发酵液中1,3-丙二醇和2,3-丁二醇的双水相萃取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近三十年来,二元醇的生物转化在1,3-丙二醇(1,3-propanediol)和2,3-丁二醇(2,3-Butanediol)这两种高附加值的大宗化学品上取得了重大突破,并受到了广泛关注。但由于这两种二元醇的高沸点和强亲水性以及发酵液成分过于复杂,使该产品下游分离非常困难。尽管国内外进行了大量的研究,然而以高能耗的蒸馏为主体的传统分离方法依然无法被替代,致使1,3-丙二醇和2,3-丁二醇的分离成本超过了其总生产成本的30%,成为制约其工业化发展的主要瓶颈。针对上述问题,本论文研究了一种新型双水相体系用于萃取发酵液中的1,3-丙二醇和2,3-丁二醇,并考察了双水相中盐的回收工艺,最后考察了将双水相下相代替现有的氢氧化钠碱液来调节1,3-丙二醇和2,3-丁二醇发酵过程的pH值,从而回用于发酵的可行性。
     首先,考察了加盐有机溶剂萃取、盐析分离和新型双水相萃取对发酵液中1,3-丙二醇和2,3-丁二醇的分离效果。发现由强极性萃取剂和高价阴离子盐组成的双水相体系效果最佳,其1,3-丙二醇和2,3-丁二醇的最高分配系数分别达到了11.4和31.9。综合考虑萃取效果和原料成本后,选定乙醇/硫酸铵、乙醇/碳酸钠和甲醇/磷酸氢二钾三种体系做进一步研究。
     其次,考察了成相物质的浓度、pH值以及产物浓度等条件对双水相萃取发酵液中1,3-丙二醇和2,3-丁二醇的影响。结果表明,有机溶剂和盐的浓度对萃取的影响尤为关键。经过优化后,三个体系的产物分配系数均高于4.5,单次萃取回收率均高于90%。研究中还发现新型双水相在萃取产物的同时还可以将菌体和蛋白通过富集在两相之间的方式加以去除,在最佳萃取条件下,各体系对蛋白和菌体的去除率均高于79%和98%。
     再次,研究了三种体系下相中硫酸铵、磷酸氢二钾和碳酸钠的回收工艺。通过采用甲醇溶析结晶、磷酸调节pH与甲醇溶析结晶相结合以及与二氧化碳反应沉淀的方法分别成功地回收了三种体系中的盐,回收率均高于92%。在通过ProⅡ软件的模拟与优化后,乙醇/碳酸钠因其较低的生产成本而被确定为最适合工业化的分离体系。
     在此基础上,进一步研究了1,3-丙二醇发酵液的多级萃取,使产物的回收率和浓缩倍数分别提高到98%和3,并成功地将75%以上的有机酸富集在下相,极大地简化了分离工艺。
     随后,研究了将双水相下相代替氢氧化钠溶液回用于发酵以调节发酵过程pH值的可行性,结果发现此工艺可将2,3-丁二醇发酵的产物浓度和转化率分别提高14.5%和2.5%;而对于1,3-丙二醇发酵,此工艺不但能使1,3-丙二醇的浓度增加16%,而且可将副产物乳酸的浓度和转化率分别提高126%和60%,而1,3-丙二醇、2,3-丁二醇、乙醇和乳酸等几种主要产物对甘油的转化率达到了94.1%。通过对代谢途径进行分析,发现碳酸盐在代谢中起到了较为重要的作用:可抑制甲酸和乙酸的代谢,导致丙酮酸积累,促进乳酸的形成。
     最后通过ProⅡ和Aspen软件对双水相工艺与超滤-醇沉和汽提工艺的过程进行了模拟分析,结果表明双水相工艺可以节省大量的能耗,其最终生产成本比超滤-醇沉和汽提工艺降低了16.7%和17.0%。此外,双水相工艺可以通过降低能耗大幅减少二氧化碳的产生,并在除盐过程中吸收大量的二氧化碳,最终使二氧化碳排放量比超滤-醇沉和汽提工艺分别降低了75.6%和77.4%。综上所述,双水相工艺具有分离工艺简单、成本低、底物利用率高和环境友好等优点,具有较好的工业化应用前景。
In the past thirty years, microbial route for manufacturing diols has attracted great attention, with significant progress achieved in the fermentations of 1,3-propanediol (1,3-PD) and 2,3-butanediol (2,3-BD), two important bulk chemicals. However, high boiling point and hydrophilicity as well as the complexity in the composition of the fermentation broths have restricted the development of efficient processes for their separation, and energy-intensive steam stripping and vacuum distillation are still dominated their industrial production. Currently, the cost associated with the downstream separation is as high as 30% of the total production cost. In this thesis, a novel aqueous two-phase system (ATPS) was developed for separating 1,3-PD and 2,3-BD from the fermentation broths. In addition, salt recovery was also studied for the ATPS system.
