:未经光照的条件下,呫吨类化合物的对同种待测微生物的固有生物活性基本相同,说明固有毒性可能主要决定于化合物分子的母核结构,其卤素取代基团对其影响较小;经实验光源照射下,所测MLC值明显低于未经光照条件下的值,表明呫吨类化合物对三种微生物的光敏活性明显强于对其相应的固有活性;呫吨类化合物对革兰氏阳性菌能发挥较大的光敏活性。由物化性质和生物活性的测试结果可知:光敏生物活性的测试与单线态氧的测试结果保持了高度的一致性,用单线态氧的产率这个指标来评价对微生物的光敏活性比用亲脂亲水性指标更为有效。协同作用的测试结果显示:Na2Fl的对其他五种呫吨类化合物表现出了明显的协同促进作用;当亲脂性化合物与亲水性化合物共同作用时,协同作用效果也十分明显。
     3.呫吨类化合物的光降解规律为:在水溶液中的光降解是假一级动力学化学反应,半衰期在5小时到7小时之间,属于同一个数量级。脂溶性高的化合物比水溶性高的化合物半衰期长,较难降解。随着反应时间的增加,化合物最大吸收峰处的光吸收值逐渐减小,但没有明显的新的吸收峰出现,这说明在反应过程中部分光敏化合物发生完全降解,成为小分子化合物或离子;六种呫吨类化合物在硅胶基质的光降解也符合假一级动力学化学反应的规律,半衰期在1小时到2小时之间。在相同的实验条件下,同种呫吨类化合物在水溶液中降解的半衰期均为其在硅胶基质上降解的半衰期的4倍左右。
     4.对光降解中间产物和终产物的研究结果显示:光敏试验中C20H6O5Br4Na2能迅速而完全降解为小分子化合物CO2、HBr、NaBr和H2O等;以酵母菌为测试菌,证实了在降解过程中,中间产物和终产物的光敏生物活性也在不断降低。实验证实,呫吨类化合物在自然条件下能在发挥光敏生物活性的同时迅速降解为小分子化合物,残留量少,同时,其降解中间产物和终产物的光敏生物活性也迅速降低,对环境的潜在风险很小。
     5.呫吨类化合物对铜绿微囊藻的测试结果显示:供试样品中对供试藻种活性最强的是Na2FlBr4Cl4,其MLC值为在光照条件下为40μM,在无光条件下为90μM;通过Na2FlBr4Cl4对铜绿微囊藻的生长量以及叶绿素a含量的影响的研究发现,在较低的浓度范围内,呫吨类化合物对铜绿微囊藻的生长没有太大影响,而在中高的浓度范围内,则能产生显著的抑制效应。由于呫吨类化合物能在自然环境中迅速降解,残留度低,显示了一定的作为环境友好型灭藻剂开发的潜能。
Photosensitizers have great potentials in environmental engineering, such as wastewater treatment, environment friendly agrochemicals and algae bloom control. Because vegetation sourced photosensitizers are unstable, low concentration in plant and insignificant effect, we put our emphasis on a kind of chemical photosensitizers - xanthene.
     Xanthene chemicals have been used in production and life. However, the research of their photoactivity and photodegradation is not systemic and adequate. At the same time, the methods and results differ in thousands ways from different research. This restricts the full application of this kind of chemical. Thus, this study focuses on the rules of molecular structure, photo bioactivity and photodegradation, which will provide the theoretics basis for application. We also research on the effect of xanthene chemicals to the growth of Microcystis aeruginosa and the content of chlorophyll a, and discuss on the possibility for the xanthene chemicals to be developed as algaecide. The results of experiments are as per below.
     1. The rules of physiochemical characters are: In vitro physicochemical tests showed that the max absorption wavelength of the photosensitizers is between 490 to 539 nm, which coincides with the spectral output of the sunlight; The sequence of lipophilicity of xanthene derivatives is: FlI2(1.21)>FlBr2(1.01)>Na2FlBr4Cl4(-0.21)>Na2FlI4(-0.24)>Na2FlBr4(-0.25)>Na2Fl(-0.28); Each of the xanthene derivatives was able to photosensitize the production of singlet oxygen, in the order of Na2FlBr4Cl4(1)>Na2FlI4(0.92) > Na2FlBr4(0.81) > FlI2(0.69) > FlBr2(0.67) > Na2F(0.02). With the increasing number of halogen substituents, the singlet oxygen yields increased and the phototoxic activity increased too.
     2. The rules of photo bioactivities are: Without illumination, the tested xanthene derivatives showed almost the same level of inherent toxicity to the same organism, which showed the inherent toxicity of xanthene derivatives were primarily dependent on the structure of parent molecule. Upon illumination, the photosensitizers showed obvious phototoxicity to all organisms. The xanthene derivatives showed stronger phototoxicity to Gram-positive bacteria. With the increasing number of halogen substituents, the singlet oxygen yields increased and the phototoxic activity increased too. There was no obvious correlation between relative lipophilicity and activity in the current study. Na2Fl showed obvious synergetic action to other xanthene derivatives; it also show obvious synergetic action as combined lipophilic xanthene chemical and hydrophilic xanthene chemical. The synergetic action for xanthene derivatives is more effective to Escherichia coli that the other two microorganisms.
