白腐菌高效改性木质素促进秸秆酶解反应机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木质纤维素原料复杂的结构抗性,极大地限制了纤维质乙醇的转化效率。虽然环境友好、低能耗的白腐菌生物预处理技术可降低原料酶解抗性屏障,增强乙醇转化效率,极具应用前景。但是,预处理效率仍有待提高,白腐菌预处理如何促进酶解反应的机制也亟待深入解析。因此,本论文以新型预处理菌株乳白耙菌(Irpex lacteus)为研究对象,通过研究预处理过程中的关键影响因素,建立了简单高效的生物预处理玉米秸秆转化乙醇新技术,并明晰关键因子Mn2+对生物预处理的影响机理;在此基础上,进一步利用分子结构表征技术,从木质素结构、木质纤维素结构及其与纤维素酶相互作用等方面研究了关键因子Mn2+添加前后产生的结构及反应差异,揭示了生物高效预处理技术如何通过降低木质纤维素结构抗性促进酶解反应的作用机制。
     系统研究了环境及添加因子对乳白耙菌预处理的影响,发现Mn2+是促进乳白耙菌生物预处理效率的关键因子,由此建立了简单高效的白腐菌生物预处理秸秆转化乙醇新技术:即在玉米秸秆中添加0.01mM/g MnSO4进行生物预处理28天后,葡萄糖产量达到308.98mg/g秸秆,乙醇产量达到144.03mg/g秸秆,为当前同类研究的最高水平。对不同预处理条件下的玉米秸秆组分变化、酶反应性和乙醇转化的相关性研究表明,预处理后木质素组分的变化与秸秆酶解增效密切相关。
     乳白耙菌产酶特性和及其降解木质素结构类似物的研究结果表明,锰过氧化物酶(Manganese Peroxidase, MnP)在生物高效降解和改性木质素过程中起关键作用。Mn2+一方面提高乳白耙菌胞外MnP的催化活性,另一方面增强处理过程中乳白耙菌产生自由基的能力,超氧阴离子自由基较单独生物培养体系提高3.25倍,从而促进对木质素的选择性生物改性。
     利用红外光谱、核磁共振、热裂解气质联用等表征手段,对添加Mn2+和未添加Mn2+预处理条件下生物改性木质素结构进行差异性分析。结果表明,β-0-4醚键、羟基、甲氧基、苯环等木质素关键结构的生物改性与乳白耙菌预处理酶解增效密切相关。Mn2+促进了预处理过程中木质素关键结构的生物改性,较未添加Mn2+预处理,β-O-4醚键的含量降低50%左右,羟基、甲氧基含量进一步降低,紫丁香基与愈创木基含量降低30%以上,从而导致木质素大分子显著解聚,木质素苯环侧链的修饰增强,进而促进木质素苯环的断裂,使木质素网状结构解体。
     进一步研究木质素生物改性、秸秆基质理化性质和基质与酶相互作用规律之间的关联。结果表明,乳白耙菌预处理使玉米秸秆比表面积增加49.51%,亲水性增加,从而降低纤维素酶解的空间位阻。而在添加Mn2+的高效生物预处理过程中,乳白耙菌通过木质素关键结构生物改性的增强,进一步破坏木质素大分子的网状结构;较未添加Mn2+体系,高效生物改性后的玉米秸秆在15-30nmm、60-100nm范围内孔径分布增多,亲水性进一步增加,进而导致木质纤维素—纤维素酶的吸附率增加了15.38%。添加Mn2+的高效生物预处理使改性后的玉米秸秆近乎完全解除酶解的抗性屏障,实现生物改性秸秆的高效酶解和乙醇转化。
     本论文从白腐菌预处理玉米秸秆酶解增效现象出发,以关键性因子为媒介,通过差异性分析,明晰玉米秸秆结构生物改性与酶解增效的关键靶点。不仅建立简单高效的生物预处理体系,更为提升酶解糖化效率提供结构上的关键改性位点。阐明木质纤维素酶解抗性的关键性因素,明确木质素关键结构改性与酶解增效之间的关系,为构建人工改性木质素增强底物转化效率提供理论基础。
The complex structural recalcitrance of lignocelluloses is the key factor to inhibit the efficiency of bioethanol production. White rot fungal pretreatment is an environmental friendly and low energy comsuption technology, which can reduce the resistance of lignocelluluose to enzymatic hydrolysis and enchance the efficiency of bioethanol conversion. Fungal pretreatment has a great potential in the production of biofuels from lignocelluloses. However, the mechanism of biological pretreatment to improve the hydrolysis of lignocelluloses is not clear and the efficiency of fungal pretreatment is still to be improved. In this study, a simple and efficient bio-pretreatment was established by investigating the key factor to biological pretreatment using the novel white rot fungus Irpex lacteus, and the mechanism of the key factor Mn2+to the biological pretreatment was clarified; on the basis, by analysising the differences of structures of lignin and lignocelluloses and the interactions between cellulase and substrates under different pretreatment conditions, it was clarified that the mechanism of the reduction of structural resistance to improve the efficiency of enzymatic hydrolysis by biological pretreatment.
