黄瓜性别决定基因M的精细定位及转录表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
性别分化是植物的基本发育过程,由于作物的性别表达类型决定了其育种和栽培的方式,所以控制性别表达具有重要经济意义,黄瓜(Cucumis Sativus L.)具有非常丰富的性别表现类型,是研究植物性别表达的模式植物。黄瓜花有雄花、雌花和两性花三种类型,但幼花蕾最初都是两性花原基,在进一步发育中两性花原基中雄蕊的滞育形成雌花,雌蕊的滞育形成雄花,雄蕊和雌蕊都发育则形成两性花。目前已经明确控制黄瓜性别表达的主效基因位点有F、M和A三个。除遗传因素外,黄瓜性别表达还受环境和激素的调控,长日照、高温、赤霉素促进雄花产生,而短日照、低温、乙烯则促进雌花形成。激素在黄瓜的性别表达中起重要作用。黄瓜性别表达的乙烯控制模型认为:乙烯既促进雌蕊发育,又抑制雄蕊发育。该模型推断,F基因的产物控制乙烯在黄瓜植株分布的部位和浓度,促进雌性的表达;而M基因的产物则控制乙烯信号的识别,在乙烯浓度高于阈值时抑制雄蕊的发育。近年来的研究发现对该模型提供了实验支持:F基因已被克隆,为乙烯合成酶基因家族成员之一,符合其控制乙烯浓度功能的预测;M位点直接介导了乙烯诱导的雄蕊滞育。要进一步验证该模型的真实性,必须要克隆M基因,而M基因的精细定位则是该基因克隆的前提。
     本研究以近等基因系WI1983G(雌性株,基因型为MMFF)和WI1983H(两性花株,基因型为mmFF)、F1、F2和BC1为材料,通过M基因的精细定位以及转录表达谱分析,为图位克隆M基因、研究其功能奠定基础。而后者又为进一步深入了解乙烯在黄瓜性别表达过程的作用机理,揭示葫芦科作物性别表达的进化史,乃至通过基因工程操纵其它作物的性别表达来加速杂种优势的利用提供理论依据。主要结果如下:
     1.近等基因系亲本WI1983G全为雌花,WI1983H全为两性花,它们的杂交组合F1代群体单株均开单性雌花(性型表现为雌性株),单性花对两性花为显性性状。该杂交组合的F2代群体单株的性型分离株数统计表明:638株F2单株当中,其中雌性株473株,两性花株165株,经卡平方测验,F2代雌性株与两性花株的比例符合3:1的分离比(χ2=0.38;p>0.5);BC1代群体751个单株当中,雌性株373株,两性株378株,符合1:1的分离比(χ2=0.03;p>0.95),表明两性花是由单基因控制。
     2.采用高通量AFLP技术,共获得4个与M基因紧密连锁的AFLP分子标记,其中PGGMCCC_450/453和PGTMCTA 185分别位于M基因的两侧,共跨度约5 cM。离M基因最近的侧翼标记EACAMCAT_202/203和EATGMCAA_80与M基因的遗传距离分别是0.9和1.6 cM,最终将M基因定位在2.5 cM以内。
     3.利用M基因的侧翼标记PGGMCCC_450/453和PGTMCTA_185,从1984株F2和751个BC1分离群体中筛选出重组单株,然后通过896对AFLP引物组合、2000对SSR引物(来自于中国农业科学院蔬菜花卉研究所功能基因组实验室黄瓜基因组项目)及CAPS(根据黄瓜基因组项目Superscaff序列信息)筛选分析,共获得了AFLP标记6个、SSR标记8个、SCAR标记2个和CAPS标记1个,从而构建了M基因的精细遗传图谱。M基因侧翼最近的两个标记SSR23487和S ME8SA7与M基因之间的遗传距离均为0.1cM,最终将M基因定位在0.2 cM的遗传区间内。另外,通过染色体步移法开发出了一个SNP标记SN1,该标记在2,080个F2和751个BC1分离群体当中没有发生重组事件,也即SN1与M基因共分离。
     4.对近等基因系(WI1983G和WI1983H)的雌花和两性花cDNA分别进行EST测序,其中雌花199,032条,两性花176,139条。经Phred/Phrap/Consed软件包聚类拼接后共获得一致性序列(contig)23,627条,雌花和两性花的单一序列(singlet)分别是32,521和33,494条。经Blast比对(Nr非冗余数据库)、IDEG.6分析软件的卡平方检验,发现1,256个Unigene的表达量在雌花和两性花间存在显著性差异(p<0.05)。这些差异表达基因涉及到物质转运、能量代谢、信号转导及胁迫相关等诸多方面。此外,还有一些基因功能未知。
     对雌花和两性花间表达差异显著的1,256个Unigene进行功能注释和GO分类。它们被注释的基因为435个,按照GO分类结果如下:细胞组分,108条,占36%,主要涉及到细胞核、细胞膜、线粒体等6类组分;分子功能,155条,占51%,表现出7类分子活性;生物学过程,39条,占13%,涉及到信号转导、生物合成、代谢等过程。
     以近等基因系为材料,结合AFLP、SSR等多种分子标记构建了黄瓜性别决定基因M的精细遗传图谱,为后续图位克隆法克隆M基因奠定了基础。
     本文通过对WI1983G的雌花和WI1983H两性花约38条EST测序,分析了黄瓜性别相关转录表达谱,初步了解了这些基因参与的生物学过程。此外,本研究中获得的部分功能未知的EST,为我们进一步深入研究黄瓜性别表达的调控机理提供更多的相关候选基因资源。
Sex differentiation in plants is a fundamental developmental process of economic importance since the sexual phenotypes of crops determine the processes of breeding and cultivation. The diverse sex types of cucumber allow this organism to serve as a model system for studying sex expression in flowering plants. The cucumber has three types of flowers:male, female, and bisexual. Morphologically, all cucumber floral buds are initially hermaphroditic with both male and female reproductive organs. Pistil development is then arrested in floral buds that develop into male flowers, whereas stamen development is arrested in floral buds that develop into female flowers. Bisexual flowers form from the buds in which neither pistil nor stamen development is arrested. Three primary genes that influence sex expression in cucumber have been described including F, M and A. In addition, sex expression is also influenced by environmental conditions and plant hormones. Long days, high temperatures, and gibberellic acid promote the formation of male flowers, whereas short days, low temperatures, auxins, and ethylene enhance the development of female flowers. The model of sex determination in cucumber is presumed that ethylene serves as both a promoter of the female sex and an inhibitor of the male sex. The model predicts that the F gene encodes a molecule that influences the range and gradient of ethylene production along the shoot, thereby acting to promote femaleness, whereas the M gene encodes a molecule that detects this ethylene signal and inhibits stamen development when ethylene levels reach a threshold. Recent studies have provided molecular evidence in favor of the ethylene model of sex determination in cucumber: the F gene encodes an ACC synthase, is cloned. The result is accord with above ethylene model of sex determination. In addition, the product of the M locus mediates directly the inhibition of stamen development by ethylene. For further testify the authenticity of the ethylene model, the M gene must be cloned and fine-mapping is the basic of map-based cloning.
