细胞存活分子影响力达霉素活性的机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
力达霉素(Lidamycin,LDM)是烯二炔类抗肿瘤抗生素,由本所独立开发,目前正在进行二期临床试验。以前的研究表明:LDM的作用方式独特,高浓度引起肿瘤细胞非caspase依赖的凋亡,而在较低浓度下,引起细胞具有衰老样表型的有丝分裂死亡。然而,肿瘤细胞对力达霉素不同反应的机制至今仍未阐明。本研究从细胞存活分子方面入手,利用不同的敏感和耐药细胞来探讨其作用机制。
     首先,Western blot、流式、SA-α-gal染色以及染色质凝集实验的结果表明:不同浓度的LDM引起人肝癌BEL-7402细胞出现2种特征的死亡方式。10nM LDM作用细胞24h后,出现典型的凋亡特征,p53蛋白的表达明显增高,出现PARP、SIRT1的切割片断以及亚G_1峰。而0.5nM LDM作用细胞后,出现具有衰老样表型的有丝分裂性细胞死亡。细胞先被阻断在G_2/M期,然后SA-β-gal染色阳性率明显增高(72h),此时,p53蛋白的表达没有明显的变化,存活分子SIRT1也一直维持表达。
     此外,使用Western blot检测其他存活分子的表达变化。10nM LDM作用细胞后,不同时间收集细胞至24h,P38的磷酸化水平明显升高,FOXO3a和Bim的表达均于给药后下降,MnSOD与Cu/ZnSOD的表达未见增高。而在0.5nM LDM作用组中,FOXO3a和Bim的表达均于给药4h开始到72h逐渐增加,MnSOD与Cu/ZnSOD则于给药4~8h内一过性增高,Akt被明显激活的时间长至48h。这些研究表明:存活分子影响LDM的活性,导致出现不同的细胞死亡方式。
     使用染色质凝集和DNA凝胶电泳的方法,观察到1μM LDM作用1h可切割MCF-7细胞的DNA,但是却不能切割MCF-7耐多柔比星细胞的DNA。Western blot的结果表明这种现象与LDM迅速降低MCF-7细胞(而非MCF-7/DOX细胞)PARP和P53的含量有关,而与P糖蛋白、谷胱甘肽以及存活分子如SIRT1和Akt无关。同时,caspase抑制剂不能抑制LDM降低MCF-7细胞PARP和P53的作用。
     10nM LDM作用p53野生型(p53 wt)和p53敲除型(p53 ko)人结肠癌HCT116细胞24h,MTT结果表明p53 wt比p53 ko HCT116细胞对LDM更敏感。其机制与SIRT1和Akt有关。同时LDM诱导HCT116细胞出现衰老样表型、G_2/M期阻滞、染色质快速凝集现象。
     LDM对人正常肝L-02细胞和肝癌BEL-7402细胞的MTT结果表明:LDM对L-02细胞的生长抑制作用要低于BEL-7402细胞。Western blot的结果表明在未经药物处理的BEL-7402细胞和L-02细胞中,PARP的表达未见明显差异;与L-02细胞相比,BEL-7402细胞的SIRT1和P53表达水平较高,而Akt的表达水平较低。
     本研究使用不同类型的细胞,初步证明存活分子影响LDM在肿瘤细胞内的活性而出现不同类型的死亡方式,有助于解释LDM的作用机制。
Lidamycin(LDM) as a member of the enediyne antibiotics family is developed independently by our institute,and it has been in phaseⅡclinical trial.Previous studies showed that high concentrations of LDM induced tumor cells to non-caspase dependent apoptosis,however,LDM at lower concentrations induced mitotic death with senescence-like phenotype(SLP).The mechanism of different responses to tumor cells for LDM is still unknown.Using different sensitive and drug-resistant tumor cells,we examine the effect mechanisms from cell survival molecules profile.
     Firstly,the results of Western blot,FACS,SA-β-gal staining and chromatin condensation experiment indicated that different concentrations of LDM could induce two modes of death characteristic in human hepatoma BEL-7402 cells.The cells treated with 10 nM LDM for 24h appeared classic apoptotic characteristics,such as obvious increase of p53 protein,cleavaged fragments of PARP and SIRT1 as well as sub-G_1 peak.However,the cells treated with 0.5 nM LDM could induce mitotic death with SLP. The cells were arrested in G_2/M phase firstly,then the percentage of the cells with senescence-associatedβ-galactosidase activities(72h) was increased obviously.At the same time,the expression of p53 protein was no obvious change,and the survival molecule SIRT1 also sustained its expression.
     In addition,we also detected the expression changes of other survival molecules by Western blot.The cells were treated with 10 nM LDM for 24h and collected at indicated time points.The results showed that the phosphorylation level of p38 protein was obviously increased,and the expression of FOXO3a,Bim was declined after LDM treatment.The results also indicated that the expression levels of MnSOD and Cu/ZnSOD was not increased.At 0.5 nM LDM treatment group,the expressions of FOXO3a and Bim were gradually increased from 4h to 72h after treatment.MnSOD and Cu/ZnSOD were transient increased within 4~8h and Akt was activated obviously until 48h.These studies indicated that survival molecules influenced the action of LDM and resulted in different cell death modes ultimately.