     3. The rules of photodegradation are: The degradation of xanthene derivatives in solution and on the surface of silica TLC plates is pseudo first-order kinetic reaction. The half life of xanthene derivatives in water is between 5 hours to 7 hours, and on the surface of silica TLC plates is between 1 hour to 2 hours. The half life of lipophilic xanthene derivatives is longer than that of hydrophilic xanthene derivatives.
     4. The research of the intermediate products and final products during photodegradation shows: The complete degradation of photosensitizers to CO2 is of great environmental significance. During photodegradation test, the TOC content of C20H6O5Br4Na2 decreased around 50% during the 8 hour irradiation period. Irradiation also led to a gradual increase in the number of microorganisms that could survive. This means, when subject to light, the photosensitizer solutions degraded rapidly and the phototoxicity of the residues disappeared quickly. Actually, the energy density in the natural environment is much stronger than that in the experiment. Thus, the photosensitizers are expected to degrade more rapidly in the environment.
     5. Na2Fl shows no obvious algaecidal activity with or without illumination, however, the other five xanthene derivatives shows approximately similar inherent toxicity and phototoxicity. Na2FlBr4Cl4 shows the maximum algaecidal activity, and the MLC value is 40μM with illumination and 90μM without illumination. From the research on the Na2FlBr4Cl4 against the growth of algae and the content of chlorophyll a, we obtains that xanthene derivatives have little effect on the growth of algae at low concentration and can restrain the growth of algae at middle and high concentration. Because xanthene derivatives can degrade rapidly in the natural environment, thus, they can be developed as algaecide. The mechanism to kill the algae needs further research.
引文
[1] Dougherty, T.J., Gomer, C.J., Henderson, B.W., et al., Photodynamic therapy, Journal of the National Cancer Institute, 90 (1998): 889-905.
    [2]徐国祥,实用激光医学[M],广州:广东高等教育出版社, 1990.
    [3]金曼文,宋友才,恶性肿瘤的激光荧光光谱诊断,激光杂志, 12 (1991): 148-150.
    [4] Chamberlain, S.G., Photosensitivity and scanning of silicon image detector arrays, IEEE Journal of Solid-State Circuits, 4 (1669): 333-342.
    [5] Foote, C.S., Future directions and applications in photodynamictherapy, SPIE Institute Series 1, S6 (1990): 115-126.
    [6] Foote C.S., Definition of type I and type II photosensitized oxidation, Photochemistry and Photobiology, 54 (1991): 659-661.
    [7] Schmidt-Erfurth, U., Hasan, T., Mechanisms of action of photodynamic therapy with verteporon for the treatment of age-related macular degeneration, Survey of Ophthalmology, 45 (2002): 195-214.
    [8] Kurwa, H.A., Barlow, R.J., The role of photodynamic therapy in dermatology, Clinical and Experimental Dermatology, 24 (1999): 143-148.
    [9] Mashberg, A., Final evaluation of tolonium chloride rinse for screening of high-risk patients with asymptomatic squamous carcinoma, The Journal of the American Dental Association, 106 (1983): 319-323.
    [10] Wainwright, M., The emerging chemistry of blood product disinfection. Chemical Society Reviews, 31 (2002): 128-136.
    [11] Hopper, C., Photodynamic therapy: a clinical reality in the treatment of cancer, The Lancet Oncology, 1 (2000): 212-219.
    [12] Svaasand, L.O., Gomer, C.J., Morinelli, E., On the physical rationale of photodynamic therapy. Future directions and applications in pharmacodynamic therapy, SPIE Institute Series 1, S6 (1990): 233-248.
    [13] Dougherty, T.J., Marcus, S.L., Photodynamic Therapy, European Journal of Cancer, 10 (1992): 1734-1742.
    [14]惠令凯,张晶如,陈建华等, HpD在诊治癌症过程中的光敏机理,中国激光, 9 (1985): 551-554.
    [15] Wesley, M.S., Cynthia, M.A., Johan E., Photodynamic therapeutics: basic principles and clinical applications, 4 (1999): 507-517.
    [16] Ortha, K., Beckb, G., Genzea, F., Methylene blue mediated photodynamic therapy in experimental colorectal tumors in mice, Journal of Photochemistry and Photobiology B: Biology, 57 (2000): 186-192.
    [17]汪守建,王寿武,刘德启等,亚甲基蓝光敏氧化处理造纸废水研究,工业安全与环保, 30(2004): 60-64.
    [18] Lv, K., Xu, Y., Effects of polyoxometalate and fluride on adsorption and photocatalystic degradation of organic dye X3B on TiO2: the difference in the production of reactive species, Journal of Physical Chemistry B, 110(2006): 6204.
    [19]滕业方,吖啶橙非均相光敏氧化处理垃圾渗滤液的研究,江苏环境科技, 17(2004): 180-183.
    [20]龚丽芬,余彬彬,陈曦,厦门大学学报(自然科学版), 47(2008): 56-58.
    [21]王烈,高颖,焰红染料的光解代谢与毒性实验,中国公共卫生, 16 (2000): 601-602.