     According to the study of effects of environmental factors and additives to biological pretreatment using/. lacteus, it showed that Mn2+was the key factor to promote the efficiency of fungal pretreatment. An novel and efficient technology to produce bioethanol from lignocelluloses was established:the efficiency of biological pretreatment has been achieved the highest level in the current studies, the yield of glucose and ethanol from the pretreated corn stover were308.98mg/g and144.03mg/g respectively with additive of0.01mM/g MnSO4in substrates. Moreover, the correlation of component composition of corn stover, reaction of cellulases and the production of ethanol was also investigated, results showed that the efficiency of enzymatic hydrolysis was closely related to the the content of lignin in pretreated corn stover.
     The determination of extracellular enzymes from I. lacteus during pretreatment and the degradation of lignin model compounds by I. lacteus showed that manganese peroxidase played an important part in the process of biodegradation and biomodification of lignin. The supplement of Mn2+improved the activity of MnP from I. lacteus. On the other hand, the ability of I. lacteus to generate free radicals was also enhanced during biological pretreatment. The production of superoxide anion radical was enhanced by3.5-fold compared with conventional biological pretreatment, thereby promoting the selective modification of lignin during fungal pretreatment.
     Structural characteristics of pretreated lignin with Mn2+present and absent during biological pretreatment were evaluated by the technologies of infrared spectroscopy, nuclear magnetic resonance spectroscopy and pyrolysis-gas chromatography/mass spectroscopy, etc. Results showed that the improvement of enzymatic hydrolysis after fungal pretreatment was closely related to deconstruction of key structures of/β-O-4ether bond, hydroxyl group, methoxy group and phenyl ring in lignin. Mn2+promoted the process of lignin bio-modification during pretreatment using I. lacteus. In comparsion with the structural alteration of pretreated lignin with Mn2+absent in biomass, the content of β-O-4ether bond decreased by50%, hydroxyl and methoxy group were further reduced and more than30%of guaiacyl lignin and syringyl lignin was deconstructed. Structural modification of lignin resulted in a significant depolymerization of macromolecule lignin and enhancement of modification to side chain of phenyl ring in lignin, which was contributed to the deconstruction of phenyl ring in lignin and decompostion of the network structure of lignin.
     The relationships of structural modification of lignin, physical and chemical characteristics of corn stover and the interaction between cellulase and substrates were further investigated. Results showed that the suface area of corn stover was increased by49.51%and hydrophilicity of corn stover was also increased after pretreated by I. lacteus, thereby reducing the steric hindrance of corn stover to enhance hydrolysis of cellulose. The network structure of macromolecular lignin was further destructed caused by the enhancement of modification to the key structure of lignin in the efficient biological pretreatment with Mn2+present in substrates. In comparasion to the pretreated corn stover with Mn2+absent in substrates, there was an increase of the pore size distribution within the range of15-30nm and60-100nm and the hydrophilicity of corn stover was further increased, causing the improvement of adsorption properties of corn stover to cellulase, the adsorption of cellulase increased by15.38%. Supplement of Mn2+in corn stover has greatly improved the efficiency of biological pretreatment. The recalcitrance of corn stover to hydrolysis was almost completely removed, which greatly promoted the efficiency of enzymatic hydrolysis and ethanol production from biopretreated corn stover.
     This research was established on the basis of improvement of enzymatic hydrolysis with the supplement of key additive during biological pretreatment, which clarifying the relationship between enhancement of enzymatic hydrolysis and structural modification of corn stover. A simple and efficient biological pretreatment was established, moreover, the key target of structural modification of corn stover to improve efficiency of hydrolysis was also investigated. In this work, the key factor of the resistance of lignocelluloses is clarified and the relationship between enzymatic hydrolysis and structural modification of lignin was elucidated, which provides a theoretical basis for the artificial modification of lignin to enhance the efficiency of bioethanol production from lignocelluloses.
引文
[1]张齐生,马中青,周建斌.生物质气化技术的再认识[J].南京林业大学学报(自然科学版),2013,37(1):1-10.
    [2]Perlack R. D., Wright L. L., Turhollow A. F., et al. Biomass as feedstock for a bioenergy and bioproducts industry:the technical feasibility of a billion-ton annual supply[J]. DTIC Document,2005,34-39.
    [3]Dowe N., McMillan J. SSF experimental protocols:lignocellulosic biomass hydrolysis and fermentation[J]. NREL, Golden, CO,2011.
    [4]Van Dam J., Junginger M., Faaij A.,et al. Overview of recent developments in sustainable biomass certification[J]. Biomass and Bioenergy,2008,32(8):749-780.
    [5]Commission E. Biofuels in the European Union:A vision for 2030 and beyond[J]. Final report of the Biofuels Research Advisory Council,2006:22066.
    [6]童忠良,张淑谦,杨京京.新能源材料与应用[M].北京:国防工业出版社,2008,42-45.