     The genome DNA cleavage after 1μM LDM treatment for 1h was observed in MCF-7 cells by chromatin condensation and DNA electrophoresis,but did not observed in doxorubicin-resistant MCF-7 cells.This phenomenon was related with rapidly decrease of PARP and P53 in MCF-7 cells,but not in MCF-7/DOX cells detected by Western blot.Moreover,it was not related with P-glucoprotein,glutathione and prosurvival molecules such as SIRT1,Akt.Furthermore,the caspase inhibitor did not inhibit this effect of LDM.
     The inhibition of proliferation in human p53 wild-type and p53 knocked out colorectal HCT116 cells treated with 10 nM LDM for 24h assayed by MTT showed that p53 wt HCT116 cells was more sensitive to LDM induced toxicity than p53 ko HCT116 cells.The mechanism within it might be related with SIRT1 and Akt.Furthermore, LDM could induce the cells appearing SLP,G_2/M arrest and chromatin condensation.
     The result of MTT between human liver normal L-02 cells and human hepatoma BEL-7402 cells treated with LDM showed that the toxicity to L-02 cells was lower than to BEL-7402 cells.The result of Western blot indicated that the expression level of PARP was no obvious difference between untreated L-02 cells and BEL-7402 cells.But, compared with L-02 cells,the expression levels of SiRT1 and P53 were higher and the level of Akt was lower in BEL-7402 cells.
     This study demonstrated initially that prosurvival molecules influenced the action of LDM in tumor cells and resulted in different modes of cell death by using various types of cells.And it is helpful to explain the mechanisms of LDM.
引文
1.Okuno,Y.,M.Otsuka,and Y.Sugiura,Computer modeling analysis for enediyne chromophore-apoprotein complex of macromolecular antitumor antibiotic C-1027.J Med Chem,1994.37(15):p.2266-73.
    2.Shao,R.G.and Y.S.Zhen,[Relationship between the molecular composition of C1027,a new macromolecular antibiotic with enediyne chromophore,and its antitumor activity].Yao Xue Xue Bao,1995.30(5):p.336-42.
    3.Chen,Y.,et al.,Crystallization and preliminary X-ray crystallographic studies of a macromolecular antitumour antibiotic,C1027.Acta Crystallogr D Biol Crystallogr,2002.58(Pt 1):p.173-5.
    4.Xu,Y.J.,Y.S.Zhen,and I.H.Goldberg,C1027 chromophore,a potent new enediyne antitumor antibiotic,induces sequence-specific double-strand DNA cleavage.Biochemistry,1994.33(19):p.5947-54.
    5.Xu,Y.J.,et al.,A single binding mode of activated enediyne C1027 generates two types of double-strand DNA lesions:deuterium isotope-induced shuttling between adjacent nucleotide target sites.Biochemistry,1995.34(38):p.12451-60.
    6.Jiang,B.,D.D.Li,and Y.S.Zhen,Induction of apoptosis by enediyne antitumor antibiotic C1027 in HL-60 human promyelocytic leukemia cells.Biochem Biophys Res Commun,1995.208(1):p.238-44.
    7.Wang,Z.,et al.,Non-caspase-mediated apoptosis contributes to the potent cytotoxicity of the enediyne antibiotic lidamycin toward human tumor cells.Biochem Pharmacol,2003.65(11):p.1767-75.
    8.尚伯杨,黄云虹,甄永苏,力达霉素抗肝癌作用的实验研究.中国药物与临床,2004(04):p.254-7.
    9.Chen,L.,et al.,P53 dependent and independent apoptosis induced by lidamycin in human colorectal cancer cells.Cancer Biol Ther,2007.6(6):p.965-73.
    10.Xu,Y.J.,et al.,Mechanism of formation of novel covalent drug.DNA interstrand cross-links and monoadducts by enediyne antitumor antibiotics.Biochemistry,1997.36(48):p.14975-84.
    11.McHugh,M.M.,et al.,The cellular response to DNA damage induced by the enediynes C-1027 and neocarzinostatin includes hyperphosphorylation and increased nuclear retention of replication protein a(RPA) and trans inhibition of DNA replication.Biochemistry,2001.40(15):p.4792-9.
    12.Liu,J.S.,et al.,DNA damage by the enediyne C-1027 results in the inhibition of DNA replication by loss of replication protein A function and activation of DNA-dependent protein kinase.Biochemistry,2001.40(48):p.14661-8.