    [22]马金石,成昊,张驿等,新型绿色农药光活化农药,化学进展, 11(1999): 341-347.
    [23]周卫平,光敏杀虫剂——焰红染料B,农药译丛, 20 (1998): 24-27.
    [24] Thameur, B.A., Giulio J., Sunlight-activated insecticides: historical background and mechanisms of phototoxic activity, Insect Biochemistry and Molecular Biology, 30 (2000): 915-925.
    [25]邱勇,宋心琦,光活化农药,化学通报, 4 (1993): 21-24.
    [26]唐有祺,当代化学前沿[M],北京:中国致公出版社, 1997.
    [27] Chen, W.S., Chen, Y.T., Wan, X.Y., et al., Die Struktur des Hypocrellins und seines Photooxidationsproduktes Peroxyhypocrellin, Liebigs Annalen der Chemie, 31 (1981):1880-1885.
    [28] Rebeiz, C.A., Reddy, K.N., Nandihalli, U.B., Tetrapyrrole-dependent photodynamic herbicides, Photochemistry and Photobiology, 52 (1990): 1099-1117.
    [29] Downum, K.R., Light Activated Pesticides Control, ACS Symposium Series 443 (1987), Washington DC.
    [30] Heitz, J.K., Downum, K.R., Light Activated Pesticides, ACS Symposium Series 339 (1995), Washington DC.
    [31]徐汉虹,田永清,光活化农药[M],北京:化学工业出版社, 2008.
    [32] Regel, R.H., Ferris, J.M., Ganf, G., Algal esterase activity as a biomeasure of environmental degradation in a freshwater creek, Aquatic Toxicology, 59 (2002): 209-223.
    [33] Halling-Surensen, B., Algal toxicity of antibacterial agents used in intensive farming, Chemosphere, 40 (2000): 731-739.
    [34] Hesse, K., Dittmann, E., Borner T., et al., Consequences of impaired microcystin production for light-dependent growth and pigmentation of Microcystis aeruginosa PCC 7806, FEMS Microbiology Ecology, 37 (2001): 39-43.
    [35]廖祥儒,植物光毒素作用机理,生物化学与生物物理进展, 22 (1995): 420-422.
    [36] DeRosa, M.C., Crutchley, R.J., Photosensitized singlet oxygen and its applications, Coordination Chemistry Reviews, 233-234 (2002): 351-371.
    [37] Van der Meulen, F.W., Ibrahim, K., Sterenborg, H.J.C.M., et al., Photodynamic destruction of Haemophilus parainfluenzae by endogenously produced porphyrins, Journal of Photochemistry and Photobiology B: Biology, 40 (1997): 204-208.
    [38] Santos, P.F., Reis, L.V., Almeida, P., et al., Singlet oxygen generation ability of squarylium cyanine dyes, Journal of Photochemistry and Photobiology A: Chemistry, 160 (2003): 159-161.
    [39] Gupta, M., Owano, T., Baer, D.S., et al., Quantitative determination of singlet oxygen density and temperature for Oxygen-Iodine Laser Applications, Chemical Physics Letters, 400 (2004): 42-46.
    [40] Bourre, L., Thibaut, S., Fimiani, M., et al., In vivo photosensitizing efficiency of a diphenylchlorin sensitizer: interest of a DMPC liposome formulation, Pharmacological Research, 47 (2003): 253-261.
    [41] Gullner, G., Dodge, A.D., Effect of singlet oxygen generating substances on the ascorbic acid and glutathione content in pea leaves, Plant Science, 154 (2000): 127-133.
    [42] Navaratnam, S., Parsons, B.J., Kinetic and spectral properties of rhodamine 6G free radicals: a pulse radiolysis study, Journal of Photochemistry and Photobiology A: Chemistry, 153 (2002): 153-162
    [43] Bagrov, I., Belousova, I., Danilov, O., et al., Photoinduced quenching of the luminescence of singlet oxygen in fullerene solutions, Optics and Spectroscopy, 102 (2007): 52-59.
    [44] Mikata, Y., Takagi, S., Tanahashi, M., et al., Detection of 1270 nm Emission from Singlet Oxygen and Photocytotoxic Property of Sugar-Pendant [60] Fullerenes, Bioorganic & Medicinal Chemistry Letters, 13 (2003): 3289-3292.
    [45] Seed, J.L., Specht, K.G., Dahl, T.A., et al., Singlet oxygen induced mutagenesis of benze [α] pyrene derivatives, Photochemistry and Photobiology, 50 (1989): 625-632.
    [46] Nivsarkar, M., identification of alpha-terthienyl phototoxicity, Current Science, 76 (1999): 1391-1393.
    [47] Jiang, Z.S., Xu, H.H., Wan, S.Q., et al., Comparative effects of two photosensitive compounds on superoxide dismutase avtivity in Spodoptera litura larvae, Acta Entomologica Sinica, 6 (1999): 253-258.
    [48] Girotti, A.W., Photosensitised oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms, Journal of Photochemistry and Photobiology, B: Biology, 63 (2001): 103-113.
    [49] Kawanishi, S., Hiraku, Y., Oikawa, S., et al., Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and ageing, Mutation Research, 488 (2001): 65-76.
