补肾生血法对慢性再生障碍性贫血骨髓造血粘附FAK/PI3K通路及Rho GTP酶的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:1.观察以补肾生血法所立之方补髓生血颗粒对慢性再生障碍性贫血(chronic aplastic anemia, CAA)患者的临床疗效。2.探讨FAK/PI3K信号转导通路及Rho GTP酶在CAA造血粘附异常发病机制中的作用,阐明补髓生血颗粒对CAA患者骨髓FAK/PI3K信号通路及Rho GTP酶干预作用。
     方法:1.按照随机数字表法将108例CAA患者分成两组,试验组55例,使用补髓生血颗粒治疗;对照组53例,使用再造生血片治疗。两组均以3个月为1个疗程,共治疗2个疗程。2.治疗6个月后,对两组患者临床疗效、中医症状、中医证候疗效、外周血象及骨髓象进行比较。3.采用蛋白印迹法检测CAA患者治疗前后骨髓FAK/PI3K信号通路中相关酶类蛋白及其磷酸化水平和Rho GTP酶的表达;采用逆转录PCR法检测CAA患者治疗前后骨髓FAK及PI3K p85 mRNA表达变化。
     结果:1.补肾生血中药补髓生血颗粒治疗CAA的临床总有效率为74.55%,明显优于对照组(P<0.05);补髓生血颗粒能在一定程度上改善CAA患者中医症状频次的出现及中医症状平均积分(P均<0.05),试验组中医证候疗效总有效率为87.27%,明显高于对照组(P<0.05);在改善CAA患者外周血白细胞计数及血红蛋白含量时,试验组优于对照组(P均<0.05);而CAA患者肾阳虚型的临床疗效优于肾阴虚型(P<0.05)。2. CAA患者骨髓单个核细胞FAK、phospho-FAK Tyr397的蛋白表达与FAK mRNA表达均低于正常对照组(P均<0.05),补髓生血颗粒能够上调三者低水平的异常表达(P均<0.05),且试验组优于对照组(P<0.05);试验组肾阳虚型中的FAK蛋白表达和FAK mRNA表达改善程度与肾阴虚型比较,具有统计学意义(P均<0.05),其中肾阳虚型FAK mRNA表达基本可达正常对照组水平(P>0.05)。3.CAA患者骨髓单个核细胞PI3K、phospho-PI3K p85的蛋白表达与PI3K p85 mRNA表达均低于正常对照组(P均<0.05),补髓生血颗粒能够改善其表达水平(P均<0.05);试验组PI3K及phospho-PI3Kp85的蛋白表达水平改善优于对照组(P均<0.05);疗前试验组肾阳虚型PI3K蛋白表达高于肾阴虚型(P<0.05);疗后肾阳虚型与肾阴虚型进行比较,仅PI3K p85 mRNA的改善程度存在显著性差异(P<0.05)。4.CAA患者骨髓单个核细胞RhoA、CDC42和Rac的蛋白表达均明显低于正常对照组(P均<0.05),经补髓生血颗粒治疗后,三者的蛋白表达均有所上升(P均<0.05);试验组中RhoA和CDC42改善程度优于对照组(P均<0.05);疗前试验组中肾阳虚型CDC42蛋白表达高于肾阴虚型(P<0.05);治疗前后RhoA和CDC42蛋白表达进行比较,肾阳虚型的改善程度优于肾阴虚型(P均<0.05)。
     结论:1.补髓生血颗粒治疗CAA的疗效确切,提示治疗CAA应从肾论治,以补肾为主法。2.骨髓单个核细胞FAK异常低表达与CAA发病造血粘附异常机制有一定关系。3.骨髓单个核细胞PI3K及PI3K p85的异常低水平表达可能参与CAA发病机制。4.整合素介导的FAK/PI3K信号转导通路异常可能是CAA造血粘附异常发病机制的重要环节。5.骨髓单个核细胞中Rho GTP相关酶类Rho、CDC42和Rac呈异常低表达,可能影响造血干细胞的归巢和迁移机制。6.补髓生血颗粒可以改善FAK/ PI3K信号转导通路中相关酶类及Rho GTP酶的蛋白表达,使得FAK/PI3K信号通路及Rho GTP酶得以活化,其机制可能是通过改善粘着斑的形成、调节细胞骨架、促进造血细胞的增殖、改善造血微环境、促进造血干细胞与造血微环境相互作用等,从而改善造血干细胞/祖细胞的归巢、移行,增强造血粘附信号转导,使造血功能得以恢复。7.对CAA根据肾虚进行辨证分型治疗,在临床疗效及改善FAK、FAK mRNA、PI3K p85 mRNA、RhoA和CDC42的表达时,肾阳虚型皆优于肾阴虚型。
Objectives:1. To observe the clinical efficacy of Busui Shengxue Granule in chronic aplastic anemia (CAA) patients.2. To explore the roles of FAK/PI3K signaling transduction pathway and Rho GTPase in CAA pathogenesis of abnormal hematopoietic adhesion. We observed the influences on FAK/PI3K signaling transduction pathway and Rho GTPase in CAA patients with Busui Shengxue Granule.