    13.Sugiura Y,Totsuka R,Araki M,E.A.,Selective cleavages of tRNA Phe with secondary and tertiary structure by enediyne antitumor antibiotics.Bioorg Med Chem,1997.5:p.1229-1234.
    14.McHugh,M.M.,et al.,The antitumor enediyne C-1027 alters cell cycle progression and induces chromosomal aberrations and telomere dysfunction.Cancer Res,2005.65(12):p.5344-51.
    15.He,Q.Y.,et al.,Characteristics of mitotic cell death induced by enediyne antibiotic lidamycin in human epithelial tumor cells.Int J Oncol,2002.20(2):p.261-6.
    16.Liang,Y.X.,et al.,Mitotic cell death in BEL-7402 cells induced by enediyne antibiotic lidamycin is associated with centrosome overduplication.World J Gastroenterol,2004.10(18):p.2632-6.
    17.Gao,R.J.,et al.,Effect of lidamycin on telomerase activity in human hepatoma BEL-7402 cells.Biomed Environ Sci,2007.20(3):p.189-97.
    18.邱强,王真,李电东,力达霉素经线粒体依赖通路介导细胞凋亡.药学学报,2007(02)p.132-8.
    19.Chen,J.,et al.,Down-regulation of the nuclear factor-kappaB by lidamycin in association with inducing apoptosis in human pancreatic cancer cells and inhibiting xenograft growth.Oncol Rep,2007.17(6):p.1445-51.
    20.Li,L.,et al.,Antitumor activity of anti-type Ⅳ collagenase monoclonal antibody and its lidamycin conjugate against colon carcinoma.World J Gastroenterol,2005.11(29):p.4478-83.
    21.Fengqiang,W.,S.Boyang,and Z.Yongsu,Antitumor effects of the molecule-downsized immunoconjugate composed of lidamycin and Fab' fragment of monoclonal antibody directed against type Ⅳ collagenase.Sci China C Life Sci,2004.47(1):p.66-73.
    22.Feng,Y.,et al.,[Antitumor activities of various immunoconjugates composed of lidamycin and anti-type Ⅳ collagenase monoclonal antibody].Yao Xue Xue Bao, 2007.42(7):p.704-9.
    23.Hiraku,Y.,S.Oikawa,and S.Kawanishi,Distamycin A,a minor groove binder,changes enediyne-induced DNA cleavage sites and enhances apoptosis.Nucleic Acids Res Suppl,2002(2):p.95-6.
    24.Liu,H.Z.,et al.,[Potentiation and mechanism of cisplatin-induced apoptosis by lidamycin in human hepatoma BEL-7402 cells].Yao Xue Xue Bao,2003.38(4):p.250-4.
    25.Iwamoto,T.,et al.,Amplification of C1027-induced DNA cleavage and apoptosis by a quinacrine-netropsin hybrid molecule in tumor cell lines.Arch Biochem Biophys,2005.434(2):p.232-40.
    26.Zhen,H.,Y.Xue,and Y.Zhen,[Inhibition of angiogenesis by antitumor antibiotic C1027 and its effect on tumor metastasis].Zhonghua Yi Xue Za Zhi,1997.77(9):p.657-60.
    27.Cui,D.P.,Z.Wang,and D.D.Li,[Effect of lidamycin on the expression of genes involved in invasion regulation in HCT-8 human colon cancer cells].Yao Xue Xue Bao,2001.36(4):p.246-9.
    28.崔大鹏,王真,李电东,力达霉素对人结肠癌HCT-8细胞侵袭调节基因表达的影响.药学学报,2001(04):p.246-9.
    29.王心华,吴淑英,甄永苏,力达霉素抑制内皮细胞增殖和诱导细胞凋亡(英文).中国抗尘素杂志,2003(10):p.605-12.
    30.Liu,X.J.,et al.,[Inhibitory effect of lidamycin on growth of colon carcinoma 26and hepatic metastasis in mice].Ai Zheng,2005.24(6):p.641-5.
    31.McHugh,M.M.,T.A.Beerman,and W.C.Burhans,DNA-damaging enediyne C-1027 inhibits initiation of intracellular SV40 DNA replication in trans.Biochemistry,1997.36(5):p.1003-9.
    32.McHugh,M.M.and T.A.Beerman,C-1027-induced alterations in Epstein-Barr viral DNA replication in latently infected cultured human Raji cells:relationship to DNA damage.Biochemistry,1999.38(21):p.6962-70.
    33.,R.M.,Social controls on cell survival and cell death.Nature,1992.356(6368):p.397-400.
    34.Sunters,A.,et al.,Paclitaxel-induced nuclear translocation of FOXO3a in breast cancer cells is mediated by c-Jun NH2-terminal kinase and Akt.Cancer Res,2006.66(1):p.212-20.
    35. Liu, J.W., et al., Induction of prosurvival molecules by apoptotic stimuli:involvement of FOXO3a and ROS. Oncogene, 2005. 24(12): p. 2020-31.
    