    [50] Wilson, M., Burns, T., Pratten, J., et al., Killing of Streptococcus sanguis in biofilms using alight-activated antimicrobial agent, Journal of Antimicrobial Chemotherapy, 37 (1996): 377-381.
    [51] Davies, M.J., Truscott, R.J.W., Photo-oxidation of proteins and its role in caractogenesis. Journal of Photochemistry and Photobiology, B: Biology, 63 (2001): 114-125.
    [52] Pooler, J., Valenzo, D.P., Physicochemical determinants of the sensitizing effectiveness for photooxidation of nerve membranes by Euorescein derivatives, Photochemistry and Photobiology, 30 (1979): 491-498.
    [53] Lewis, L.M., Guilherme, L., Effect of dye aggregation on triarylmethane-mediated photoinduced damage of hexokinase and DNA, Journal of Photochemistry and Photobiology, B: Biology, 67 (2002): 139-148.
    [54] Sasaki, Y.F., Kawaguchi, S., Kamaya, A., et al., The comet assay with 8 mouse organs: results with 39 currently used food additives, Mutation Research, 519 (2002): 103-119.
    [55] Chang, C.C., Yang, Y.T., Yang, J.C., et al., Absorption and emission spectral shifts of rose bengal associated with DMPC liposomes, Dyes and Pigments, 79 (2008): 170-175.
    [56] Kantevari, S., Chary, M.V., Rudra Das, A.P., et al., Catalysis by an ionic liquid: highly efficient solvent-free synthesis of aryl-14H-dibenzo[a.j]xanthenes by molten tetrabutylammonium bromide under conventional and microwave heating, Catalysis Communications, 9 (2008): 1575-1578.
    [57] Tuite, E.M., Kelly, J.K., Photochemical interactions of methylene blue and analogues with DNA and other biological substrates. Journal of Photochemistry and Photobiology, B: Biology, 21 (1993): 103-124.
    [58] Sadzuka, Y., Tokutomi, K., Iwasaki, F., et al., The phototoxicity of photofrin was enhanced by PEGylated liposome in vitro, Cancer Letters, 241 (2006): 42-48.
    [59] Foote, C.S., Decnition of type I and type II photosensitized oxidation, Journal of Photochemistry and Photobiology, B: Biology, 40 (1997): 204-208.
    [60] Stuart, B.K., Alan J.S., Matthew C., et al, Environmental Entomology, 23 (1994): 738-743.
    [61] Agostinis, P., Vantieghem, A., Merievede, W., et al., Hypercin in cancer treatment: more lighton the way. The International Journal of Biochemistry & Cell Biology, 34 (2002): 221-241.
    [62] Sternberg, E.D., Dolphin, D., Bruckner, C., Porphyrin-based photosensitizers for use in photodynamic therapy, Tetrahedron, 54 (1998): 4151-4202.
    [63] Saito, T.K., Takahashi, M., Muguruma, H., et al., Phototoxic process after rapid photosensitive membrane damage of 5,5''-bis(aminomethyl)-2,2':5',2'' -terthiophene dihydrochloride, Journal of Photochemistry and Photobiology, B: Biology, 61 (2001): 114-121.
    [64] Merchat, M., Spikes, J.D., Bertoloni, G., et al., Studies on the mechanism of bacteria photosensitization by meso-substituted cationic porphyrins, Journal of Photochemistry and Photobiology B: Biology, 35 (1996): 149-157.
    [65] Afonso, S.G., Enriques De Salamanca, R., Batlle, A.M., The photodynamic and non-photodynamic actions of porphyrins, Brazilian Journal of Medical and Biological Research, 32 (1999): 255-266.
    [66] Lasocki, K., Szpakowska, M., Grzybowski, J., et al., Examination of antibacterial activity of the photoactivated arginine haematoporphryn derivative, Pharmacological Research 39 (1999): 181-184.
    [67] Livermore, D.M., Antibiotic resistance in staphylococci, International Journal of Antimicrobial Agents, 16 (2001): 3-10.
    [68] Malik, Z., Hanania, J., Nitzan, Y., et al., Bactericidal effects of photoactivated porphyrins - an alternative approach to antimicrobial drugs, Journal of Photochemistry and Photobiology, B: Biology, 5 (1990): 281-293.
    [69] Malik, Z., Ladan, H., Nitzan, Y., Photodynamic activation of Gram-negative bacteria: problems and possible solutions, Journal of Photochemistry and Photobiology, B: Biology, 14 (1992): 262-266.
    [70] Hogan, D., Kolter, R., Why are bacteria refractory to antimicrobials, Current Opinion in Microbiology, 5 (2002): 472-477.
    [71] Wainwright, M., Phoenix, D.A., Gaskell, M., et al., Photobactericidal activity of methylene blue derivatives against vancomycin-resistant Enterococcus spp., Journal of AntimicrobialChemotherapy, 44 (1999): 823-825.
    [72] Cincotta, L., Foley, J.W., Cincotta, A.H., Novel red absorbing benzo phenoxazinium and benzo[a]phenothiazinium photosensitizers: in vitro evaluation, Photochemistry and Photobiology, 46 (1987): 751-758.