     Methods:1. One hundred and eight patients of CAA were divided into two groups at random, the experimental group contained 55 cases, and the control group contained 53 cases. The experimental group was treated by Busui Shengxue Granule, while the control group was treated by Zaizao Shengxue Tablet. All the patients should be treated for 6 months at least.2. After 6 months of treatment, compared the differences of clinical efficacy, traditional Chinese medicine (TCM) symptoms, the efficacy of TCM syndromes, peripheral blood and bone marrow in the two groups.3. Before and after treatment, the protein expression of some enzymes and theirs phosphorylation levels in FAK/PI3K signaling transduction pathway of CAA patients were examined by Western blot, the protein expression levels of Rho GTPase ware examined by Western blot too, and the mRNA expression levels of FAK and PI3K p85 in bone marrow mononuclear cells of CAA patients were examined by RT-PCR.
     Results:1. The total clinical effective rate of Busui Shengxue Granule in CAA patients was 74.55%, significantly better than the control group (P<0.05). Busui Shengxue Granule could significantly regulate the frequencies and average score of TCM clinical symptoms significantly (P all<0.05), the total effective rate of TCM syndromes in experimental group was 87.27%, significantly higher than the control group (P<0.05).. While improving WBC, Hb and PLT in CAA patients'peripheral blood, the experimental group was better than control group (P all<0.05). The clinical efficacy of CAA patients in Kidney-Yang deficiency type was superior to Kidney-Yin (P<0.05).2. The protein expression levels of FAK, phospho-FAK Tyr397 and mRNA expression levels of FAK in CAA patients'bone marrow mononuclear cells were lower than the normal control group (P all<0.05), Busui Shengxue Granule could increase the abnormal expression levels of these three (P all<0.05), and the significant difference existed in the experimental group and control group (P<0.05). While regulating the expression levels of FAK and FAK mRNA, the Kidney-Yang deficiency type was better than Kidney-Yin (P all<0.05), and the mRNA expression levels of FAK could be up to the normal control group (P>0.05).3. The protein expression levels of PI3K, phospho-PI3K p85 and the mRNA expression levels of PI3K p85 in CAA patients'bone marrow mononuclear cells were significantly lower than the normal control group (P all<0.05), Busui Shengxue Granule could improve the expression levels all of them (P all<0.05). In improving the protein expression levels of PI3K and phospho-PI3K p85, the experimental group was better than control group (P all<0.05). Before treatment, the protein expression levels of PI3K in Kidney-Yang deficiency type were higher than Kidney-Yin (P<0.05). After treatment, the significant difference existed in regulating PI3K p85 mRNA between the two types (P<0.05).4. The protein expression levels of RhoA, CDC42 and Rac in CAA patients'bone marrow mononuclear cells were lower than the normal control group (P all<0.05), Busui Shengxue Granule could increase the levels all of them (P all<0.05). In improving the protein expression levels of RhoA and CDC42, the experimental group was better than control group (P all<0.05). Before treatment, the protein expression levels of CDC42 in Kidney-Yang deficiency type were higher than Kidney-Yin (P<0.05). After treatment, the significant difference existed in regulating RhoA and CDC42 between the two types (P all<0.05).