    [7]Lee J. Biological conversion of lignocellulosic biomass to ethanol[J]. Journal of Biotechnology,1997,56(1):1-24.
    [8]Himmel M. E., Ding S., Johnson D. K., et al. Biomass recalcitrance:Engineering plants and enzymes for biofuels production[J]. Science,2007,315(5813):804-807.
    [9]Shevchenko S. M., Bailey G. W. The mystery of the lignin-carbohydrate complex:a computational approach[J]. Journal of Molecular Structure:Theochem,1996, 364(2):197-208.
    [10]Peng L., Kawagoe Y, Hogan P., et al.Sitosterol-β-glucoside as primer for cellulose synthesis in plants[J]. Science,2002,295(5552):147-150.
    [11]Sjostrom E. Wood chemistry:fundamentals and applications.2nd edn. San Diego, California:Academic Press,1993:167-173.
    [12]Zhao H., Kwak J. H., Conrad Zhang Z., et al. Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis[J]. Carbohydrate Polymers,2007,68(2): 235-241.
    [13]Azizi Samir M. A. S., Alloin F. Dufresne A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field[J]. Biomacromolecules,2005,6(2):612-626.
    [14]Saha B. C. Hemicellulose bioconversion[J]. Journal of Industrial Microbiology and Biotechnology,2003,30(5):279-291.
    [15]Perez J., Munoz-Dorado J., de la Rubia T., et al. Biodegradation and biological treatments of cellulose, hemicellulose and lignin:an overview[J]. International Microbiology,2002,5(2):53-63.
    [16]Hood E. E., Hood K. R., Fritz S. E. Hydroxyproline-rich glycoproteins in cell walls of pericarp from maize[J]. Plant Science,1991,79(1):13-22.
    [17]McCarthy J. L., Islam A. In Lignin chemistry, technology, and utilization:a brief history. ACS Symposium Series, ACS Publications,2000:2-99.
    [18]Malherbe S., Cloete T. E. Lignocellulose biodegradation:Fundamentals and applications [J]. Reviews in Environmental Science and Biotechnology,2002,1(2): 105-114.
    [19]Tuomela M., Vikman M.,Hatakka A., et al. Biodegradation of lignin in a compost environment:a review[J]. Bioresource Technology,2000,72(2):169-183.
    [20]Adler E., Hernestam S. Estimation of phenolic hydroxyl groups in lignin[J]. Acta Chemica Scandinavica,1955,9(2):319-334.
    [21]Adler E. Lignin chemistry—past, present and future [J]. Wood Science and Technology,1977,11(3):169-218.
    [22]Whitmore F. W. Lignin-carbohydrate complex formed in isolated cell walls of callus[J]. Phytochemistry,1978,17(3):421-425.
    [23]Jeffries T. W. Biodegradation of lignin-carbohydrate complexes[J]. Biodegradation, 1990,1(2-3):163-176.
    [24]Iversen T. Lignin-carbohydrate bonds in a lignin-carbohydrate complex isolated from spruce[J]. Wood Science and Technology,1985,19(3):243-251.
    [25]Koshijima T., Watanabe T., Yaku F. Structure and properties of the lignin-carbohydrate complex polymer as an amphipathic substance[J]. In:Glasser, WG and Sarkanen, S.(Eds). Lignin Properties and materials, ACS Symposium Series,1989, 397:11-28.
    [26]Singh R., Singh S., Trimukhe K., et al. Lignin-carbohydrate complexes from sugarcane bagasse:preparation, purification, and characterization[J]. Carbohydrate Polymers,2005,62(1):57-66.
    [27]Iiyama K., Lam T. B.-T., Stone B. A. Covalent cross-links in the cell wall[J]. Plant Physiology,1994,104(2):315-320.
    [28]Kumar R., Mago G., Balan V., et al. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies[J]. Bioresource Technology,2009,100(17):3948-3962.
    [29]Hendriks A. T. W. M., Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource Technology,2009,100(1):10-18.
    [30]Mansfield S. D., Mooney C., Saddler J. N. Substrate and enzyme characteristics that limit cellulose hydrolysis[J]. Biotechnology Progress,1999,15(5):804-816.
    [31]Mooney C. A., Mansfield S. D., Touhy M. G., et al. The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods [J]. Bioresource Technology,1998,64(2):113-119.
    [32]Eriksson T., Borjesson J., Tjerneld F. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose[J]. Enzyme and Microbial Technology,2002,31(3): 353-364.
    [33]Alvira P., Tomas-Pejo E., Ballesteros M., et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis:A review[J]. Bioresource Technology,2010,101(13):4851-4861.
    [34]Chandra R., Bura R., Mabee W., et al. Substrate pretreatment:The key to effective enzymatic hydrolysis of lignocellulosics?[J]. Biofuels,2007,108:67-93.
    [35]Chang V. S., Holtzapple M. T. In Fundamental factors affecting biomass enzymatic reactivity, Twenty-First Symposium on Biotechnology for Fuels and Chemicals, Springer:2000:5-37.