    36. Brunet A,Bonni A,Zigmond M, E.A., Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor. Cell, 1999. 96: p.857-868.
    
    37. Greer, E.L. and A. Brunet, FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene, 2005. 24(50): p. 7410-25.
    
    38. Hu, M.C., et al., IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell, 2004. 117(2): p. 225-37.
    
    39. Arimoto-Ishida, E., et al., Inhibition of phosphorylation of a forkhead transcription factor sensitizes human ovarian cancer cells to cisplatin.Endocrinology, 2004. 145(4): p. 2014-22.
    
    40. Hussain, A.R., et al., Curcumin induces apoptosis via inhibition of PI3'-kinase/AKT pathway in acute T cell leukemias. Apoptosis, 2006. 11(2): p.245-54.
    
    41. Mikkelsen, R.B. and P. Wardman, Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene, 2003.22(37): p. 5734-54.
    
    42. Chang, F., et al., Regulation of cell cycle progression and apoptosis by the Ras/Raf/MEK/ERK pathway (Review). Int J Oncol, 2003. 22(3): p. 469-80.
    
    43. Xia, Z., et al., Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis.Science, 1995. 270(5240): p. 1326-31.
    
    44. Luo, J., et al., Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell, 2001.107(2): p. 137-48.
    
    45. Ford, J., M. Jiang, and J. Milner, Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res, 2005. 65(22): p.10457-63.
    
    46. Efeyan, A. and M. Serrano, p53: guardian of the genome and policeman of the oncogenes. Cell Cycle, 2007. 6(9): p. 1006-10.
    