     In this study, nearly isogenic cucumber lines WI1983G (gynoecious; MMFF) and WI1983H (hermaphrodite; mmFF), F2 and BC1 individual plants were used to clone Mgene and analysis transcription expression profiling of female and bisexal flower. This study provides theoretic evidences for further understanding the ethylene fuction for sex determination in cucumber, revealing the evolutional history of sex expression in Cucurbitaceae and controling sex expression of other crops for speedup the utilization of heterosis by the way of gene engineering. The main conclusions are as follows:
     1. The mother plant WI1983G bears only pistillate flowers, whereas the mother plant WI1983H bears bisexual flowers. All F1 progeny that were derived from the cross between WI1983G and WI1983H lines bore pistillate flowers. This finding confirmed the complete dominance of the maternal sex type over the paternal sex type. In the 638 F2 individuals, 473 had only pistillate flowers and were scored as gynoecious (M_FF). In addition,165 F2 individuals had only bisexual flowers and were, thus, scored as hermaphroditic (mmFF). These results fit the Mendelian 3:1 ratio (x2= 0.38; p> 0.5); In the 751 BC1 individuals, 373 had only pistillate flowers.378 individuals had only bisexual flowers. These results also fit the Mendelian 1:1 ratio(x2=0.03; p>0.95), indicating the single M locus controlled the segregation of the sex expression in the F2 and BC1 progeny. The result is consonant with the conclusion of others'study.
     2. we obtain four AFLP markers were linked to the M locus using high-throughput AFLP technology. The local map spanned a genetic interval of 5.0 cM, which was defined by the AFLP markers PGGMCCC_450/453 on one side and PGTMCTA_185 on the other side. The M locus co-segregated with the CsEIL1 marker (no recombinants in 96 F2 individuals), which developped according to the pivotal gene EIL1 in ethylene singal, and was flanked by the AFLP markers EACAMCAT_202/203 and EATGMCAA_380 that defined a 2.5 cM interval. The linkage map provides a solid basis for high-resolution mapping and ultimately for molecular isolation of the M gene.
     3. With flanking markers (PGGMCCC_450/453 and PGTMCTA_185) of the M gene, recombinant plants in M interval were identified from 1984 F2 and 751 BC1 segregating population and we obtain 6 AFLP,8 SSR,2 SCAR,1 CAPS markers by the way of screening 896 AFLP primer combinants,2000 SSR primers, relating to superscaff sequence information. A high-resolution genetic map of the M gene was constructed. The M gene was delimited into a genetic interval of 0.2 cM between SSR23487 (0.1 cM) and S_ME8SA7 (0.1 cM). A SNP marker SN1, co-segregating with the M gene based on the linkage analysis (no recombinants in 2,080 F2 and 751 BC1 individuals), was obtained by the way of chromosome walking.
     4.199,032 ESTs in female flower (WI1983G) and 176,139 ESTs in bisexal flower (WI1983H) were obtained from sequencing of cDNA. Sequence assembly by Phred/Phrad/Consed software revealed that 23,627 contigs were acquired except for 32521 singlet sequences in female flower (WI1983G) and 33494 singlet sequences in bisexal flower (WI1983H).1,256 Unigenes, which have distinctly different expression (p<0.05) between female and bisexal flower, were ultimately found out using blast (Nr, non-redundant database) and chi test in the IDEG.6 software. These genes involved in several aspects such as substance transport, energy metabolism, signaling, stress response et al. In addition, there are mostly ESTs with unknown functions (No hits).