    [36]Mosier N., Wyman C., Dale B., et al. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresource Technology,2005,96(6): 673-686.
    [37]Sun Y., Cheng J. Hydrolysis of lignocellulosic materials for ethanol production:a review[J]. Bioresource Technology,2002,83(1):1-11.
    [38]Isroi, Millati R., Syamsiah S., et al. Biological pretreatment of lignocelluloses with white-rot fungi and its application:A review[J]. Bioresources,2011,6(4): 5224-5259.
    [39]Shi J., Chinn M. S., Sharma-Shivappa R. R. Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium[J]. Bioresource Technology,2008,99(14):6556-6564.
    [40]Keller F. A., Hamilton J. E., Nguyen Q. A. Microbial pretreatment of biomass-potential for reducing severity of thermochemical biomass pretreatment[J]. Applied Biochemistry and Biotechnology,2003,105:27-41.
    [41]Wan C, Li Y. Effectiveness of microbial pretreatment by Ceriporiopsis subvermispora on different biomass feedstocks [J]. Bioresource Technology,2011, 102(16):7507-7512.
    [42]Chen S., Zhang X., Singh D., et al. Biological pretreatment of lignocellulosics: potential, progress and challenges [J]. Biofuels,2010,1(1):177-199.
    [43]Leonowicz A., Matuszewska A., Luterek J., et al. Biodegradation of lignin by white rot fungi[J]. Fungal Genetics and Biology,1999,27(2-3):175-185.
    [44]Bak J. S., Ko J. K., Choi I., et al. Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw[J]. Biotechnology and Bioengineering,2009,104(3):471-482.
    [45]Salame T. M., Knop D., Levinson D., et al. Release of Pleurotus ostreatus versatile-peroxidase from Mn2+ repression enhances anthropogenic and natural substrate degradation[J]. PloS one,2012,7(12):52446.
    [46]Zhang X., Xu C., Wang H. Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis [J]. Journal of Bioscience and Bioengineering, 2007,104(2):149-151.
    [47]Taniguchi M., Suzuki H., Watanabe D., et al. Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw[J]. Journal of Bioscience and Bioengineering,2005,100(6):637-643.
    [48]Itoh H., Wada M, Honda Y., et al Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi[J]. Journal of Biotechnology,2003,103(3):273-280.
    [49]Wan C., Li Y. Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production[J]. Bioresource Technology,2010,101(16):6398-6403.
    [50]Balan V., Sousa L. d. C, Chundawat S. P. S., et al. Mushroom spent straw:a potential substrate for an ethanol-based biorefinery[J]. Journal of Industrial Microbiology and Biotechnology,2008,35(5):293-301.
    [51]Valaskova V, Snajdr J., Bittner B., et al. Production of lignocellulose-degrading enzymes and degradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraea forest[J]. Soil Biology and Biochemistry,2007,39(10): 2651-2660.
    [52]Eggert C., Temp U., Eriksson K.E. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus:purification and characterization of the laccase[J]. Applied and Environmental Microbiology,1996,62(4):1151-1158.
    [53]Wariishi H., Valli K., Gold M. H. Oxidative cleavage of a phenolic diarylpropane lignin model dimer by manganese peroxidase from Phanerochaete chrysosporium [J]. Biochemistry,1989,28(14):6017-6023.
    [54]Baciocchi E., Gerini M. F., Lanzalunga O., et al. Lignin peroxidase catalysed oxidation of 4-methoxymandelic acid. The role of mediator structure[J]. Tetrahedron,2002,58(40):8087-8093.
    [55]Hofrichter M., Steinbuchel A. Biopolymers, Vol.1. Lignin, humic substances and coal[M]. Weinheim:Wiley Europe-VCH,2001:56-78.
    [56]Galkin S., Vares T., Kalsi M., et al. Production of organic acids by different white-rot fungi as detected using capillary zone electrophoresis[J]. Biotechnology Techniques,1998,12(4):267-271.
    [57]Kirk T. K., Schultz E., Connors W., et al. Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium[J]. Archives of Microbiology,1978, 117(3):277-285.
    [58]Hammel K. Fungal degradation of lignin[J]. Driven by nature:plant litter quality and decomposition. Wallingford:CAB International,1997:33-46.
    [59]Laureano-Perez L., Teymouri F., Alizadeh H., et al. Understanding factors that limit enzymatic hydrolysis of biomass[J]. Applied Biochemistry and Biotechnology,2005, 124(1):1081-1099.
    [60]Danny E. A. Plant cell wall aromatics:influence on degradation of biomass[J]. Biofuels Bioproducts and Biorefining,2008,2(4):288-303.
    [61]Novotny C., Cajthaml T., Svobodova K., et al. Irpex lacteus, a white-rot fungus with biotechnological potential — review[J]. Folia Microbiologica,2009,54(5): 375-390.
    [62]Tanaka H., Itakura S., Enoki A. Hydroxyl radical generation and phenol oxidase activity in wood degradation by the white-rot basidiomycete Irpex lacteus[J]. Material Und Organismen,2000,33(2):91-105.