    47. Helton, E.S. and X. Chen, p53 modulation of the DNA damage response. J Cell Biochem, 2007. 100(4): p. 883-96.
    
    48. Oei, S.L., C. Keil, and M. Ziegler, Poly(ADP-ribosylation) and genomic stability.Biochem Cell Biol, 2005. 83(3): p. 263-9.
    49.吴丽娟,黎燕,沈倍奋,一种细胞特异性基因转录水平的分析方法.第三军医大学学报,1999.21(06):p.434-436.
    50.李电东,细胞裂亡及其信号转导通路的研究.国外医药(抗生素分册),2006(01):p.1-4.
    51.胡野,凌志强,单小云,细胞凋亡的分子医学.2002,北京:军事医学科学出版社.
    52.Castedo,M.,et al.,Cell death by mitotic catastrophe:a molecular definition.Oncogene,2004.23(16):p.2825-37.
    53.Eom,Y.W.,et al.,Two distinct modes of cell death induced by doxorubicin:apoptosis and cell death through mitotic catastrophe accompanied by senescence-like phenotype.Oncogene,2005.24(30):p.4765-77.
    54.Qiu,Q.,et al.,[Effect of lidamycin on mitochondria initiated apoptotic pathway in human cancer cells].Yao Xue Xue Bao,2007.42(2):p.132-8.
    55.Ngan,C.Y.,et al.,Oxaliplatin induces mitotic catastrophe and apoptosis in esophageal cancer cells.Cancer Sci,2008.99(1):p.129-39.
    56.Tounekti,O.,et al.,Bleomycin,an apoptosis-mimetic drug that induces two types of cell death depending on the number of molecules internalized.Cancer Res,1993.53(22):p.5462-9.
    57.Gimonet,D.,et al.,Induction of apoptosis by bleomycin in p53-null HL-60leukemia cells.Int J Oncol,2004.24(2):p.313-9.
    58.Rebbaa,A.,et al.,Caspase inhibition switches doxorubicin-induced apoptosis to senescence.Oncogene,2003.22(18):p.2805-11.
    59.Skwarska,A.,E.Augustin,and J.Konopa,Sequential induction of mitotic catastrophe followed by apoptosis in human leukemia MOLT4 cells by imidazoacridinone C-1311.Apoptosis,2007.12(12):p.2245-57.
    60.Castedo,M.and G.Kroemer,[Mitotic catastrophe:a special case of apoptosis].J Soc Biol,2004.198(2):p.97-103.
    61.Castedo,M.,et al.,Cyclin-dependent kinase-1:linking apoptosis to cell cycle and mitotic catastrophe.Cell Death Differ,2002.9(12):p.1287-93.
    62.Vakifahmetoglu,H.,et al.,DNA damage induces two distinct modes of cell death in ovarian carcinomas.Cell Death Differ,2008.15(3):p.555-66.
    63.Vaziri,H.,et al.,hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase.Cell,2001.107(2):p.149-59.
    64.Motta,M.C.,et al.,Mammalian SIRT1 represses forkhead transcription factors.Cell,2004.116(4):p.551-63.
    65.郭亦琦,施冬云,王君晖,Sirt基因家族及其对细胞寿命的调节.生物物理学报,2006(01):p7-11.
    66.Ohsawa,S.and M.Miura,Caspase-mediated changes in Sir2alpha during apoptosis.FEBS Lett,2006.580(25):p.5875-9.
    67.Sunters,A.,et al.,FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines.J Biol Chem,2003.278(50):p.49795-805.
    68.Urbich,C.,et al.,FOXO-dependent expression of the proapoptotic protein Bim:pivotal role for apoptosis signaling in endothelial progenitor cells.FASEB J,2005.19(8):p.974-6.
    69.Gilley,J.,P.J.Coffer,and J.Ham,FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons.J Cell Biol,2003.162(4):p.613-22.
    70.李学斌,谢庄,石放雄,FOXO蛋白在动物细胞的分化、增殖、免疫、衰老调节中的作用.中国临床康复,2006(09):p.158-62.
    71.莫筒主编,医用自由基生物学导论.1989,北京:人民卫生出版社.
    72.Orrenius,S.,Reactive oxygen species in mitochondria-mediated cell death.Drug Metab Rev,2007.39(2-3):p.443-55.
    73.Gottesman,M.M.,Mechanisms of cancer drug resistance.Annu Rev Med,2002.53:p.615-27.
    74.Faraone-Mennella,M.R.,Chromatin architecture and functions:the role(s) of poly(ADP-RIBOSE) polymerase and poly(ADPribosyl)ation of nuclear proteins.Biochem Cell Biol,2005.83(3):p.396-404.
    75.Haince,J.F.,et al.,Ataxia telangiectasia mutated(ATM) signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway in the early response to DNA-damaging agents.J Biol Chem,2007.282(22):p.16441-53.
    76.Piskunova,T.S.,et al.,[Poly(ADP-ribosa)polymerase--the relationships with life span and carcinogenesis].Adv Gerontol,2007.20(2):p.82-90.
    77.Ding,Z.,et al.,Resistance to apoptosis is correlated with the reduced caspase-3activation and enhanced expression of antiapoptotic proteins in human cervical multidrug-resistant cells.Biochem Biophys Res Commun,2000.270(2):p.415-20.
    78.Friesen,C.,S.Fulda,and K.M.Debatin,Deficient activation of the CD95(APO-1/Fas) system in drug-resistant cells.Leukemia,1997.11(11):p.1833-41.
    79.Fu,Z.and C.Fenselau,Proteomic evidence for roles for nucleolin and poly[ADP-ribosyl]transferase in drug resistance.J Proteome Res,2005.4(5):p.1583-91.
    80.Wurzer,G.,Z.Herceg,and J.Wesierska-Gadek,Increased resistance to anticancer therapy of mouse cells lacking the poly(ADP-ribose) polymerase attributable to up-regulation of the multidrug resistance gene product P-glycoprotein.Cancer Res,2000.60(15):p.4238-44.
    81.Richardson,D.S.,et al.,Effects of PARP inhibition on drug and Fas-induced apoptosis in leukaemic cells.Adv Exp Med Biol,1999.457:p.267-79.
    82.杨啊晶,李电东,P53及其信号通路在肿瘤耐药分子机制中的研究进展.中国新药杂志,2007(01):p.7-11.
    83.Susse,S.,et al.,Poly(ADP-ribose) polymerase(PARP-1) and p53 independently function in regulating double-strand break repair in primate cells.Nucleic Acids Res,2004.32(2):p.669-80.
    84.Sakata,N.,et al.,Aminopeptidase activity of an antitumor antibiotic,C-1027.J Antibiot(Tokyo),1992.45(1):p.113-7.
    85.Bai,S.and D.W.Goodrich,Different DNA lesions trigger distinct cell death responses in HCT116 colon carcinoma cells.Mol Cancer Ther,2004.3(5):p.613-9.
    86.Itahana,K.,G.Dimri,and J.Campisi,Regulation of cellular senescence by p53.Eur J Biochem,2001.268(10):p.2784-91.
    87.Chang,B.D.,et al.,Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs.Oncogene,1999.18(34):p.4808-18.
    88.Chang,B.D.,et al.,Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs.Oncogene,1999.18(34):p.4808-18.
    89.Tam,S.W.,et al.,Differential expression and regulation of Cyclin D1 protein in normal and tumor human cells:association with Cdk4 is required for Cyclin D1function in G1 progression.Oncogene,1994.9(9):p.2663-74.
    90.Ertel,A.,et al.,Pathway-specific differences between tumor cell lines and normal and tumor tissue cells.Mol Cancer,2006.5(1):p.55.
    91.Woynarowska,B.A.and J.M.Woynarowski,Preferential targeting of apoptosis in tumor versus normal cells.Biochim Biophys Acta,2002.1587(2-3):p.309-17.
    1. Kaestner K H., Knochel W, Martinez DE. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev., 2000; 14(2): 142-146.
    