     1,256 Unigenes, which have distinctly different expression (p<0.05) between female and bisexal flower, were done with blast, EST annotation and GO classification. By homology search and gene ontology analyses,435 identified ESTs, which were annotated, were mainly categorized as belonging to:Cellular Component (108,36% involving with nucleus, membrane, mitochondrion et al.), Molecular Function (155,51% including seven kinds of molecular activity), and Biology Process (39,13% involving with signaling pathway, biosynthesis, metabolization et al.).
     The fine-mapping of M gene, which privides a basis for map-based cloning M gene, was constructed based on the nearly isogenic lines and AFLP, SSR molecular marker et al.
     By sequence of about 380,000 ESTs in female flower (WI1983G) and bisexal flower (WI1983H) and study of related transcription expression profiling for sex determination in cucumber, the biological processes in which these related genes for sex determination involved in came to be primary understood. In addition, partial unknown-fuction annotation ESTs were obtained in our study, in which provides more candidate genic resources for our further studies the regulative mechanism of sex expression in cucumber.
引文
王少先,彭克勤,萧浪涛,夏石头(2003)逆境下ABA的积累及其触发机制.植物生理学通讯39:413-419
    王希庆,陈柏君,印莉萍(2003)植物中的MYB转录因子.生物技术通报:22-25
    王风格,曲延英,赵久燃,刘龙洲(2003)SSR鉴定SC704玉米亲本及杂交种纯度的研究.西北农业学报12:68-70
    朱振东,贾继增(2003)小麦SSR标记的发展及应用.遗传25:355-360
    李晓辉,李新海,李文华,王振华,马凤鸣,袁力行,张世煌(2003)SSR标记技术在玉米杂交种种子纯度测定中的应用.作物学报29:63-68
    周延清(2005)DNA分子标记技术在植物研究中的应用.化学工业出版社,北京
    孟金陵(1995)植物生殖遗传学.科学出版社,北京
    金红,杜胜利,陈峥,张力,程奕,魏爱民,王永(2004)抗除草剂基因在黄瓜杂种纯度快速鉴定上的应用研究.华北农学报19:31-34
    袁高峰,赵普庆,孙海燕,汪俏梅(2005)黄瓜性器官发育过程中显微形态研究及雄花发育晚SDS-PAGE分析.浙江大学学报(农业与生命科学版)31:145-150
    廖颖(1999)AFLP分子标记及其应用.亚热带植物28:55-60
    关德军(2006)AFLP技术原理及其在植物研究中的应用.安徽农业科学34:3625-3626
    吴耀荣,谢旗(2006)ABA与植物胁迫抗性.植物学通报23:511-518
    娄群峰,陈劲枫,Jahn M,陈龙正,耿红,罗向东(2005)黄瓜全雌性基因连锁的AFLP和SCAR分子标记.园艺学报32:256-261
    张桂华,杜胜利,王鸣,马德华(2004)与黄瓜抗白粉病相关基因连锁的AFLP标记的获得.园艺学报31:189-192
    许智宏,刘春明(1998)植物发育的分子机理.科学出版社,北京
    邓思立,潘俊松,何欢乐,吴爱忠,蔡润(2006)黄瓜M基因连锁的SRAP分子标记.上海交通大学学报(农业科学版)24:240-244
    钟伯雄,余迎朴,徐豫松,俞鸿,鲁兴萌,缪云根,杨君,徐昊,胡松年,楼程富(2004)家蚕五龄幼虫后部丝腺细胞EST的测定和基因表达谱分析.中国科学C辑34:436-443
    陈惠明,刘晓虹(1999)黄瓜性型遗传规律的研究.湖南农业大学学报25:40-43
    陈学好,陈艳萍,金银根(2003)黄瓜性器官败育的细胞学研究.扬州大学学报(农业与生命科学版)24:68-71
    顾兴芳,张素勤,张圣平(2006)黄瓜果实苦味Bt基因的AFLP分子标记.园艺学报33:140-142
    Ainsworth C, Crossley S, Buchanan-Wollaston V, Thangavelu M, Parker J (1995) Male and female flowers of the dioecious plant sorrel show different patterns of MADS box gene expression. Plant Cell 7:1583-1598
    Ainsworth C, Parker J, Buchanan-Wollaston V (1998) Sex determination in plants. Curr Top Dev Biol 38:167-223
    Ando S, Sato Y, Kamachi S, Sakai S (2001) Isolation of a MADS box gene (ERAF17) and correlation of its expression with the induction of formation of female flowers by ethylene in cucumber plants (Cucumis sativus L.). Planta 213:943-952
    Atal CK (1959) Sex reversal in hemp by application of gibberellin. Curr Sci 28:408-409
    Atanassov I, Delichere C, Filatov DA, Charlesworth D, Negrutiu I, Moneger F (2001) Analysis and evolution of two functional Y-linked loci in a plant sex chromosome system. Mol Biol Evol 18:2162-2168
    Atsmon D, Galun E (1962) Physiology of sex in Cucumis sativus L. Leaf age patterns and sexual differentiation of floral buds. Ann Bot 26:137-146
    Atsmon D, Lang A, Light EN (1968) Contents and recovery of gibberellins in monoecious and gynoecious cucumber plants. Plant Physiol 43:806-810
    Augustine JJ, Baker 1R, Sell HM (1973) Female flower induction on androecious cucumber cucumis sativus L. Amer Hort Sci 98:197-199
    Bai SL, Peng YB, Cui JX, Gu HT, Xu LY, Li YQ, Xu ZH, Bai SN (2004) Developmental analyses reveal early arrests of the spore-bearing parts of reproductive organs in unisexual flowers of cucumber (Cucumis sativus L.). Planta 220:230-240
    Barak M, Trebitsh T (2007) A developmentally regulated GTP binding tyrosine phosphorylated protein A-like cDNA in cucumber (Cucumis sativus L.). Plant Mol Biol 65: 829-837
    Bennetzen JL, SanMiguel P, Chen M, Tikhonov A, Francki M, Avramova Z (1998) Grass genomes. Proc Natl Acad Sci U S A 95:1975-1978
    Bensen RJ, Johal GS, Crane VC, Tossberg JT, Schnable PS, Meeley RB, Briggs SP (1995) Cloning and characterization of the maize Anl gene. Plant Cell 7:75-84