    [63]Richter D. L., Warner J. I., Stephens A. L. A comparison of mycorrhizal and saprotrophic fungus tolerance to creosote in vitro[J]. International Biodeterioration and Biodegradation,2003,51(3):195-202.
    [64]Cajthaml T., Erbanova P., Kollmann A., et al. Degradation of PAHs by ligninolytic enzymes of Irpex lacteus[J]. Folia Microbiologica,2008,53(4):289-294.
    [65]Rothschild N., Novotny C., Sasek V., et al. Ligninolytic enzymes of the fungus Irpex lacteus(Polyporus tulipiferae):isolation and characterization of lignin peroxidase[J]. Enzyme and Microbial Technology,2002,31(5):627-633.
    [66]Shin K.-S. The role of enzymes produced by white-rot fungus Irpex lacteus in the decolorization of the textile industry effluent[J]. Journal of Microbiology-Seoul, 2004,42(1):37-41.
    [67]Novotny C., Erbanova P., Cajthaml T., et al. Irpex lacteus, a white rot fungus applicable to water and soil bioremediation[J]. Applied Microbiology and Biotechnology,2000,54:850-853.
    [68]Shin K., Kim Y. H., Lim J. Purification and characterization of manganese peroxidase of the white-rot fungus Irpex lacteus[J]. Journal of Microbiology-Seoul, 2005,43(6):503.
    [69]Svobodova K., Erbanova P., Sklenar J., et al. The role of Mn-dependent peroxidase in dye decolorization by static and agitated cultures of Irpex lacteus[J]. Folia Microbiologica,2006,51(6):573-578.
    [70]Svobodova K., Majcherczyk A., Novotny C., et al. Implication of mycelium-associated laccase from Irpex lacteus in the decolorization of synthetic dyes[J]. Bioresource Technology,2008,99(3):463-471.
    [71]Tanaka H., Hirano T., Enoki A. Extracellular substance from the white-rot basidiomycete Irpex lacteus for production and reduction of H2O2 during wood degradation[J]. Journal of the Japan Wood Research Society,1993,39(4):493-499.
    [72]Novotny C., Rawal B., Bhatt M., et al. Capacity of Irpex lacteus and Pleurotus ostreatus for decolorization of chemically different dyes[J]. Journal of Biotechnology,2001,89(2):113-122.
    [73]Xu C., Ma F,, Zhang X., et al. Biological pretreatment of corn stover by Irpex lacteus for enzymatic hydrolysis [J]. Journal of Agricultural and Food Chemistry, 2010,58(20):10893-10898.
    [74]Du W., Yu H., Song L., et al. The promoting effect of byproducts from Irpex lacteus on subsequent enzymatic hydrolysis of bio-pretreated cornstalks [J]. Biotechnology for Biofuels,2011,4:37-44.
    [75]Zhong W., Yu H., Song L., et al. Combined pretreatment with white-rot fungus and alkali at near room-temperature for improving saccharification of corn stalks [J]. Bioresources,2011,6(3):3440-3451.
    [76]Yang X., Ma F., Zeng Y., et al. Structure alteration of lignin in corn stover degraded by white-rot fungus Irpex lacteus CD2[J]. International Biodeterioration and Biodegradation,2010,64(2):119-123.
    [77]曾叶霖.不同降解模式担子菌影响木质纤维素热解特性机制研究:[博士学位论文].武汉:华中科技大学图书馆,2012.
    [78]Reid I. D. Solid-state fermentations for biological delignification[J]. Enzyme and Microbial Technology,1989,11(12):786-803.
    [79]Matityahu A., Hadar Y., Belinky P. A. Involvement of protein kinase C in lignin peroxidase expression in oxygenated cultures of the white rot fungus Phanerochaete chrysosporium[J]. Enzyme and Microbial Technology,2010,47(3):59-63.
    [80]Hatakka A. I. Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose[J]. Applied Microbiology and Biotechnology,1983, 18(6):350-357.
    [81]Singhania R. R., Patel A. K., Soccol C. R., et al Recent advances in solid-state fermentation[J]. Biochemical Engineering Journal,2009,44(1):13-18.
    [82]Zhang X., Yu H., Huang H., et al. Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms [J]. International Biodeterioration and Biodegradation,2007,60(3):159-164.
    [83]Rivela I., Couto S. R., Sanroman A. Extracellular ligninolytic enzyme production by Phanerochaete chrysosporium in a new solid-state bioreactor[J]. Biotechnology Letters,2000,22(18):1443-1447.
    [84]Buswell J. A., Cai Y., Chang S. t. Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Lentinula (Lentinus) edodes[J]. Fems Microbiology Letters,1995,128(1):81-87.
    [85]Perie F. H., Gold M. H. Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens[J]. Applied and Environmental Microbiology,1991,57(8):2240-2245.
    [86]Bonnarme P., Jeffries T. W. Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi[J]. Applied and Environmental Microbiology,1990,56(1):210-217.