    2. Junger MA, Rintelen F, Stocker H, etal. The Drosophila Forkhead Transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J Biol, 2003; 2(3): 20.
    
    3. Peter Carlsson, Margit Mahlapuu. Forkhead transcription factors: Key players in development and metabolism. DevBiol, 2002; 250(1): 1-23.
    
    4. Puig O, Marr MT, Ruhf L, et al. Control of cell number by drosophila FOXO:downstream and feedback regulation of the insulin receptor pathway. Mech Dev,2003; 120(11): 1311-1325.
    
    5. Xuan Z and Zhang MQ. Mech. Ageing Dev., 2005; 126: 209 - 215.
    
    6. Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 1999; 96(6):857 - 868.
    
    7. Ramaswamy S, Nakamura N, Sansal I, et al. A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell,2002; 2(1): 81-91.
    
    8. Galili N, Davis RJ, Fredericks WJ, et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat. Genet., 1993; 5(3):230 - 235.
    
    9. Shapiro DN, Sublett JE, Li B, et al. Fusion of PAX3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma. Cancer Res.1993; 53(21): 5108-12.
    
    10. Borkhardt A, Repp R, Haas OA, et al. Cloning and characterization of AFX, the gene that fuses to MLL in acute leukemias with a t(X;11)(q13;q23). Oncogene,1997; 14(2): 195-202.
    
    11. Hillion J, Le Coniat M, Jonveaux P, et al. Blood, 1997 ; 90: 3714-3719.
    
    12. So CW and Cleary ML. Common mechanism for oncogenic activation of MLL by forkhead family proteins. Blood, 2003; 101(2): 633-639.
    
    13. Fredericks WJ, Galili N, Mukhopadhyay S, et al. The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Molecular and Cellular Biology,1995; 15 (3) : 1522-1535.
    
    14. del Peso L, Gonzalez VM, Hernandez R, et al. Regulation of the forkhead transcription factor FKHR, but not the PAX3-FKHR fusion protein, by the serine/threonine kinase Akt. Oncogene, 1999; 18(51): 7328 — 7333.
    
    15. Brunet A and Greer E.L. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene, 2005; 24(50): 7410-7425.
    
    16. Hu M C T, Lee D F, Xia W, et al. I κ B kinase promotes tumorigenesis through inhibition of Forkhead FOXO3a. Cell, 2004; 227(2): 225-237.
    
    17. De Ruiter ND, Burgering BM and Bos JL. Regulation of the forkhead transcription factor AFX by Ral-dependent phosphorylation of threonines 447 and 451. Mol. Cell. Biol., 2001,21(23): 8225-8235.
    
    18. Brunet A, Sweeney LB, Sturgill J.F, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 2004; 303(26):2011-2015.
    
    19. Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 Represses Forkhead Transcription Factors. Cell, 2004; 116(4): 551-563.
    
    20. van der Horst A, Tertoolen LG, de Vries-Smits LM, et al. FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2 SIRT1. The Journal of Biological Chemistry, 2004; 279(28): 28873-28879.
    
    21. Hu M C T, Lee D F, Xia W, et al. I κ B kinase promotes tumorigenesis through inhibition of Forkhead FOXO3a. Cell, 2004; 227(2): 225-237.
    
    22. Huang H, Regan KM, Wang F, et al. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc. Natl. Acad.Sci. USA, 2005; 102(5):1649 - 1654.
    
    23. Charvet C, Alberti I, Luciano F,et al. Proteolytic regulation of Forkhead transcription factor FOXO3a by caspase-3-like proteases. Oncogene, 2003;22(29): 4557-4568.
    