    Bonnett O (1948) Ear and tassel development in maize. Ann Mol Bot Gard 35:269-287
    Bracale M, Caporali E, Galli MG, Longo C, Marziani-Longo G, Rossi G, Spada A, Soave C, Falavigna A, Raffaldi F, Maestri E, Restlvo FM, Tassi F (1991) Sex determination and differentiation in asparagus officinalis L. Plant Sci 80:67-77
    Byers RE, Baker LR, Sell HM, Herner RC, Dilley DR (1972) Ethylene:a natural regulator of sex expression of Cucumis melo L. Proc Natl Acad Sci U S A 69:717-720
    Calderon-Urrea A, Dellaporta SL (1999) Cell death and cell protection genes determine the fate of pistils in maize. Development 126:435-441
    Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and Related Proteins. Cell 89:1133-1144
    Charlesworth B, Charlesworth D (2000) The degeneration of Y chromosomes. Philos Trans R Soc Lond B Biol Sci 355:1563-1572
    Cheng P, Greyson R, Walden D (1983) Organ initiation and the development of unisexual flowers in the tassel and ear of Zea mays. American Journal of Botany 70:450-462
    Clark SE, Running MP, Meyerowitz EM (1993) CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119:397-418
    Coen ES, Meyerowitz EM (1991) The war of the whorls:genetic interactions controlling flower development. Nature 353:31-37
    Danin-Poleg Y, Reis N, Baudracco-Arnas S, Pitrat M, Staub JE, Oliver M, Arus P, deVicente CM, Katzir N (2000) Simple sequence repeats in Cucumis mapping and map merging. Genome 43:963-974
    Degenhardt RF, Bonham-Smith PC (2008) Arabidopsis ribosomal proteins RPL23aA and RPL23aB are differentially targeted to the nucleolus and are desperately required for normal development. Plant Physiol 147:128-142
    Delichere C, Veuskens J, Hernould M, Barbacar N, Mouras A, Negrutiu I, Moneger F (1999) SlY1, the first active gene cloned from a plant Y chromosome, encodes a WD-repeat protein. Embo J 18:4169-4179
    Dellaporta SL, Calderon-Urrea A (1993) Sex determination in flowering plants. Plant Cell 5:1241-1251
    Dellaporta SL, Calderon-Urrea A (1994) The sex determination process in maize. Science 266:1501-1505
    DeLong A, Calderon-Urrea A, Dellaporta SL (1993) Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74:757-768
    Deputy JC, Ming R, Ma H, Liu Z, Fitch MM, Wang M, Manshardt R, Stiles JI (2002) Molecular markers for sex determination in papaya (Carica papaya L.). Theor Appl Genet 106:107-111
    Dixon MS, Jones DA, Hatzixanthis K, Ganal MW, Tanksley SD, Jones JD (1995) High-resolution mapping of the physical location of the tomato Cf-2 gene. Mol Plant Microbe Interact 8:200-206
    Dolezel J, Gohde W (1995) Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19:103-106
    Donnison IS, Siroky J, Vyskot B, Saedler H, Grant SR (1996) Isolation of Y chromosome-specific sequences from Silene latifolia and mapping of male sex-determining genes using representational difference analysis. Genetics 144:1893-1901
    Durand B, Durand R (1991) Sex determination and reproductive organ differentiation in Mercurialis. Plant Sci 80:49-65
    Ellis JR, Janick J (1960) The chromosomes of Spinacia oleracea. Am J Bot 47:210-214
    Emerson R (1920) Heritable characters in maize. II. Pistillate flowered maize plants. J Hered 11:65-76
    Ewing RM, Ben Kahla A, Poirot O, Lopez F, Audic S, Claverie JM (1999) Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression. Genome Res 9:950-959
    Farbos I, Veuskens J, Vyskot B, Oliveira M, Hinnisdaels S, Aghmir A, Mouras A, Negrutiu I (1999) Sexual dimorphism in white campion:deletion on the Y chromosome results in a floral asexual phenotype. Genetics 151:1187-1196
    Fazio G, Chung SM, Staub JE (2003) Comparative analysis of response to phenotypic and marker-assisted selection for multiple lateral branching in cucumber (Cucumis sativus L.). Theor Appl Genet 107:875-883
    Feng CD, Stewart JM, Zhang JF (2005) STS markers linked to the Rfl fertility restorer gene of cotton. Theor Appl Genet 110:237-243
    Filatov DA (2005) Substitution rates in a new Silene latifolia sex-linked gene, SlssX/Y. Mol Biol Evol 22:402-408
    Filatov DA, Moneger F, Negrutiu I, Charlesworth D (2000) Low variability in a Y-linked plant gene and its implications for Y-chromosome evolution. Nature 404:388-390
    Filipecki MK, Sommer H, Malepszy S (1997) The MADS box gene CUS1 is expressed during cucumber somatic embryogenesis. Plant Science:63-74