     Compared with hydrophobic organic solvent/salt extraction and salting-out, ATPS composed of multivalent anion salts and strong polar solvents was validated to be more efficient for the separation of 1,3-PD and 2,3-BD from the fermentation broths, and their partition coefficients of 11.4 and 31.9, respectively for the ethanol/potassium phosphate system. Furthermore, the ethanol/ammonium sulfate, methanol/potassium dihydrogen phosphate and ethanol/sodium carbonate systems were investigated, due to low costs of solvents and salts for commercial applications.
     The effects of salt, solvent and product concentrations and pH of the systems on the extraction of 1,3-PD and 2,3-BD were studied. It was found that the salt and solvent concentrations affected the extraction efficiency more significantly. Under optimum conditions, the partition coefficients and yields of the product recovery were over 4.5 and 90% for all three ATPSs. Meanwhile, most cells (79%) and proteins (99.5%) were concentrated at the interphase, which could be removed conveniently.
     Salt recovery is the major concern for the ATPSs. Experimental results indicated that the salts in these three ATPSs could be successfully recovered through methanol dilution crystallization for the ethanol/ammonium sulfate system, methanol dilution crystallization after adjusting pH for the methanol/potassium dihydrogen phosphate system, and crystallization by reacting with CO2 for the ethanol/sodium carbonate system, and more than 92% salt was recovered. The economic analysis performed by the program ProⅡshowed that the ethanol/sodium carbonate system is more competitive, and thus it was recommended for commercial application.
     The multi-stage extraction of 1,3-PD from the fermentation broth was also performed, and the yield and enriched factor was increased to 98% and 3, respectively. In addition, more than 75% organic acids were enriched in the bottom phase, which greatly simplified the separation process.
     The bottom phase of the ethanol/sodium carbonate system was explored for adjusting the pH of the fermentation culture instead of sodium hydroxide, and experimental results indicated that the concentration and yield of 2,3-BD increased 24.8% and 6.5%, respectively, when the pH of the 2,3-BD fermentation was adjusted with the bottom phase. At the same time, the method not only increased 1,3-PD concentration by 16% when it was used in the 1, 3-PD fermentation, but also increased the concentration and yield of lactic acid (a by-product of great value) by 126% and 60%, respectively. The reason of this phenomenon was explored by the metabolic flux analysis, and it was found that carbonate was the main factor responsible for this change, since it controlled the metabolic fluxes of formic acid and acetic acid, and this in turn induced the accumulation of pyruvic acid, which promoted the generation of lactic acid.
     At the end, the process simulations in the ATPS, the steam stripping and the combination of ultra filtration and alcohol precipitation were performed by Pro II and Aspen. The results showed that the production costs of 1,3-PD and 2,3-BD in the ATPS were increased from 16.7% and 17.0%, respectively, due to the drastic decrease in the energy expenditure. Furthermore, the carbon dioxide emission of 1,3-PD and 2,3-BD from ATPS can be decreased by 75.6% and 77.4%, due to its absorption during the process of salt recovery and lower generation as a result of lesser energy consumption. Thus, ATPS would be a potential forefront technology for industrial application as it offers high substrate utilization ratio, lower cost and benefit for environment protection.
引文
[1]Sulivan C J. Propanediols [J]. Ullmann's encyclopedia of industrial chemistry, 1993,22:163-171.