    [73] Minnock, A., Vernon, D.I., Schofield, J., et al., Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photo inactivate both Gram-negative and Gram-positive bacteria, Journal of Photochemistry and Photobiology, B: Biology, 32 (1996): 159-164.
    [74] Ben, A.T., Tronchinl, M., Bortolotto, L., et al., Porphyrins and related compounds as photoactivatable insecticides 1. Phototoxic activity of hematoporphyrin toward Ceratitis copitata and Bactracera oleas, Photochemistry and Photobiology, 67 (1998): 206-211.
    [75] Nitzan, Y., Gutterman, M., Malik, Z., et al., Inactivation of Gram-negative bacteria by photosensitised porphyrins. Photochemistry and Photobiology, 55 (1992): 89-96.
    [76] Pal, M.K., Ghosh, T.C., Induction of metachromasia and circular dichroism in the dye 1,9-dimethyl methylene blue by S. aureus cell wall teichoic acid. Indian Journal of Biochemistry & Biophysics, 27 (1990): 176-178.
    [77] Phoenix, D. A., Harris. F., Light activated compounds as antimicrobial agents - patently obvious? Recent Patents on Anti-infective Drug Discovery, 1 (2006): 181-199.
    [78] Szpakowska, M., Reiss, J., Graczyk, A., et al., Susceptibility of Pseudomonas aeruginosa to a photodynamic elect of the arginine hematoporphyrin derivative. International Journal of Antimicrobial Agents, 8 (1997): 23-27.
    [79] Wakayama, Y., Takagi, M., Yano, K., Photosensitized inactivation of E coli cells in toluidine blue-light system, Photochemistry and. Photobiology, 32 (1980): 601-605.
    [80] Wainwright, M., Photodynamic antimicrobial chemotherapy (PACT). Journal of Antimicrobial Chemotherapy, 42 (1998): 13-28.
    [81] Wainwright, M., Phoenix, D.A., Marland, J., et al., A study of photobactericidal activity in the phenothiazinium series. FEMS Immunology and Medical Microbiology, 19 (1997): 75-80.
    [82] Soukos, N.S., Wilson, M., Burns, T., et al., Photodynamic effects of toluidine blue on humanoral keratinocytes and brioplasts and Streptococcus sanguis evaluated in vitro. Laser Surgery and Medicine, 18 (1996): 253-259.
    [83] Komeric, N., Wilson, M., Poole, S., The effect of photodynamic action on two virulence factors of Gram-negative bacteria. Photochemistry and Photobiology, 72 (2000): 676-680.
    [84] Benavides, T., Mitjans, M., Martinez, V., et al., Assessment of primary eye and skin irritants by in vitro cytotoxicity and phototoxicity models: an in vitro approach of new arginine-based surfactant-induced irritation, Toxicology, 197 (2004): 229-237.
    [85] Bourre, L., Simonneaux, G., Ferrand, Y., et al., Synthesis and in vivo evaluation of a diphenylchlorin sensitizer for photodynamic therapy, Journal of Photochemistry and Photobiology B: Biology, 69 (2003): 179-192.
    [86] Shin, H.J., Lee, E.K., Lee, J.H., et al., Eosin interaction of K-synuclein leading to protein self-oligomerization, Biochimica et Biophysica Acta, 1481 (2000): 139-146.
    [87] Yamamoto, T., Tsurumaki, Y., Takei, M., et al., In vitro method for prediction of the phototoxic potentials of fluoroquinolones, Toxicology in Vitro, 15 (2001): 721-727.
    [88] Viola, G., Miolo, G., Vedaldi, D., et al., In vitro studies of the phototoxic potential of the antidepressant drugs amitriptyline and imipramine, Il Farmaco, 55 (2000): 211-218.
    [89] Saco-Alvarez, L., Bellas, J., Nieto, O., et al., Toxicity and phototoxicity of water-accommodated fraction obtained from Prestige fuel oil and Marine fuel oil evaluated by marine bioassays, Science of The Total Environment, 394 (2008): 275-282.
    [90] Hans, R.K., Agrawal, N., Verma, K., et al., Assessment of the phototoxic potential of cosmetic products, Food and Chemical Toxicology, 46 (2008): 1653-1658.
    [91] Verma K, Agrawal N, Misra RB, et al. Phototoxicity assessment of drugs and cosmetic products using E. coli., Toxicology in Vitro, 22 (2008): 249-253.
    [92] Jantova, S., Letasiova, S., Brezova, V., et al., Photochemical and phototoxic activity of berberine on murine fibroblast NIH-3T3 and Ehrlich ascites carcinoma cells, Journal of Photochemistry and Photobiology, B: Biology, 85 (2006): 163-176.
    [93] Kirby, M.F., Lyons, B.P., Barry, J., et al., The toxicological impacts of oil and chemicallydispersed oil: UV mediated phototoxicity and implications for environmental effects, statutory testing and response strategies, Marine Pollution Bulletin, 54 (2007): 472-475.
    [94] Maillard, P., Loock, B., Grierson, D.S., et al., In vitro phototoxicity of glycoconjugated porphyrins and chlorins in colorectal adenocarcinoma (HT29) and retinoblastoma (Y79) cell lines, Photodiagnosis and Photodynamic Therapy, 4 (2007): 261-268.