    Galun E, Izhar S, Atsmon D (1965) Determination of relative auxin content in hermaphrodite and andromonoecious Cucurnis sativus L. Plant Physiol 40:321-326
    goffinet MC (1990) Comparative ontogeny of male and female flowers in Cucurnis sativus. In:Biology and Utilization of the Cucurbitaceae(eds DM Bates, RW Robinson, and C Jeffrey). Cornell University Press, New York
    Grant S, Hunkirchen B, Saedler H (1994b) Developmental differences between male and female flowers in the dioecios plant Silene latifolia. Plant J 6:471-480
    Grant SR (1999) Genetics of gender dimorphism in higher plants. In: Geber MA, Dawson TE, and Delph LFs (eds) Gender and sexual dimorphism in flowering plants. Springer-Verlag, Berlin Heidelberg, pp 247-274
    Guo H, Ecker JR (2004) The ethylene signaling pathway:new insights. Curr Opin Plant Biol 7:40-49
    Hao YJ, Wang DH, Peng YB, Bai SL, Xu LY, Li YQ, Xu ZH, Bai SN (2003) DNA damage in the early primordial anther is closely correlated with stamen arrest in the female flower of cucumber (Cucumis sativus L.). Planta 217:888-895
    Hardenack S, Ye D, Saedler H, Grant S (1994) Comparison of MADS box gene expression in developing male and female flowers of the dioecious plant white campion. Plant Cell 6:1775-1787
    Hwang EW, Kim KA, Park SC, Jeong MJ, Byun MO, Kwon HB (2005) Expression profiles of hot pepper(Capsicum annum) genes under cold stress conditions. J Biosci 30:657-667
    Iordachescu M, Verlinden S (2005) Transcriptional regulation of three EIN3-like genes of carnation (Dianthus caryophyllus L. cv. Improved White Sim) during flower development and upon wounding, pollination, and ethylene exposure. J Exp Bot 56:2011-2018
    Irish E, Langdale J, Nelson T (1994) Interactions between sex determination and inflorescence development loci in maize. Dev Genet 15:155-171
    Irish EE (1997) Experimental analysis of tassel development in the maize mutant Tassel Seed 6. Plant Physiol 114:817-825
    Ito T, Kim GT, Shinozaki K (2000) Disruption of an Arabidopsis cytoplasmic ribosomal protein S13-homologous gene by transposon-mediated mutagenesis causes aberrant growth and development. Plant J 22:257-264
    Cho JK, Koo DH, Nam YW, Han CT, Lim HT, Bang JW, Hur YK(2005) Isolation and characterization of cDNA clones expressed under male sex expression conditions in a monoecious cucumber plant (Cucumis sativus L. cv. Winter Long). Euphytica:271-281
    Johnson PR, Ecker JR (1998) The ethylene gas signal transduction pathway:a molecular perspective. Annu Rev Genet 32:227-254
    Jones D (1925) Heritable characters in maize. ⅩⅩⅢ. Silkless. J Hered 16:339-341
    Joobeur T, King JJ, Nolin SJ, Thomas CE, Dean RA (2004) The Fusarium wilt resistance locus Fom-2 of melon contains a single resistance gene with complex features. Plant J 39:283-297
    Kahana A, Silberstein L, Kessler N, Goldstein RS, Perl-Treves R (1999) Expression of ACC oxidase genes differs among sex genotypes and sex phases in cucumber. Plant Mol Biol 41:517-528
    Kamachi S, Mizusawa H, Mazuura S, Sakai S (2000) Expression of two 1-aminocyclopropane-1-carboxylate synthase genes, CS-ACS1 and CS-ASC2, correlated with sex phenotypes in cucumis plants(Cucumis sativus L.). Plant Biotechnol 17:69-74
    Kamachi S, Sekimoto H, Kondo N, Sakai S (1997) Cloning of a cDNA for a 1-aminocyclopropane-1-carbo-xylate synthase that is expressed during development of female flowers at the apices of Cucumis sativus L. Plant Cell Physiol 38:1197-1206
    Kater MM, Colombo L, Franken J, Busscher M, Masiero S, Van Lookeren Campagne MM, Angenent GC (1998) Multiple AGAMOUS homologs from cucumber and petunia differ in their ability to induce reproductive organ fate. Plant Cell 10:171-182
    Kater MM, Franken J, Carney KJ, Colombo L, Angenent GC (2001) Sex determination in the monoecious species cucumber is confined to specific floral whorls. Plant Cell 13:481-493
    Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283-307
    Kenigsbuch D, Cohen Y (1990) the inheritance of gynoecy in muskmelon. genome 33:317-320
    Knopf RR, Trebitsh T (2006) The female-specific Cs-ACSIG gene of cucumber. A case of gene duplication and recombination between the non-sex-specific 1-aminocyclopropane-l-carboxylate synthase gene and a branched-chain amino acid transaminase gene. Plant Cell Physiol 47:1217-1228
    Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172-175
    Kubicki B (1969b) Investigations of sex determination in cucumber (Cucumis sativus L.). Genet Pol 10:69-86
    Kubicki B (1969d) Investigation of sex determination in cucumber (Cucumis sativus L.). Genet Pol 10:123-143
    Kubicki B (1974) New sex types in cucumber and their uses in breeding work. XIXth International Horticultural Congress, Warszawa, pp 475-485
    Kunzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397-412
    Lahn BT, Page DC (1997) Functional coherence of the human Y chromosome. Science 278:675-680
    Lahn BT, Pearson NM, Jegalian K (2001) The human Y chromosome, in the light of evolution. Nat Rev Genet 2:207-216
    Laporte V, Filatov DA, Kamau E, Charlesworth D (2005) Indirect evidence from DNA sequence diversity for genetic degeneration of the Y-chromosome in dioecious species of the plant Silene:the SIY4/SIX4 and DD44-X/DD44-Ygene pairs. J Evol Biol 18:337-347
    Lardon A, Georgiev S, Aghmir A, Le Merrer G, Negrutiu I (1999) Sexual dimorphism in white campion: complex control of carpel number is revealed by y chromosome deletions. Genetics 151:1173-1185
    Lazarte JE, Palser BF (1979) Morphology, vascular anatomy and embryology of pistillate and staminate flowers of Asparagus officinalis. American Journal of Botany 66:753-764
    Lebel-Hardenack, Grant SR (1997) Genetics of sex determination in flowering plants. Trends Plant Sci 2:130-136
    Loptien D (1979) Identification of the sex chromosome pair in aspara.gus(Asparagus officinalis L.). Zeitschr fur Pflanzenzuchtung 82:162-173
    Malepszy S, Niemirowicz-Szczytt K (1991) Sex determination in cucumber(Cucumis sativus) as a model system for molecular biology. Plant Science 80:39-47
    Matsumura H, Nirasawa S, Terauchi R (1999) Technical advance:transcript profiling in rice(Oryza sativa L.) seedlings using serial analysis of gene expression (SAGE). Plant J 20:719-726
    Matsunaga S, Isono E, Kejnovsky E, Vyskot B, Dolezel J, Kawano S, Charlesworth D (2003) Duplicative transfer of a MADS box gene to a plant Y chromosome. Mol Biol Evol 20:1062-1069
    Matsunaga S, Lebel-Hardenack S, Kejnovsky E, Vyskot B, Grant SR, Kawano S (2005) An anther-and petal-specific gene SIMF1 is a multicopy gene with homologous sequences on sex chromosomes. Genes Genet Syst 80:395-401
    McGregor CE, Lambert CA, Greyling MM, Louw JH, Warnich L (2000) A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solarnum tuberosum L.) germplasm. Euphytica 113:135-144
    Mekhedov S, Martinnez de Ilarduya O, Ohlrogge J (2000) Towards a functional catalog of the plant genome:a survey of genes for lipid biosynthesis. Plant Physiol 122:389-401
    Mena M, Ambrose BA, Meeley RB, Briggs SP, Yanofsky MF, Schmidt RJ (1996) Diversification of C-function activity in maize flower development. Science 274:1537-1540
    Mibus H, Tatlioglu T (2004) Molecular characterization and isolation of the F/f gene for femaleness in cucumber (Cucumis sativus L.). Theor Appl Genet 109:1669-1676
    Zhu MY, Wang YY, Zhu YY, Lu BR. (2004) Estimating genetic diversity of rice landraces from yunnan by SSR assay and its implication for conservation. Acta Botanica Sinica 46:1458-1467
    Moore RC, Kozyreva O, Lebel-Hardenack S, Siroky J, Hobza R, Vyskot B, Grant SR (2003) Genetic and functional analysis of DD44, a sex-linked gene from the dioecious plant Silene latifolia, provides clues to early events in sex chromosome evolution. Genetics 163:321-334
    Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321-4325
    Negrutiu I, Vyskot B, Barbacar N, Georgiev S, Moneger F (2001) Dioecious plants. A key to the early events of sex chromosome evolution. Plant Physiol 127:1418-1424
    Ng M, Yanofsky MF (2000) Three ways to learn the ABCs. Curr Opin Plant Biol 3:47-52
    Nicolas M, Marais G, Hykelova V, Janousek B, Laporte V, Vyskot B, Mouchiroud D, Negrutiu I, Charlesworth D, Moneger F (2005) A gradual process of recombination restriction in the evolutionary history of the sex chromosomes in dioecious plants. PLoS Biol 3:e4
    Nishimura T, Wada T, Okada K (2004) A key factor of translation reinitiation, ribosomal protein L24, is involved in gynoecium development in Arabidopsis. Biochem Soc Trans 32:611-613
    Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling:biosynthesis, catabolism, and response pathways. Plant Cell 14 Suppl:S61-80