    [87]Schlosser D., Hofer C. Laccase-catalyzed oxidation of Mn2+ in the presence of natural Mn3+chelators as a novel source of extracellular H2O2 production and its impact on manganese peroxidase [J]. Applied and Environmental Microbiology, 2002,68(7):3514-3521.
    [88]李慧蓉.白腐真菌生物学和生物技术[M].北京:化学工业出版社,2005:35-56
    [89]Shrestha P., Rasmussen M., Khanal S. K., et al. Solid-substrate fermentation of corn fiber by Phanerochaete chrysosporium and subsequent fermentation of hydrolysate into ethanol[J]. Journal of Agricultural and Food Chemistry,2008,56(11):3918-3924.
    [90]Guo X., Gu J., Gao H., et al. Effects of Cu on metabolisms and enzyme activities of microbial communities in the process of composting[J]. Bioresource Technology, 2012,108:140-148.
    [91]Lebrun J. D., Lamy I., Mougin C. Favouring the bioavailability of Zn and Cu to enhance the production of lignin-modifying enzymes in Trametes versicolor cultures[J]. Bioresource Technology,2011,102(3):3103-3109.
    [92]Patel H., Gupte A., Gupte S. Effect of different culture conditions and inducers on production of laccase by a basidiomycete fungal isolate Pleurotus ostreatus HP-1 under solid state fermentation[J]. Bioresources,2009,4(1):268-284.
    [93]Haapala R., Linko S. Production of Phanerochaete chrysosporium lignin peroxidase under various culture conditions[J]. Applied Microbiology and Biotechnology,1993, 40(4):494-498.
    [94]Tejirian A., Xu F. Inhibition of cellulase-catalyzed lignocellulosic hydrolysis by iron and oxidative metal ions and complexes[J]. Applied and Environmental Microbiology,2010,76(23):7673-7682.
    [95]Baldrian P. Interactions of heavy metals with white-rot fungi[J]. Enzyme and Microbial Technology,2003,32(1):78-91.
    [96]Zeng J. J., Singh D., Chen S. L. Biological pretreatment of wheat straw by Phanerochaete chrysosporium supplemented with inorganic salts [J]. Bioresource Technology,2011,102(3):3206-3214.
    [97]Demirbas A. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections[J]. Energy Conversion and Management,2008,49(8):2106-2116.
    [98]Himmel M. E. Biomass recalcitrance:deconstructing the plant cell wall for bioenergy[M]. America:Wiley-Blackwell,2009:135-148.
    [99]Miller G. L. Use of Dinitrosalicylic acid reagent for determination of reducing sugar[J]. Analytical Chemistry,1959,31(3):426-428.
    [100]Sluiter A., Hames B., Ruiz R., et al. Determination of structural carbohydrates and lignin in biomass[J]. NREL, Golden, CO,2011.
    [101]McKinley V. L., Peacock A. D., White D. C. Microbial community PLFA and PHB responses to ecosystem restoration in tallgrass prairie soils[J]. Soil Biology and Biochemistry,2005,37:1946-1958.
    [102]Denef K., Roobroeck D., Wadu M. C. W. M., et al. Microbial community composition and rhizodeposit-carbon assimilation in differently managed temperate grassland soils[J]. Soil Biology and Biochemistry,2009,41:144-153.
    [103]Zhang B., Zhang H., Jin B., et al. Effect of cypermethrin insecticide on the microbial community in cucumber phyllosphere[J]. Journal of Environmental Sciences,2008,20:1356-1362.
    [104]Xu C., Ma F., Zhang X. Lignocellulose degradation and enzyme production by Irpex lacteus CD2 during solid-state fermentation of corn stover[J]. Journal of Bioscience and Bioengineering,2009,108(5):372-375.
    [105]Wang Z., Keshwani D. R., Redding A. P., et al. Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass[J]. Bioresource Technology,2010, 101(10):3583-3585.
    [106]Salvachua D., Prieto A., Lopez-Abelairas M., et al. Fungal pretreatment:An alternative in second-generation ethanol from wheat straw[J]. Bioresource Technology,2011,102(16):7500-7506.
    [107]Hodge D. B., Andersson C., Berglund K. A., et al. Detoxification requirements for bioconversion of softwood dilute acid hydrolyzates to succinic acid[J]. Enzyme and Microbial Technology,2009,44(5):309-316.
    [108]Gao D., Zeng Y., Wen X., et al. Competition strategies for the incubation of white rot fungi under non-sterile conditions[J]. Process Biochemistry,2008,43:937-944.
    [109]Lopez-Abelairas M., Lu-Chau T., Lema J. Enhanced saccharification of biologically pretreated wheat straw for ethanol production[J]. Applied Biochemistry and Biotechnology,2013,169(4):1147-1159.
    [110]Digman M. F., Shinners K. J., Casler M. D., et al. Optimizing on-farm pretreatment of perennial grasses for fuel ethanol production[J]. Bioresource Technology,2010, 101(14):5305-5314.