    [95] Kandarova, H., Kejlova, K., Jirova, D., et al., Can the prevalidated in vitro skin model phototoxicity test be upgraded to quantify phototoxic potency of topical phototoxins? Toxicology Letters, 172 (2007): S81-S82.
    [96] Kejlova, K., Jirova, D., Bendova, H., et al., Phototoxicity of bergamot oil assessed by in vitro techniques in combination with human patch tests, Toxicology in Vitro, 21 (2007): 1298-1303.
    [97] Lelievre, D., Justine, P., Christiaens, F., et al., The episkin phototoxicity assay (EPA): Development of an in vitro tiered strategy using 17 reference chemicals to predict phototoxic potency, Toxicology in Vitro, 21 (2007): 977-995.
    [98] Jones P.A., Phototoxicity-an in vitro approach, Toxicology, 226 (2006): 24-28.
    [99] Struwe, M., Trunzer, M., Bauer, D., et al., Photodegradation analysis as additional tool to verify phototoxicity, Toxicology, 226 (2006): 70-71.
    [100] Wei, L.C.W., Kam, O.L.W., Wan, S.H.P., et al., Fluorescence imaging and phototoxicity effects of new formulation of chlorin e6–polyvinylpyrrolidone, Journal of Photochemistry and Photobiology, B: Biology, 84 (2006): 103-110.
    [101] Cik, G., Priesolova, S., Bujdakova, H., et al., Inactivation of bacteria G+-S. aureus and G?-E. coli by phototoxic polythiophene incorporated in ZSM-5 zeolite, Chemosphere, 63 (2006): 1419-1426.
    [102] Guedes, R.C., Eriksson, L.A., Theoretical characterization of aflatoxins and their phototoxic reactions, Chemical Physics Letters, 422 (2006): 328-333.
    [103] Barbieri, A., Accion fotodynamica de la luz, Rivista di Malariologia, 7 (1928): 456-463.
    [104] Bergsten, D.A., Phloxine B - a photoactive insecticide, pesticide Outlook, 8 (1997): 20-23.
    [105] Schroder, R.F.W., Demilo, A.B., Lee, C.J., US patent 5968541, 1999.
    [106] Liquido, N.J., Cunninghan, R.T., Heitz, J.R., US patent 5728394, 1998.
    [107] He, Y. Y., Liu, H.Y., An, J.Y., et al., Photodynamic action of hypocrellin dyes: structure - activity relationships, Dyes and Pigments, 44 (2000): 63-67.
    [108] Venkatesan, K., Pujari, S.S., Lahoti, J., et al., An efficient synthesis of 1, 8-dioxo-octahydro- xanthene derivatives promoted by a room temperature ionic liquid at ambient conditions under ultrasound irradiation, Ultrasonics Sonochemistry, 15 (2008): 548-553.
    [109] Shaterian, H.R., Majid G., Asadollah H., et al., One-pot synthesis of aryl 14H-dibenzo [a,j]xanthene leuco-dye derivatives, Dyes and Pigments, 76 (2008): 564-568.
    [110] Saito, S., Yamaguchi, H., Muto H., et al., First synthesis of bidentate NHC-Pd complexes with anthracene and xanthene skeletons, Tetrahedron Letters, 48 (2007): 7498-7501.
    [111] Kanga, K.S., Sisk, W.N., Raja, M.Y.A., et al., Field-enhanced photodegradation of pyrromethene dye films, Journal of Photochemistry and Photobiology A: Chemistry, 121 (1999): 133-140.
    [112] Detty, M.R., Gibson, S.L., Hilf, R., Comparison of the dark and light-induced toxicity of thio and seleno analogues of the thiopyrylium dye AA1, Bioorganic and Medicinal Chemistry, 12 (2004): 2589-2596.
    [113] Andrzejewski, D., Weisz, A., Rapid quantification of hexachlorobenzene in the color additives D&C Red Nos. 27 and 28 (phloxine B) using solid-phase microextraction and gas chromatography–mass spectrometry, Journal of Chromatography A, 863 (1999): 37-46.
    [114] Weisz, A., Andrzejewski, D., Identification of 2-bromo-3,4,5,6-tetrachloroaniline and its quantification in the color additives D&C Red Nos. 27 and 28 (phloxine B) using solid-phase microextraction and gas chromatography– mass spectrometry, Journal of Chromatography A, 1005 (2003): 143-153.
    [115] Cisneros, R.L., Espinoza, A.G., Litter, M.I., Photodegradation of an azo dye of the textile industry, Chemosphere, 48 (2002): 393-399.
    [116] Yang, S.J., Tian, H., Xiao, H.M., et al., Photodegradation of cyanine and merocyanine dyes, Dyes and Pigments, 49 (2001): 93-101.
    [117] Hu, C., Wang, Y.Z., Tang, H.X., et al., Influence of adsorption on the photodegradation of various dyes using surface bond-conjugated TiO2/SiO2 photocatalyst, Applied Catalysis B: Environmental, 35 (2001): 95-105.
    [118] Zhu, J.F., Zheng, W., He, B., et al., Characterization of Fe-TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water, Journal of Molecular Catalysis A: Chemical, 216 (2004): 35-43.