     Conclusion:1. The clinical efficacy of Busui Shengxue Granule in CAA patients was significant, it reminded us that treating CAA should be invigorating kidney based on kidney. 2. The low expression of FAK in bone marrow mononuclear cells might have a certain relationship with CAA pathogenesis of abnormal hematopoietic adhesion.3. The low expression of PI3K and PI3K p85 in bone marrow mononuclear cells might be involved the pathogenesis of CAA.4. The abnormity of FAK/PI3K signal transduction pathway integrin-mediated might be a key link in CAA pathogenesis of abnormal hematopoietic adhesion.5. The low expression of Rho GTPase, including Rho, CDC42 and Rac, might affect the mechanisms of hematopoietic stem cell homing and migration.6. Busui Shengxue Granule could improve some enzymes in FAK/PI3K signal transduction pathway and Rho GTPase family, make FAK/PI3K signal transduction pathway and Rho GTPase family to activate, the mechanisms might improve the formation of focal adhesions, regulate cytoskeleton, promote hematopoietic cell proliferation, differentiation, improve the hematopoietic microenvironment, so as to improve the hematopoietic stem cell/progenitor cell homing, migration, and enhance the adhesion of hematopoietic signal transduction, then the hematopoietic function to resume.7. The clinical efficacy of Busui Shengxue Granule in Kidney-Yang deficiency type is higher than Kidney-Yin in CAA patients. Meanwhile, in Kidney-Yang deficiency type, the protein expression levels of FAK, RhoA, CDC42 and mRNA expression levels of FAK, PI3K p85 also could be better corrected than in Kidney-Yin.
引文
1 杨崇礼.再生障碍性贫血[M].第2版.天津:天津科技翻译出版公司,2000,1.
    2 房大中,李永滨,林宏芹.浅议再障的病机关键为肾虚[J].中医药学报,1999,(1):8.
    3 孙伟正,于材声.以补肾中药为主治疗再生障碍性贫血215例的生存率及远期疗效分析[J].中医杂志,1988,29(4):27.
    4 孙伟正,王祥麒,袁斌华,等.补髓生血胶囊治疗慢性再生障碍性贫血的临床观察[J].中国中西医结合杂志,1997,17(8):467-469.
    5 周霭祥,王天恩,杨经敏,等.益肾生血片为主治疗再生障碍性贫血的临床研究[J].中国中西医结合杂志1998:18(10):603-606.
    6 王树庆.愈障生血汤治疗慢性再生障碍性贫血贫血及对骨髓CD34+细胞凋亡调控作用的研究[D].济南:山东中医药大学,2003:3-6.
    7 徐瑞荣.补肾益髓法对慢性再生障碍性贫血造血细胞调控因子的研究[D].天津:天津中医学院,2005:60-62.
    8 张赓莉,王兵.温阳补肾法治疗慢性再生障碍性贫血41例[J].河北医学,2005,11(11):1054-1055.
    9 戴媺,陈志雄.补肾中药内外合治法治疗慢性再生障碍性贫血的临床观察[J].广州中医药大学学报,2005,22(4):269-271.
    10 邸海峡,杨学军,杨淑莲,等.系列中药制剂治疗再生障碍性贫血的临床及实验研究[J].中外健康文摘,2006,3(6):30-31.
    11 韩惠杰,王运律,刘敏.补肾颗粒治疗慢性再障贫血51例疗效观察[J].新中医,2009,41(12):48-49.
    12李宗江,杜坤一.补肾生血汤治疗慢性再障80例报道[J].光明中医,2010,25(7):1205.
    13 Schofiled R. The relationship between the spleen colony-forming cell and the haematopietic stem [J]. Blood Cells,1978,4:7-25.
    14 Xie T, Spradling AC. A niche maintaining germ line stem cells in the drosophila ovary [J]. Science, 2000,290(5490):328-330.
    15 罗成基.造血微环境基质细胞的研究概况及前景[J].解放军医学杂志,1999,24(1):1-2.
    16唐红梅,马静,韩代书.骨髓造血干细胞微环境[J].细胞生物学杂志,2008,30:323-328.
    17 Zhang J, Niu C, Ye L, et al. Identification of the haematopoietic stem cell niche and control of the niche size[J]. Nature,2003,425:836-841.
    18 Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche [J]. Nature,2003,425:841-846.
    19 Visnjic D, Kalajzic I, Gronowicz G, et al. Conditional ablation of the osteoblast lineage in Col2.3deltatk transgenic mice [J]. J Bone Mineral Res,2001,16:2222-2231.
    20 Kollet O, Dar A, Lapidotet T. The multiple roles of osteoclasts in host defense:bone remodeling and hematopoietic stem cell mobilization [J]. Annu Rev Immunol,2007,25:51-69.
    21 Kopp HG, Avecilla ST, Hooper AT, et al. The bone marrow vascular niche:home of HSC differentiation and mobilization [J]. Physiology (Bethesda) 2005,20:349-356.
    22 KielMJ, Yilmaz OH, Iwashita T, et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells [J]. Cell,2005,121:1109-1121.