    Papadopoulou E (2002) sex expression in cucurbits:the role of ethylene synthesis and perception and sex determination genes. Michigan State University
    Parker JS, Clark MS (1991) Dosage sex-chromosome systems in plants. Plant Sci 80:79-92
    Perl-Treves P (1999) Male to female conversion along the cucumber shoot: approaches to studying sex genes and floral development in Cucumis sativus. In: Ainsworth CC (ed) Sex determination in plants. BIOS Scientific Publisher
    Perl-Treves R, Kahana A, Rosenman N, Xiang Y, Silberstein L (1998) Expression of multiple AGAMOUS-like genes in male and female flowers of cucumber (Cucumis sativus L.). Plant Cell Physiol 39:701-710
    Phinney BO (1956) Growth response of single-gene dwarf mutants in maize to gibberellic acid. Proc Natl Acad Sci U S A 42:185-189
    Pierce LK, Wehner TC (1990) Review of genes and linkage groups in cucumber. HortScience 25:605-615
    Przybecki Z, Kowalczyk ME, Siedlecka E, Urbanczyk-Wochniak E, Malepszy S (2003) The isolation of cDNA clones from cucumber (Cucumis sativus L.) floral buds coming from plants differing in sex. Cell MolBiol Lett 8:421-438
    Richards DE, King KE, Ait-ali T, Harberd NP (2001) How gibberellin regulates plant growth and development: A molecular genetic analysis of gibberellin signaling. Annu Rev, Plant Physiol Plant Mol BiolPlant Mol Biol 52:67-88
    Rieu I, Mariani C, Weterings K (2003) Expression analysis of five tobacco EIN3 family members in relation to tissue-specific ethylene responses. J Exp Bot 54:2239-2244
    Robertson SE, Li Y, Scutt CP, Willis ME, Gilmartin PM (1997) Spatial expression dynamics of Men-9 delineate the third floral whorl in male and female flowers of dioecious Silene latifolia. Plant J 12:155-168
    Rood SB, Pharis RP (1980) Changes of endogenous gibberellin-like substances with sex reversal of the apical inflorescence of corn. Plant Physiol 66:793-796
    Roy RP, Saran S (1990) sex expression in the Cucurbitaceae, In DM Bates, RW Robinson, C Jeffry, eds, Biology and utilization of the Cucurbitaceae. Cornell University, NY
    Rudich J (1990) Biochemical aspects of hormonal regulation of sex expression in Cucurbits. Cornell Univ, NY
    Rudich J, Baker LR, Scott JW, Sell HM (1976) Phenotypic stability and ethylene evolution in androecious cucumber. J Amer Hort Sci 101:48-51
    Rudich J, Halevy AH, Kedar N (1969) Increase in femaleness of three cucurbits by treatment with ethrel, an ethylene releasing compound. Planta 86:69-76
    Rudich J, Halevy AH, Kedar N (1972) Ethylene evolution from cucumber plants as related to sex expression. Plant Physiol 49:998-999
    Saito S, Fujii N, Miyazawa Y, Yamasaki S, Matsuura S, Mizusawa H, Fujita Y, Takahashi H (2007) Correlation between development of female flower buds and expression of the CS-ACS2 gene in cucumber plants. Journal of Experimental Botany 58:2897-2907
    Sakai H, Medrano LJ, Meyerowitz EM (1995) Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature 378:199-203
    Schmidt RJ, Veit B, Mandel MA, Mena M, Hake S, Yanofsky MF (1993) Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. Plant Cell 5:729-737
    Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250:931-936
    Scutt CP, Jenkins T, Furuya M, Gilmartin PM (2002) Male specific genes from dioecious white campion identified by fluorescent differential display. Plant Cell Physiol 43:563-572
    Scutt CP, Li T, Robertson SE, Willis ME, Gilmartin PM (1997) Sex determination in dioecious Silene latifolia. Effects of the Y chromosome and the parasitic smut fungus (Ustilago violacea) on gene expression during flower development. Plant Physiol 114:969-979
    Sherry RA, Eckard KJ, Lord EM (1993) Flower development in dioecious Spinacia oleracea (Chenopodiaceae). Am J Bot 80:283-291
    Shifriss O (1961) Sex control in cucumbers. J Hered 52:5-12
    Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, Repping S, Pyntikova T, Ali J, Bieri T, Chinwalla A, Delehaunty A, Delehaunty K, Du H, Fewell G, Fulton L, Fulton R, Graves T, Hou SF, Latrielle P, Leonard S, Mardis E, Maupin R, McPherson J, Miner T, Nash W, Nguyen C, Ozersky P, Pepin K, Rock S, Rohlfing T, Scott K, Schultz B, Strong C, Tin-Wollam A, Yang SP, Waterston RH, Wilson RK, Rozen S, Page DC (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423:825-837