    24. Sunters A, Mattos SF, Stahl M, et al. FoxO3a Transcriptional Regulation of Bim Controls Apoptosis in Paclitaxel-treated Breast Cancer Cell Lines.The Journal of Biological Chemistry. 2003; 278(50): 49795-49805.
    
    25. Di Cristofano A, De Acetis M, Koff A, et al. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nature Genet, 2001; 27(2): 222-224.
    
    26. Schmidt M, Mattos S F, Horst A, et al. Cell Cycle Inhibition by FoxO Forkhead Transcription Factors Involves Downregulation of Cyclin D. Molecular and Cellular Biology, 2002; 22(22): 7842-7852.
    
    27. van den Heuvel AP, Schulze A, Burgering BM. Direct control of caveolin-1 expression by FOXO transcription factors. Biochem. J., 2005; 385(Pt3): 795-802.
    
    28. Kato K, Hida Y, Miyamoto M, et al. Overexpression of caveolin-1 in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Cancer, 2002; 94(4): 929-933.
    
    29. Bender FC, Reymond MA, Bron C, et al. Caveolin-1 levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity. Cancer Res. 2000; 60(20): 5870-5878.
    
    30. Rokudai S, Fujita N, Kitahara O, et al. Involvement of FKHR-Dependent TRADD Expression in Chemotherapeutic Drug-Induced Apoptosis. Molecular and Cellular Biology, 2002; 22(24): 8695-8708.
    
    31. Modur V, Nagarajan R, Evers B.M., et al. FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer. J Biol Chem, 2002; 277(49): 47928-47937.
    
    32. Sunters A, Madureira P, Pomeranz K,et al. Paclitaxel-Induced Nuclear Translocation of FOXO3a in Breast Cancer Cells Is Mediated by c-Jun NH2-Terminal Kinase and Akt. Cancer Res,2006; 66(1):212-20.
    
    33. Arimoto-Ishida E, Ohmichi M, Mabuchi S, et al.Inhibition of Phosphorylation of a Forkhead Transcription Factor Sensitizes Human Ovarian Cancer Cells to Cisplatin. Endocrinology, 2004; 145(4): 2014-2022.
    
    34. Hussain AR, Al-Rasheed M, Manogaran PS, et al. Curcumin induces apoptosis via inhibition of PI3_-kinase/AKT pathway in Acute T cell Leukemias. Apoptosis,2006; 11(2): 245-254.
    
    35. Liu JW, Chandra D, Rudd MD, et al. Induction of prosurvival molecules by apoptotic stimuli: involvement of FOXO3a and ROS. Oncogene, 2005; 24(12):2020-2031.
    [1] ZHOU MX, GU LB, FINDLEY HW, et al. PTEN reverses MDM2-mediated chemotherapy resistance by interacting with p53 in acute lymphoblastic leukemia cells [J]. Cancer Res, 2003, 63(19): 6357-6362.
    
    [2] ZHU JJ, LI FB, ZHOU JM, et al. The tumor suppressor p33~(ING1b) enhances Taxol-induced apoptosis by p53-dependent pathway in human osteosarcoma U20S cells [J]. Cancer Biol Ther, 2005,4(1): 39-47.
    [3] LEUNG KM, PO LS, TSANG FC. The candidate tumor suppressor ING1b can stabilize p53 by disrupting the regulation of p53 by MDM2 [J]. Cancer Res, 2002,62(17): 4890-4893.
    [4] ODA K, ARAKAWA H, TANAKA T,et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53 [J].Cell, 2000, 102(6): 849-862.
    [5] STOKLOSA T, SLUPIANEK A, DATTA M, et al. BCR/ABL recuits p53 tumor suppressor protein to induce drug resistance [J]. Cell Cycle, 2004, 3(11):1463-1472.
    [6] MICHAEL D, OREN M. The p53-Mdm2 module and the ubiquitin system [J].Semin Cancer Biol, 2003,13(1): 49-58.
    [7] THOMPSON T, TOVAR C, YANG H, et al. Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis [J]. J Biol Chem, 2004,279(51): 53015-53022.
    [8] CHIN KV, UEDA K, PASTAN I, et al. Modulation of activity of the promoter of the human MDR gene by Ras and p53 [J]. Science, 1992,255(3): 495-462.
    [9] ZHAN MC, YU DH, LIU JH, et al. Transcriptional repression of protein kinase C α via Sp1 by wild type p53 is involved in inhibition of multidrug resistance 1 P-glycoprotein phosphorylation [J]. J Biol Chem, 2005,280(6): 4825-4833.
    [10] CHAN KT, LUNG ML. Mutant p53 expression enhances drug resistance in a hepatocellular carcinoma cell line [J]. Cancer Chemother Pharmacol, 2004, 53(6):519-526.
    