    23杨啊晶,冯凯,陈虎.造血.干细胞归巢机制的研究进展[J].白血病·淋巴瘤,2003,13(6):378-380.
    24 Ara T, Tokoyoda K, Sugiyama T, et al. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny [J]. Immunity,2003,19(2): 257-267.
    25魏立,孔佩艳.SDF-1/CXCR-4在造血干细胞归巢中的作用[J].国外医学输血及血液学分册,2003,26(2):161-163.
    26 Psenak O. Stromal cell-derived factor 1 (SDF-1). Its structure and function[J]. Cas Lek Cesk.,2001, 140(12):355-363.
    27 Ma Q, Jones D, Springer T A. The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment [J]. Immunity,1999, 10(4):463-471.
    28 Gu Y, Filippi MD, Cancelas JA, et al. Hematopoietic cell regulation by Racl and Rac2 guanosine triphosphatases [J]. Science,2003,302:445-449.
    29 Cancelas JA, Lee AW, Prabhakar R, et al. Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization [J]. Nat Med,2005,11:886-891.
    30 Mohle R, Moore MAS, Nachman RL, et al. Transendothelial migration of CD34+ and mature hematopietic cells into:an in vitro study using a human bone marrow endothelial cell line [J]. Blood, 1997,89(1):72-80.
    31 李忠俊,陈幸华.整合素对造血干细胞在骨髓微环境中迁徙作用的分子机制[J].重庆医学,2003,32(7):922-924.
    32 曾爱屏.细胞黏附因子研究的新进展[J].国外医学免疫学分册,2003,26(3):167-169.
    33 Swertfeger DK, Hui DY. Apolipoprotein E:a cholesterol transport protein with lipid transport-independent cell signaling properties [J]. Front Biosci,2001,6:526-535.
    34李晋辉,母得志.整合素及其信号通路[J].医学分子生物学杂志,2007,4(3):279-282.
    35 Li W, Metcalf DG., Gorelik R, et al. A push-pull mechanism for regulating integrin function [J]. Proc Natl Acad Sci USA,2005,102:1424-1429.
    36黎晓,龚春燕.整合素及其信号转导通路的研究进展[J].赣南医学院学报,2007,27(1):153-154.
    37 Roy S, Ruest PJ, Hanks SK. FAK regulates tyrosine phosphorylation of CAS, paxillin, and PYK2 in cells expressing v-Src, but is not a critical determinant of v-Src transformation [J]. J Cell Biochem,2002,84(2):377-388.
    38 Vermeulen M, Le Pesteur F, Gagnerault MC, et al. Role of adhe sion molecules in the homing and mobilization of murine hematopoietic stem and progenitor cells [J]. Blood,1998,92(3):894.
    39 Zanjani ED, Flake AW, Almeida PG, et al. Homing of human cells in the fetal sheep model: modulation by antibodies activating or inhibiting very late activation antigen-4-dependent function [J]. Blood,1999,94(7):2515.
    40 Peled A, Kollet O, Ponomaryov T, et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+cells:role in transendothelial/stromal migration and engraftment of NOD/SCID mice[J]. Blood,2000,95(11):3289.
    41 Dave B, Watanabe T, Singh RK, et al. Growth factor mobilization and modulation of progenitor cell adhesion to stromal cells:role of VLA-4 [J]. J Hematol Stem Cell Res,2000,9(4):507.
    42 Yong KL, Fahey A, Pahal G, et al. Fetal haemopoietic cells display enhanced migration across endothelium [J]. Br J Haematol,2002,116(2):392.
    43 Fisher RC, Lovelock JD, Scott EW, et al. A critical role for PU.1 in homing and long-term engraftment by hematopoietic stem cells in the bone marrow [J]. Blood,1999,94(4):1283-1290.
    44袁一旻,姚真真,焦炳华.黏着斑酶的结构与功能[J].生命的化学,2006,26(5):411-413.
    45李树裕,王志钢.粘附斑激酶(FAK)及其信号通路研究进展[J].生物技术通报,2009,(12):6-10.
    46 Lietha D, Cai X, Ceccarelli DF, et al. Structural basis for the auto inhibition of focal adhesion kinase [J]. Cell,2007,129:1177-1187.
    47 Calalb M, Polte TR, Hanks SK. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity:A role for Src family kinases [J]. Mol Cell Biol,1995, 15(2):954-963.
    48 van Nimwegen M, van de Water B. Focal adhesion kinase:A potential target in cancer therapy [J]. Biochemical Pharmacology,2007,73(5):597-609.