    [119] Costa F.A.P., Dos Reis Edson, M., Azevedo Julio C.R., et al., Bleaching and photodegradation of textile dyes by H2O2 and solar or ultraviolet radiation, Solar Energy 77 (2004) 29-35.
    [120] Xie, Y.B., Yuan, C.W., Visible light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation, Applied Catalysis B: Environmental, 46 (2003): 251-259.
    [121] Chatterjee, D., Mahata A., Visible light induced photodegradation of organic pollutants on dye adsorbed TiO2 surface, Journal of Photochemistry and Photobiology A: Chemistry, 153 (2002): 199-204.
    [122] Yu, D.Z., Cai, R.X., Liu, Z.H., et al., Studies on the photodegradation of Rhodamine dyes on nanometer-sized zinc oxide, Spectrochimica Acta Part A, 60 (2004): 1617-1624.
    [123] Li, J.Y., Chen, C.C., Zhao, J.C., et al., Photodegradation of dye pollutants on TiO2 nanoparticles dispersed in silicate under UV-VIS irradiation, Applied Catalysis B: Environmental, 37 (2002): 331-338.
    [124] Chen, Y.X., Wang, K., Lou, L.P., et al., Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 163 (2004): 281-287.
    [125] Wang, S.G., Mosley, C., Stewart G., et al., Photochemical reaction of a dye precursor 4-chloro-1,2-phenylenediamine and its associated mutagenic effects, Journal of Photochemistry and Photobiology A: Chemistry, 197 (2008): 34-39.
    [126] Yang, H.L., Huang, F.R., Quantum chemical and statistical study of hypocrellin dyes with phototoxicity against tumor cells, Dyes and Pigments, 74 (2007): 416-423.
    [127] Szocs, K., Gabor, F., Csik, G., et al., -Aminolaevulinic acid-induced porphyrin synthesis and photodynamic inactivation of Escherichia coli B, Journal of Photochemistry and Photobiology, B: Biology, 50 (1999), 8-17.
    [128] Chobot, V., Vytlacilova, J., Kubicova, L., et al., Phototoxic activity of a thiophene polyacetylene from Leuzea carthamoides, Fitoterapia, 77 (2006): 194-198.
    [129] Nivsarkar, M., Cherian, B., Padh, H., Alpha-terthienyl: A Plant-derived New Generation Insecticide, Current Science, 81 (2001): 667-672.
    [130] Sharma, A., Goel, H.C., Some naturally occurring phytophototoxins for mosquito control, Indian Journal of Experimental Biology, 1994, 32 (10): 745-751.
    [131]徐汉虹,赵善欢,光活化毒素与杀虫剂开发的新领域,华南农业大学学报, 16 (1995): 127-132.
    [132]徐汉虹,赵善欢,猪毛蒿精油的杀虫作用研究,华南农业大学学报, 14 (1993): 97-102.
    [133] Marles, R.J., Hudson, J.B.,Graham, E.A.,et al., Structure-activity studies of photoactivated antiviral and cytotoxic tricyclic thiophenes, Photochemistry and Photobiology, 56 (1992): 479-87.
    [134] Helleck, A.M., Hartberg, W.K., Effects of Photofrin II on Adults of Eretmapodites quinquevittatus, Journal of the American Mosquito Control Association, 16 (2000): 248-253.
    [135] Ben A.T., Bortolotto, L., Jori, G., Porphyrins and Related Compounds as Photoactivatable Insecticides 3 Laboratory and Field Studies, Photochemistry and Photobiology, 68 (1998): 314-318.
    [136] Ben A.T, Jori G., Sunlight-activated insecticides: historical background and mechanisms of phototoxic activity, Insect Biochemistry and Molecular Biology, 30 (2000): 915-925.
    [137] Salah, N.B., Mhalla, F.M., Mechanistic investigation of xanthene oxidation by heterogeneous and homogeneous electron transfers, Journal of Electroanalytical Chemistry, 485 (2000): 42-48.
    [138] Talhavini1, M., Corradini, W., Atvars, T.D.Z., et al., The role of the triplet state on the photobleaching processes of xanthene dyes in a poly(vinyl alcohol) matrix, Journal ofPhotochemistry and Photobiology, A: Chemistry, 139 (2001): 187-197.
    [139] Griffiths, J., Lee, W.J., Synthesis, light absorption and fluorescence properties of new thiazole analogues of the xanthene dyes, Dyes and Pigments, 57 (2003): 107-114.
    [1] Schildmacher, H., Concerning Photosensitization of Mosquito Larvae with Fluorescent Dyes, Biologisches Zentralblatt, 69 (1950): 468-477.
    [2] Walthall, W.K., Stark, J.D., The acute and chronic toxicity of two xanthene dyes, fluorescein sodium salt and phloxine B, to Daphnia pulex, Environmental Pollution, 104 (1999): 207-215.
    [3] Arnason,T., Wat,C.K., Downnum, K., et al., Photosensitization of Escherichia coli and Saccharomyces cerevisiae by phenylheptatriyne from Bidens pilosa, Canadian Journal of Microbiology, 26 (1980): 698-705.