    [11] TSANG WP, CHAU SP, FUNG KP, et al. Modulation of multidrug resistance-associated protein 1 (MRP1) by p53 mutant in Saos-2 cells [J]. Cancer Chemother Pharmacol, 2003, 51(2): 161-166.
    [12] WANG Q, BECK WT. Transcriptional suppression of multidrug resistance-associated protein (MRP) gene expression by wild-type p53 [J]. Cancer Res, 1998, 58(24): 5762-5769.
    [13] SCIAN MJ, STAGLIANO KE, ANDERSON MA, et al. Tumor-derived p53 mutants induce NF- κ B2 gene expression [J]. Mol Cell Biol, 2005, 25(22):10097-10110.
    [14] MORONIC MC, Hickman ES, Denchi EL, et al. Apaf-1 is a transcriptional target for E2F and p53 [J]. Nat Cell Biol, 2001, 3(6): 552-558.
    [15] ACLACHLAN TK, EI-DEIRY WS. Apoptotic threshold is lowered by p53 transactivation of caspase-6 [J]. Proc Natl Acad Sci USA, 2002, 99(14):9492-9497.
    [16] PANARETAKIS T, POKROVSKAJA K, SHOSHAN MC, et al. Activation of Bak, Bax, and BH3-only proteins in the apoptotic response to doxorubicin [J]. J BiolChem, 2002, 277(46): 44317-44326.
    [17] NIKRAD M, JOHNSON T, PUTHALALATH H, et al. The proteasome inhibitor bortezomib sensitizes cells to killing by death receptor ligand TRAIL via BH3-only proteins Bik and Bim [J]. Mol Cancer Ther, 2005,4(3): 443-449.
    [18] WANG H, QIAN H, YU J,et al. Administration of PUMA Adenovirus Increases the Sensitivity of Esophageal Cancer Cells to Anticancer Drugs [J]. Cancer Biol Ther,2006,5(4):380-385.
    [19] QIN JZ, ZIFFRA J, STENNETT L,et al. Proteasome inhibitors trigger NOXA-mediated apoptosis in melanoma and myeloma cells [J]. Cancer Res,2005,65 (14): 6282-6293.
    [20] LIU XG,YUE P, KHURI FR, et al.Decoy receptor2 (DcR2) is a p53 target gene and regulates chemosensitivity [J].Cancer Res, 2005,65(20): 9169-9175.
    [21] OHTSUKA T, LIU XF, KOGA Y, et al.Methylation-induced silencing of ASC and the effect of expressed ASC on p53-mediated chemosensitivity in colorectal cancer [J].Oncogene, 2006, 25(12): 1807-1811.
    [22] YANAMOTO S, IWAMOTO T, KAWASAKI G, et al. Silencing of the p53R2 gene by RNA interference inhibits growth and enhances 5-fluorouracil sensitivity of oral cancer cells [J]. Cancer Lett, 2005,223(1): 67-76.
    [23] MAHYAR-ROEMER M, ROEMER K. p21 Waf1/Cip1 can protect human colon carcinoma cells against p53-dependent and p53-independent apoptosis induced by natural chemopreventive and therapeutic agents [J]. Oncogene, 2001, 20(26):3387-3398.
    [24] BERGAMASCHI D, GASCO M, HILLER L, et al. p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis [J]. Cancer Cell, 2003, 3(4): 387-402.
    [25] DUNKERN TR, WEDEMEYER I, BAUMGARTNER M, et al. Resisttance of p53 knockout cells to doxorubicin is related to reduced formation of DNA strand breaks rather than impaired apoptotic signaling [J]. DNA Repair, 2003, 2(1):49-60.
    [26] GALMARINI CM, KAMATH K, VANIER-VIORNERY A, et al. Drug resistance associated with loss of p53 involves extensive alterations in microtubule composition and dynamics [J]. Br J Cancer, 2003, 88(11): 1793-1799.
    [27] DE LA FUENTE MT, CASANOVA B, CANTERO E, et al. Involvement of p53 in alpha4betal integrin-mediated resistance of B-CLL cells to fludarabine [J].Biochem Biophys Res Commun, 2003,311(3): 708-712.
    
    [28] XU GW, MYMRYK JS, CAIRNCROSS JGPharmaceutical-mediated inactivation of p53 sensitizes U87MG glioma cells to BCNU and temozolomide [J]. Int JCancer, 2005,116(2): 187-192.
    
    [29] SERAFIN AM, BOHM L. Influence of p53 and bcl-2 on chemosensitivity in benign and malignant prostatic cell lines [J]. Urol Oncol, 2005,23(2): 123-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700