    49许吕宏,方建培.粘附斑激酶在血液系统中的作用[J].医学输血及血液学杂志,2010,33(1):57-59.
    50 Ilic D, Furuta Y, Kanazawa S, et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice [J]. Nature,1995,377:539-544.
    51 Cary LA, Han DC, Polte TR, et al. Identification of p130C as a mediator of focal adhesion kinase-pro-moted cell migration [J]. Cell,1998,140:211-221.
    52 Marin TM, Clemente CF, Santos AM, et al. Shp2 negatively regulates growth in cardiomyocytes by controlling focal adhesion kinase/Src and mTOR pathways [J]. Circulation Res,2008,103: 813-824.
    53 Ren X, Kiosses WB., Sieg DJ., et al. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover [J]. Journal of Cell Science,2000,113:3673-3678.
    54 Schlaepfer DD., Jones K.C., Hunter T. Multiple Grb2-Mediated Integrin-Stimulated Signaling Pathways to ERK2/Mitogen-Activated Protein Kinase:Summation of Both c-Src- and Focal Adhesion Kinase-Initiated Tyrosine Phosphorylation Events [J]. Mol Cell Bio,1998,18(5): 2571-2585.
    55 Sehlaepfer D D., Hunter T. Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases [J]. Mol cell Biol,1996,16(10): 5623-5633.
    56 Zhao JH, Guan JL. Signal transduction by focal adhesion kinase in cancer [J]. Cancer Metastasis Rev,2009,28:35-49.
    57 Xie B, Zhao J, Kitagawa M, et al. Focal adhesion kinase activates Statl in integrin2mediated cell migration and adhesion [J]. J BiolChem,2001,276(22):19512-19523.
    58杨红军,丁彦青.整合素激活FAK介导的信号转导通路与大肠癌[J].国外医学肿瘤学分册,2003,30(3):221-224.
    59 Shin, WS, Maeng, YSJ, Jung, JW, et al. Soluble PTK7 inhibits tube formation, migration, and invasion of endothelial cells and angiogenesis [J]. Biochem Biophys Res Commun,2008, 371(4):793-798.
    60 Ridley A J, Hall A. The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth-factors [J]. Cell,1992,70:389-399.
    61 Ridley A J, Paterson H F, Johnston C L, et al. The small GTP-binding protein Rac regulates growthfactor induced membrane ruffling[J]. Cell,1992,70:401-410.
    62 Nobes C D, Hall A. Rac and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia [J]. Cell,1995,81:53--62.
    63 Bokoch G M. Regulation of cell function by Rho family GTPases. [J]. Immunol Res,2002,21: 139-148.
    64 Etienne-Manneville S, Hall A. Rho GTPases in cell biology [J]. Nature,2002,420:629-635.
    65 Jaffe AB, Hall A. Rho GTPases:biochemistry and biology [J]. Annu RevCell Dev Biol,2005, 21:247-269.
    66 Keith B, Krister W. Rho and Rac take center stage [J]. Cell,2004,116:167-179.
    67 Olofsson B. Rho guanine dissociation inhibitors:pivotal molecules in cellular signaling [J]. Cell Signal,1999,11(8):545-554.
    68 Aspenstrom P. Effectors for the Rho GTPases [J]. Curr Opin Cell Biol,1999,11:95-102.
    69朱正,梁英锐,邱洪明.Rho蛋白家族的生物活性[J].国外医学·生理、病理科学与临床分册,2002,22(6):251-254.
    70 Peck J, Douglas Gt, Wu CH, et al. Human RhoGAP domain-containing proteins:structure, function and evolutionary relationships [J]. FEBS Lett,2002,528:27-34.
    71姚志红,唐圣松.Rho GTPase在信号转导和细胞骨架中的作用[J].国际病理科学与临床杂志,2009,29(1):20-26.
    72 Rossman KL, Der CJ, Sondek J. GEF means go:turning on RHO GTPases with guanine nueleotide-exehange factors [J]. Nat Rev Mol Cell Biol,2005,6:167-180.
    73 Zalcman G, Closson V, Camonis J, et al. RhoGDI-3 is a new GDP dissociation inhibitor (GDI). Identification of a non-cytosolic GDI protein interacting with the small GTP-binding proteins RhoB and RhoG[J]. J BiolChem,1996,271(48):30366-30374.
    74 Wheeler AP, Ridley AJ. Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility [J]. Exp Cell Res,2004,301(1):43-49.
    75 吕新玲,孙振柱.Rho亚家族与乳腺癌的研究进展[J].医学综述,2008,14(9):1328-1331.