    [4] Miolo, G., Vedaldi, D., Dall'Acqua, F., In vitro studies of the phototoxic potential of the antidepressant drugs amitriptyline and imipramine Giampietro, Il Farmaco, 55 (2000): 211-218.
    [5] Kraljic I., Detection of singlet oxygen and its role in dye-sensitized photooxidation in aqueous and micellar solutions, Biochimie, 68 (1986): 807-811.
    [6] Krieg M., Determination of singlet oxygen quantum yields with 1, 3-diphenylisobenzofuran in model membrane systems, Journal of Biochemical and Biophysical Methods, 27 (1993): 143-149.
    [7] Gollnick, K., Griesbeck, A., [4+2]-Cycloaddition of Singlet Oxygen to 2, 5-Dimethylfuran: Isolation and Reactions of the Monomeric and Dimeric Endoperoxides, Angewandte Chemie International Edition in English, 2 (1983): 726-727.
    [8]汪守建,刘德启,江飞等,氧化——萃取光度法检测单线态氧,贵州工业大学学报, 33 (2004): 12-14.
    [9] Li, X.H., Zhang, G.X., Ma, H.M., et al., 4, 5-Dimethylthio-4'-[2-(9-anthryloxy) ethylthio] tetrathiafulvalene, a highly selective and sensitive chemiluminescence probe for singlet oxygen, Journal of the American Chemical Society, 126 (2004): 11543-11548.
    [1]岳永德,乙撑硫脲在土壤中光解的影响因素,环境科学学报, 9 (1989): 338-345.
    [2] Donaldson, S.G., Miller, G.C., Coupled transport and photodegradation of napropamide in soils undergoing evaporation from a shallow water table, Environmental Science and Technology, 30 (1996): 924-930.
    [3] Misra, B., Graebing, P.W., Chib, J.S., Photodegradation of chloramben on a soil surface: A laboratory-controlled study, Journal of Agricultural and Food Chemistry, 45 (1977): 1464-1467.
    [4]刘毅华,郭正元,杨仁斌等,三唑酮的酸性、中性和碱性水解动力学研究,农村生态环境, 21 (2005): 67-68.
    [5]吴祥为,花日茂,汤锋等,毒死蜱在水溶液中的光化学降解,应用生态学报, 17 (2006): 1301-1304.
    [6]任丽萍,田芹,周志强等,己唑醇在溶液中的光化学降解,农药学报, 6 (2004): 73-77.
    [7]花日茂,岳永德,樊德方,乙草胺在水中的光化学降解,农药学学报, 2 (2000): 71-74.
    [8] Curran, W.S., Loux, M.M., Liebl, R.A., at al. Photolysis of imidazolinone herbicides in aqueous solution and on soil, Weed Science, 40 (1992): 143-148.
    [9] Romero, E., Dios, G., Mingorance, M.D., et al., Photodegradation of mecoprop and dichlorprop on dry, moist and amended soil surface exposed to sunlight, Chemosphere, 37 (1998): 577-589.
    [10] Adams, R.L., Weber, E.J., Baughman, G.L., Photolysis of smoke dys on soils, Environmental Toxicology and Chemistry, 13 (1994), 889-896.
    [11]岳永德,乙撑硫脲在土壤中光解的影响因素,环境科学学报, 9 (1989): 338-342.
    [12] Hebert, V.R., Miller, G.C., Depth dependence of direct and indirect photolysis on soil surfaces, Journal of Agricultural and Food Chemistry, 38 (1990): 913-918.
    [13] Mathew, R., Khan, S.U., Photodegradation of metolachlor in water in the presence of soil mineral and organic constituents, Journal of Agricultural and Food Chemistry, 44 (1996):3996-4000.
    [14] Katagi, T., Photoinduced oxidation of the organophosphorus fungicide tolclofos- methyl on clay minerals, Journal of Agricultural and Food Chemistry, 38 (1990): 1595-1600.
    [1] Arnason T., Janet R.S., Elizabeth G., et al., Phototoxicity to select marine and fresh water algae of polyacetylenes from species in the asteraceae, Canadian Journal of Botany, 59 (1980): 54-58.
    [2]苏汉成,二溴海因对铜绿微囊藻水华的去除研究,暨南大学,硕士论文, 2007.
    [3]陈晓雯,赵良元,杨劭,合成杀藻剂先导化合物的筛选和杀藻效果分析, 25(2008): 456-458.
    [4] Alam M. Z. B., Otaki M., Furumai H. et al., Direct and indirect inactivation of Microcystis aeruginosa by UV-radiation, Water research, 35(2001): 1008-1014.
    [5] Liukkonen M., Kairesalo T., Haworthy E. Y., Changes in the diatom community, including the appearace of Actinocyclus normanii f. subsalsa, during the biomanipulation of Lake Vesijarvi, Finland, European Journal of Phycology, 32(1997): 353-361.
    [6] Nakai S., Hosomi M., Okada M.,et al., Control of algal growth by macrophytes and macrophyte extracted bioactive compounds, Water Science and Technology, 34(1996): 227-235.
    [7] Saito S., Ariga H., Seasonal changes in the thermocline in lake Tsukui, Journal of Japanese Water Works Association, 63(1994): 102-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700