    [111]张丽丽,陈焕支,李建强等.邻苯二甲酸酯类化合物检测方法研究进展[J].理化检验:化学分册,2011,47(2):241-247.
    [112]计红果,庞浩,张容丽等.木质纤维素的预处理及其酶解[J].化学通报,2008,5:329-335.
    [113]Wood T., McCRAE S. I. Synergism between enzymes involved in the solubilization of native cellulose[J]. Advances in Chemistry Series,1979,181:181-209.
    [114]Wen Z., Liao W., Chen S. Production of cellulase/β-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure[J]. Process Biochemistry,2005,40(9):3087-3094.
    [115]Pinto P. A., Dias A. A., Fraga I., et al. Influence of ligninolytic enzymes on straw saccharification during fungal pretreatment[J]. Bioresource Technology,2012,111: 261-267.
    [116]任大军,颜克亮,刘飞虎等.不同共代谢基质对白腐菌降解吲哚的作用研究[J].环境科学学报,2007,27(2):206-212.
    [117]Kersten P. J., Kirk T. K. Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium[J]. Journal of Bacteriology,1987,169(5):2195-2201.
    [118]Gomez-Toribio V., Martinez A. T., Martinez M. J., et al. Oxidation of hydroquinones by the versatile ligninolytic peroxidase from Pleurotus eryngii[J]. European Journal of Biochemistry,2001,268(17):4787-4793.
    [119]Hofrichter M. Review:lignin conversion by manganese peroxidase (MnP)[J]. Enzyme and Microbial Technology,2002,30(4):454-466.
    [120]Pandey K. K., Pitman A. J. FTIR studies of the changes in wood chemistry flowing decay by brown-rot and white-rot fungi [J]. International Biodeterioration and Biodegradation,2003,52:151-160.
    [121]Jiang G., Nowakowski D. J., Bridgwater A. V. A systematic study of the kinetics of lignin pyrolysis[J]. Thermochimica Acta,2010,498(1):61-66.
    [122]Martinez A., Camarero S., Gutierrez A., et al. Studies on wheat lignin degradation by Pleurotus species using analytical pyrolysis[J]. Journal of Analytical and Applied Pyrolysis,2001,58:401-411.
    [123]Evtuguin D. V., Neto C. P., Silva A. M. S., et al. Comprehensive study on the chemical structure of dioxane lignin from plantation eucalyptus globulus wood[J]. Journal of Agricultural and Food Chemistry,2001,49(9):4252-4261.
    [124]Huang F., Singh P. M., Ragauskas A. J. Characterization of milled wood lignin (MWL) in loblolly pine stem wood, residue, and bark[J]. Journal of Agricultural and Food Chemistry,2011,59(24):12910-12916.
    [125]Holtman K. M., Chang H.-m., Kadla J. F. Solution-state nuclear magnetic resonance study of the similarities between milled wood lignin and cellulolytic enzyme lignin[J]. Journal of Agricultural and Food Chemistry,2004,52(4):720-726.
    [126]Iiyama K., Wallis A. An improved acetyl bromide procedure for determining lignin in woods and wood pulps[J]. Wood Science and Technology,1988,22(3):271-280.
    [127]娄瑞,武书彬,吕高金等.草本类木素的化学结构与热化学性质[J].华南理工大学学报:自然科学版,2010,38(8):1-6.
    [128]张应龙.环境友好木质素降解新技术研究:[博士学位论文].济南:山东大学图书馆,2012.
    [129]Guerra A.,Mendonca R.,Ferraz A.,et al. Structural characterization of lignin during pinus taeda wood treatment with Ceriporiopsis subvermispora[J]. Applied and Environmental Microbiology,2004,70(7):4073-4078.
    [130]杨卿.麦草及其三种主要组分的热解规律:[博士学位论文].广州:华南理工大学图书馆,2010.
    [131]Zhang J., Deng H.,Lin L., et al. Isolation and characterization of wheat straw lignin with a formic acid process[J]. Bioresource Technology,2010,101(7):2311-2316.
    [132]Zeng Y., Yang X., Yu H., et al. Comparative Studies on Thermochemical Characterization of Corn Stover Pretreated by white-rot and brown-rot Fungi [J]. Journal of Agricultural and Food Chemistry,2011,59(18):9965-9971.
    [133]Oudia A., Meszaros E., Simoes R., et al. Pyrolysis-GC/MS and TG/MS study of mediated laccase biodelignification of Eucalyptus globules kraft pulp[J]. Journal of Analytical and Applied Pyrolysis,2007,78(2):233-242.
    [134]Yu Y, Zeng Y, Zuo J., et al. Improving the conversion of biomass in catalytic fast pyrolysis via white-rot fungal pretreatment[J]. Bioresource Technology,2013,134: 198-203.
    [135]Gonzalez-Vila F. J., Almendros G., Del Rio J., et al. Ease of delignification assessment of wood from different Eucalyptus species by pyrolysis (TMAH)-GC/MS and CP/MAS13C-NMR spectrometry[J]. Journal of Analytical and Applied Pyrolysis,1999,49(1):295-305.