    76 Matos P, Skaug J, Marques B, et al. Small GTPase Rac 1:structure, localization, and expression of the human gene [J]. Biochem Biophys Res Commun,2000,277(3):741-51.
    77 Schnelzer A, Prechtel D, Harbeck N, et al. Rac in human breast cancer:over expression, mutation analysis, and characterization of a new isofonn, Raclb [J]. Oncogene,2000,19(26):3013-2028.
    78 Hirshberg M, Stockley Dodson G, Webb MR. The crystal structure of human rac 1, a member of the rho-family complexed with a GTP analogue [J]. Nat Struct Biol,1997,4(2):147-152.
    79张剑.胚胎干细胞基因转染及Racl在胚胎发育早期血管形成中的调控作用[D].西安:第四军医大学,2007:22-23.
    80 Matos P, Skaug J, Marques B, et al. Small GTPase Racl:structure,localization,and expression of the human gene [J]. Biochem Biophys Res Commun,2000,279(3):741-743.
    81 Peterson LJ, Rajfur Z, Maddox AS, et al. Simultaneous stretching and contraction of stress fibers in vivo[J]. Mol Biol Cell,2004,15(7):3497-3508.
    82 Goeckeler ZM, Wysolmerski RB. Myosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization and myosin phosphorylation [J]. Cell Biol,1995,130(3):613-627.
    83 Baldwin AL, Thurston G. Changes in endothelial actin cytoskeleton in venules with time after histamine treatment [J]. Am J Physiol,1995,269(5Pt2):H1528-1537.
    84 ThiagarajanP, Le A, Snuggs MB, et al. The role of carboxy-terminal glycosaminoglycan-binding domain of vitronectin in cytoskeletal organization and migration of endothelial cells[J]. Cell Adhes Commun,1996,4(4-5):317-325.
    85 Nobes CD, Hall A. Rho GTPases control polarity, protrusion, and adhesion during cell movement [J]. J of Cell Biology,1999,144:1235-1244.
    86 YeeHF, Melton AC, Tran BN. RhoA/rho-associated kinase mediates fibroblast contractile force generation[J]. Biochem Biophys Res Commun,2001,280(5):1340-1345.
    87张剑.胚胎干细胞基因转染及Racl在胚胎发育早期血管形成中的调控作用[D].西安:第四军医大学,2007:28-29.
    88 Takenawa T, Suetsugu S. The WASP-WAVE protein network:connecting the membrane to the cytoskeleton [J]. Nat Rev Mol Cell Biol,2007,8:37-48.
    89 Kaibuchi K, Kuroda S, Amano M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells [J]. Annu Rev Biochem,1999,68:459-486.
    90 Chen F, Ma L, Parrini MC, et al. Cdc42 is required for PIP(2)-induced actin polymerization and early development but not for cell viability [J]. Curr Biol,2000,10:758-765.
    91 Czuchra A, Wu X, Meyer H, et al. Cdc42 is not essential for filopodium formation, directed migration, cell polarization, and mitosis in fibroblastoid cells [J]. Mol Biol Cell,2005,16: 4473-4484.
    92 Garvalov BK, Flynn KC, Neukirchen D, et al. Cdc42 regulates cofilin during the establishment of neuronal polarity [J]. J Neurosci,2007,27:13117-13129.
    93 Van Aelst L, D'Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev,1997,11(18): 2295-2322.
    94 Price LS, Leng J, Schwartz MA, et al. Activation of Rac and Cdc42 by integrins mediates cell spreading [J]. Mol Biol Cell,1998,9(7):1863-1871.
    95 Szczur K, Xu H, Atkinson S, et al. Rho GTPase CDC42 regulates directionality and random movement via distinct MAPK pathways in neutrophils [J]. Blood,2006,108:4205-4213.
    96 Schmitz AA, Govek EE, Bottner B, et al. Rho GTPases:signaling, migration, and invasion [J]. Exp Cell Res,2000,261(1):1212.
    97 Jansen M, Yang FC, Cancelas JA, et al. Rac2-deficient hematopoietic stem cells show defective interaction with the hematopoietic microenvironment and long-term engraftment failure [J]. Stem Cells,2005,23:335-346.
    98 Gu Y, Filippi MD, Cancelas JA, et al. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases[J]. Science,2003,302:445-449.
    99张之南,沈悌.血液病诊断及疗效标准[M].第3版.北京:北京科学出版社,2007,20-21.