    Spray CR, Kobayashi M, Suzuki Y, Phinney BO, Gaskin P, MacMillan J (1996) The dwarf-1 (dt) Mutant of Zea mays blocks three steps in the gibberellin-biosynthetic pathway. Proc Natl Acad Sci U S A93:10515-10518
    Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: Join Map The Plant Journal 3:739-744
    Sterky F, Regan S, Karlsson J, Hertzberg M, Rohde A, Holmberg A, Amini B, Bhalerao R, Larsson M, Villarroel R, Van Montagu M, Sandberg G, Olsson O, Teeri TT, Boerjan W, Gustafsson P, Uhlen M, Sundberg B, Lundeberg J (1998) Gene discovery in the wood-forming tissues of poplar: analysis of 5,692 expressed sequence tags. Proc Natl Acad Sci U S A 95:13330-13335
    Sugiyama R, Kazama Y, Miyazawa Y, Matsunaga S, Kawano S (2003) CCLS96.1, a member of a multicopy gene family, may encode a non-coding RNA preferentially transcribed in reproductive organs of Silene latifolia. DNA Res 10:213-220
    Sun T, Goodman HM, Ausubel FM (1992) Cloning the Arabidopsis GA1 locus by genomic subtraction. Plant Cell 4:119-128
    Tanurdzic M, Banks JA (2004) Sex-determining mechanisms in land plants. Plant Cell 16 Suppl:S61-71
    Theissen G, Strater T, Fischer A, Saedler H (1995) Structural characterization, chromosomal localization and phylogenetic evaluation of two pairs of AGAMOUS-like MADS box genes from maize. Gene 156:155-166
    Tieman DM, Ciardi JA, Taylor MG, Klee HJ (2001) Members of the tomato LeEIL (EIN3-like) gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J 26:47-58
    Tolla GE, Peterson CE (1979) Comparison of gibberellin A4/A7 and silver nitrate for induction of staminate flowers in a gynoecious cucumber line. HortScience 14:542-544
    Trebitsh T, Rudich J, Rivoc J (1987) Auxin, biosynthesis of ethylene and sex expression in cucumber (Cucumis sativus). Plant Growth Regul 5:105-113
    Trebitsh T, Staub JE, O'Neill SD (1997) Identification of a 1-aminocyclopropane-l-carboxylic acid synthase gene linked to the female (F) locus that enhances female sex expression in cucumber. Plant Physiol 113:987-995
    Urasaki N, Tokumoto M, Tarora K, Ban Y, Kayano T, Tanaka H, Oku H, Chinen I, Terauchi R (2002) A male and hermaphrodite specific RAPD marker for papaya (Carica papaya L.). Theor Appl Genet 104:281-285
    Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, et al. (1995) AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407-4414
    Wang Z, Zang QW, Guo ZA, Jing RL (2004) A preliminary study on gene expression profile induced by water stress in wheat (Triticum aestivum L.) seedling. Yi Chuan Xue Bao 31:842-849
    Warmke H (1946) Sex determination and sex balance in Melandrium. Am J Bot 33:648-660
    Weijers D, Franke-van Dijk M, Vencken RJ, Quint A, Hooykaas P, Offringa R (2001) An Arabidopsis Minute-like phenotype caused by a semi-dominant mutation in a RIBOSOMAL PROTEIN S5 gene. Development 128:4289-4299
    Westergaard M (1948) The relation between chromosome constitution and sex in the offspring of triploid Melandrium. Hereditas 34:255-279
    Winkler RG, Helentjaris T (1995) The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in Gibberellin biosynthesis. Plant Cell 7:1307-1317
    Witkowicz J, Urbanczyk-Wochniak E, Przybecki Z (2003) AFLP marker polymorphism in cucumber (Cucumis sativus L.) near isogenic lines differing in sex expression. Cell Mol Biol Lett 8:375-381
    Wu HM, Cheun AY (2000) Programmed cell death in plant reproduction. Plant Mol Biol 44:267-281
    Yamasaki S, Fujii N, Matsuura S, Mizusawa H, Takahashi H (2001) The M locus and ethylene-controlled sex determination in andromonoecious cucumber plants. Plant Cell Physiol 42:608-619
    Yamasaki S, Fujii N, Takahashi H (2000) The ethylene-regulated expression of CS-ETR2 and CS-ERS genes in cucumber plants and their possible involvement with sex expression in flowers. Plant Cell Physiol 41:608-616
    Yamasaki S, Fujii N, Takahashi H (2003a) Characterization of ethylene effects on sex determination in cucumber plants Sexual Plant Reproduction 16:103-111
    Yampolsky C, Yampolsky H (1922) Distribution of the sex forms in the phanerogamic flora. Bibl Genet 3:1-62
    Yin T, Quinn JA (1995) Tests of a mechanistic model of one hormone regulating both sexes in Cucumis sativus (Cucurbitaceae). Am J Bot 82:1537-1546

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700