    [136]Li X., Weng J. K., Chapple C. Improvement of biomass through lignin modification[J]. The Plant Journal,2008,54(4):569-581.
    [137]Studer M. H., DeMartini J. D., Davis M. F., et al. Lignin content in natural populus variants affects sugar release[J]. Proceedings of the National Academy of Sciences, 2011,108(15):6300-6305.
    [138]Sannigrahi P., Ragauskas A. J., Miller S. J. Lignin structural modifications resulting from ethanol organosolv treatment of Loblolly pine[J]. Energy Fuels,2010,24: 683-689.
    [139]刘江燕.木质素及其模型物在不同热化学环境下的解构:[博士学位论文].广州:华南理工大学图书馆,2010.
    [140]Kofujita H., Asada Y, Kuwahara M. Alkyl-aryl cleavage of phenolic beta-O-4 lignin substructure model compound by Mn (Ⅱ)-peroxidase isolated from Pleurotus ostreatus[J]. Journal of the Japan Wood Research Society,1991,37:555-561.
    [141]Grabber J. H. How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies[J]. Crop Science,2005,45(3): 820-831.
    [142]Carrillo F., Lis M. J., Colom X., et al. Effect of alkali pretreatment on cellulase hydrolysis of wheat straw:kinetic study[J]. Process Biochemistry,2005,40: 3360-3364.
    [143]Eriksson T., Borjesson J., Tjerneld F. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose[J]. Enzyme and Microbial Technology,2002,31: 353-364.
    [144]Cowling E. B. Comparative biochemistry of the decay of sweetgum sapwood by white-rot and brown-rot fungi [M]. America:US Department of Agriculture,1961: 87-107.
    [145]Wan J., Wang Y, Xiao Q. Effects of hemicellulose removal on cellulose fiber structure and recycling characteristics of eucalyptus pulp[J]. Bioresource Technology,2010,101(12):4577-4583.
    [146]林鹿,C.L. Chen, J.S.Gratzl.麦草木素结构的研究进展[J].中国造纸学报,2001,16(1):119-119.
    [147]Silva G. G. D., Rouau S. G. Successive centrifugal grinding and sieving of wheat straw[J]. Powder Technology,2011,208(2):266-270.
    [148]Woodward J. Synergism in cellulase systems[J]. Bioresource Technology,1991, 36(1):67-75.
    [149]巨文军,申丽红,郭丹丹.氮气吸附法和压汞法测定A1203载体孔结构[J].广东化工,2009,36(8):213-214.
    [150]Grethlein H. E. The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates[J]. Nature Biotechnology,1985,3(2):155-160.
    [151]Wong K. K., Deverell K. F., Mackie K. L., et al. The relationship between fiber-porosity and cellulose digestibility in steam-exploded Pinus radiata[J]. Biotechnology and Bioengineering,1988,31(5):447-456.
    [152]Burns D., Ooshima H., Converse A. Surface area of pretreated lignocellulosics as a function of the extent of enzymatic hydrolysis [J]. Applied Biochemistry and Biotechnology,1989,20(1):79-94.
    [153]罗晓斌,朱定一,石丽敏.基于接触角法计算固体表面张力的研究进展[J].科学技术与工程,2007,7(19):4997-5004.
    [154]Planinsek O., Trojak A., Srcic S. The dispersive component of the surface free energy of powders assessed using inverse gas chromatography and contact angle measurements [J]. International Journal Of Pharmaceutics,2001,221(1):211-217.
    [155]王志玲,王正,阎昊鹏.麦秆表面自由能及其分量研究[J].高分子材料科学与工程,2007,23(3):207-210.
    [156]Benli B., Du H., Celik M. S. The anisotropic characteristics of natural fibrous sepiolite as revealed by contact angle, surface free energy, AFM and molecular dynamics simulation [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,408(20):22-31.
    [157]Van Oss C., Giese R. The hydrophilicity and hydrophobicity of clay minerals[J]. Clays and Clay Minerals,1995,43:474-477.
    [158]Gan Q., Allen S. J., Taylor G. Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose:an overview, an experimental [J]. Process Biochemistry, 2003,38(7):1003-1018.
    [159]Sawalha M. F., Gardea-Torresdey J., Parsons J., et al. Determination of adsorption and speciation of chromium species by saltbush(Atriplex canescens) biomass using a combination of XAS and ICP-OES[J]. Microchemical Journal,2005,81(1): 122-132.
    [160]Ding S.-Y., Liu Y.-S., Zeng Y., et al. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility?[J]. Science,2012,338(6110):1055-1060.
    [161]Sannigrahi P., Kim D. H., Jung S., et al. Pseudo-lignin and pretreatment chemistry[J]. Energy and Environmental Science,2011,4(4):1306-1310.
    [162]Hu F., Jung S., Ragauskas A. Pseudo-lignin formation and its impact on enzymatic hydrolysis[J]. Bioresource Technology,2012,117:7-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700