    100郑筱萸.中药新药临床研究指导原则[M].试行版.北京:中国医药出版社,2002,178-180.
    101刘培建,苗明三,高渐联.熟地黄多糖对气血双虚小鼠全血细胞及血清粒-巨噬细胞集落刺激因子水平的影响[J].中国组织工程研究与临床康复,2008,12(38):7543-7546.
    102黄霞,刘杰,刘惠霞.熟地黄多糖对血虚模型小鼠的影响[J].中国中药杂志,2004,29(12):12-14.
    103杨东旭,任宏雪,储妍,等.山茱萸多糖对环磷酰胺致小鼠白细胞减少症的影响[J].中华中医药学刊,2009,27(6):1296-1297.
    104于雷,王剑峰,刘丽波,等.枸杞抗辐射损伤作用[J].中国公共卫生,2007,23(10):1158-1159.
    105 Gong HY, Shen P, Jin L, et al. Therapeutic effects of Lycium barbarum Polysaccharide (LBP) on irradiation or chemotherapy-induced myelosuppressive mice [J]. Cancer Biotherapy & Radiopharmaceuticals,2005,20(2):155-162.
    106刘彦平,毛辉青,李萍,等.枸杞多糖对小鼠T淋巴细胞亚群和淋巴细胞转化作用的研究[J],青海医学院学报,2000,21(4):4-5.
    107王天然,邢善田,周金黄.淫羊霍多糖促进免疫功能的实验研究[J],中国药理学通报(创刊号),1985:31-34.
    108丁雁,陈萍,刑善田,等.淫羊藿多糖对叠氮胸苷抑制小鼠造血和免疫功能的对抗作用[J].中国药理学与毒理学杂志,1994,8(3):203-205.
    109尹永英.巴戟天对脐血CD34+细胞体外扩增的影响[J].现代预防医学,2006,33(8):1351-1352.
    110陈忠,涂涛,方代南.南药巴戟天水提液对小鼠造血功能的影响研究初报[J].热带农业科学, 2002,22(5):21-22.
    111李召.鹿茸组分对人骨髓造血细胞体外增殖影响的研究[D].大连:大连医科大学,2006,31-32.
    112阴健,郭力弓.中药现代研究与临床应用[M].北京:学苑出版社.1994:693.
    113陈书明,聂向庭.鹿茸醇提物对用环磷酸胺处理的小白鼠红细胞免疫功能的影响[J].经济动物学报,2000,4(1):23-25
    114谭艳芳,殷小成,熊玉娟,等.黄芪甲甙对大鼠骨髓间充质干细胞多种造血相关因子表达的影响[J].中国组织工程研究与临床康复,2010,14(10):1817-1820.
    115金锦梅,Tao Helen,高瑞兰,等.人参对CD34+造血干/祖细胞增殖和分化的作用[J].中国中西医结合杂志,2000,20(9):673-676.
    116危建安,程志安,温建炫,等.人参多糖与人参皂苷诱导大鼠骨髓间充质干细胞造血细胞因子表达的作用比较[J].中国中西医结合杂志,2011,31(3):372-374.
    117于君丽,窦德强,陈晓红.人参皂苷Ro促进小鼠脾细胞增殖及调节小鼠脾细胞Th1/Th2细胞因子的产生[J].药学学报,2005,40(4):332-336.
    118于丽梅.人参皂苷Rg1对环磷酰胺诱导骨髓抑制小鼠骨髓功能的改善及机制研究[D].贵阳:遵义医学院,2009,46.
    119王东晓,刘屏,陈宜鸿,等.鸡血藤活性成分SS8对骨髓抑制小鼠造血祖细胞增殖的作用[J].中国临床康复,2005,9(30):254-256.
    120梁宁,韦松基,林启云.鸡血藤总黄酮对血虚小鼠抗贫血作用及机理研究[J].时珍国医国药,2009,20(2):362-364.
    121陈东辉.鸡血藤促进造血功能的物质基础和机制研究[D].成都:四川大学,2007,61-64.
    122刘顺根,李邦华,张琦.丹参素对小鼠外周血造血干细胞动员作用的研究[J].实用中西医结合临床,2009,9(5):1-3.
    123苏春燕,赵浩如.白花蛇舌草水提物及其与黄芪复方制剂对低白细胞模型小鼠造血功能的调节作用[J].药学与临床研究,2007,15(1):25-27.
    124王宇翎,张艳,方明,等.白花蛇舌草总黄酮的免疫调节作用[J].中国药理学通报,2005,21(4):444-447.
    125胡名柏,杨国梁.猪苓多糖对受辐射损伤的大白鼠造血功能及免疫功能的促进作用[J].湖北医科大学学报,1996,17(1):27.
    126 Le Y, Zhu BM, Harley B, et al. SOCS3 protein developmentally regulates the chemokine receptor CXCR4-FAK signaling pathway during B lymphopoiesis [J]. Immunity,2007,27(5):811-823.
    127 Hitchcock IS, Fox NE, Prevost N, et al. Roles of focal adhesion kinase (FAK) in megakaryopoiesis and platelet function:studies using a megakaryocyte lineage specific FAK knockout [J]. Blood, 2008,111(2):596-604.
    128 LimST, Mikolon D, StuDack DG, et al. FERM control of FAK function:implications for cancer therapy [J]. Cell Cycle,2008,7(15):2306-2314.
    129 Qi JH, Claesson-Welsh L. VEGF-induced activation of phosphoinositide 3-kinase is dependent on focal adhesion kinase [J]. Exp Cell Res,2001,263(1):173-182.
    130孙岚,刘文励,孙汉英,等.川芎嗪对放射损伤小鼠骨髓基质细胞FAK表达的影响[J].中国中西医结合急救杂志,2001,8(5):266-267.
    131常铉.慢性粒细胞白血病β1整合素粘附相关分子研究[D].广州:第一军医大学,2005:24-25.
    132 BhatiaR, MuntheHA, VerfaillieCM, etal.TyrphostinAG957, a tyrosine kinase inhibitor with anti-BCR/ABL tyrosine kinase activity restores beta 1 integrin-mediated adhesion and inhibitory signaling in chronic myelogenous leukemia hematopoietic progenitors [J]. Leukemia,1998,12(11): 1708-1717.
    133 Lowry MB, Duchemin AM, Coggeshall KM, et al. Chimeric receptors composed of phosphoinositide 3-kinase domains and FC gammn receptor ligand binding domains mediate phagocytosis in COS fibroblasts [J]. Biol Chem,1998,27(3):24513-24520.
    134 Kotelevets L, Noe V, Brugneel F, et al. Inhibition by platelet-activating factor of src-and hepatocyte growth factor-dependent invasiveness of intestinal and kidneyepithelial cells. Phosphosphoinositide 3-kinase is a critical mediator of tumor invasion [J]. Biol Chem,1998,273:14138-14145.
    135 Morris JZ, Tissenbaum HA, Ruvkun G. A phosphatidy linositol-3-oh kinase family member regulating congevity and dinpause in caenorhabditis elegans [J]. Nature,1996,382:536-539.
    136 Shimamura H, Terada Y, Okado T, et al. The PI3-kinase-Akt pathway promotes mesangial cell survival and inhibits apoptosis in vitro via NF-kappa B and Bad [J]. J Am Soc Nephrol,2003,14: 1427-1434.
    137 Williams DA, Cancelas JA. Leukaemia:niche retreats for stem cells [J].Nature,2006,444:827-828.
    138 WangL, YangL, FIIIPPiMD, et al. Genetic deletion of Cdc42GAP reveals a role of Cdc42 in erythropoiesis and hematopoietic stem/progenitor cell survival, adhesion, and engraftment [J]. Blood,2006,107:98-105.
    139 Yang L, Wang L, Kalfa TA, et al. Cdc42 critically regulates the balance between myelopoiesis and erythropoiesis[J]. Blood,2007,110:3853-3861.
    140 Ji P, Jayapal SR, Lodish HF. Enucleation of cultured mouse fetal erythroblasts requires Rac GTPases and mDia2[J]. Nat Cell Biol,2008,10:314-321.
    141 Yu H, Leitenberg D, Li B, et al. Deficiency of small GTPase Rac2 affects T cell activation[J]. J Exp Med,2001,194:915-926.
    142 Li B, Yu H, ZhengW, et al. Role of the guanosine triphosphatase Rac2 in T helper 1 cell differentiation[J]. Science,2000,288:2219-2222.
    143王继英.Rho GTP酶在白血病行为异常及骨髓微环境相互作用异常中的意义[D].北京:中国协和医科大学,2010:33-40.
    144 Yang FC, Atkinson SJ, Gu Y, et al. Rac and Cdc42 GTPases control hematopoietic stem cell shape, adhesion, migration, and mobilization [J]. Proc Natl Acad Sci USA,2001,98:5614-5618.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700