    [2]Syu M J. Biological production of 2,3-butanediol [J]. Applied Microbiology and Biotechnology,2001,55:10-18.
    [3]修志龙.1,3-丙二醇的微生物法生产分析[J].现代化工,1999,19:33-35.
    [4]Zeng A P, Biebl H. Bulk chemicals from biotechnology:the case of 1,3-propanediol production and the new trends [J].Adv Biochem Eng Biotechnol,2002,74:239-259.
    [5]Biebl H, Menzel K, Zeng A P. Microbial production of 1,3-propanediol [J]. Appl Microbiol Biotechnol,1999,52:289-297.
    [6]秦加阳,肖梓军,张兆斌,等.一种简单的高产2,3-丁二醇发酵生产方法[J].生物加工过程,2005,3(4):71-73.
    [7]戎志梅.生物化工新产品与新技术开发指南[M].北京:化学工业出版社,2002.
    [8]王迪,王凡强,王建华.发酵法生产2,3-丁二醇[J].精细与专用化学品,2000,(7):20-21.
    [9]黄志华,杜晨宇,张延平,等.1,3-丙二醇合成工艺的研究进展.三明学院学报,2006,23(2):177-181.
    [10]纪晓俊,朱建国,高振,等.微生物发酵法生产2,3-丁二醇的研究进展[J].现代化工,2006,26(8):23-27.
    [11]Mu Y, Teng H, Zhang D J, et al. Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations [J]. Biotechnology Letters, 2006,28 (21):1755-1759.
    [12]Liu H J, Zhang D J, Xu Y H, et al. Microbial production of 1,3-propanediol from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot scale [J]. Biotechnology Letters,2007,29 (8):1281-1285.
    [13]Menzel K, Zeng A P, Deckwer W D. High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumonia [J]. Enzyme and Microbial Technology,1997,20 (2):82-86.
    [14]Gunzel B, Yonsel S, Deckwer W D. Fermentative production of 1,3-propanediol from glycerol by Clostridium butyricum up to a scale of 2m3 [J]. Applied Microbiology and Biotechnology,1991,36 (3):289-294.
    [15]Papanikolaou S, Ruiz-Sanchez P, Pariset B et al. High production from industrial glycerol by a newly isolated Clostridium butyricum [J]. Journal of Biotechnology,2000, 77(2-3):191-208.
    [16]Hartlep M, Zeng A P. Fedbatch Verfahren fur die mikrobielle herstellung von 1,3-propandiol in Klebsielle pneumonia and Clostridium butyricum [J]. Chemie Ingenieur Technik,2002, (75):663-664.
    [17]Gonzalez-Pajuelo M, Andrade J C, Vasconcelos I. Production of 1,3-propanediol by Clostridium butyricum VPI 3266 in continuous cultures with high yield and productivity [J]. Journal of Industrial Microbiology and Biotechnology,2005,32(9):391-396.
    [18]Yang G, Tian J S, Li J L, et al. Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions [J]. Applied Microbiology and Biotechnology,2007,73:1017-1024.
    [19]Forsberg C W. Production of 1,3-propanediol from glycerol by Clostridium acetobutylicum and other Clostridium species [J]. Applied and environmental microbiology,1987,53(4):639-643.
    [20]Boenigk R, Bowien S, Gottschal K G. Fermentation of glycerol to 1,3-propanediol in continuous culture of Citrobacter freundii [J]. Applied Microbiology Biotechnology, 1993,38(4):453-457.
    [21]Barbirato F, Bories A, Camarsa-Claret C et al. Glycerol fermentation by a new 1,3-propanediol producing microorganism:Enterobacer agglomerans [J]. Applied Microbiology Biotechnology,1995,43(5):786-793.
    [22]苑广志,田晶,徐龙权等.曲霉发酵甘油生产1,3-丙二醇的研究[J].食品与发酵工业,2006,32(1):49-52.
    [23]Ma C Q, Wang A L, Qin J Y, et al. Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM [J]. Appl Microbiol Biotechnol,2009,82:49-57.
    [24]Wang AL, Wang Y, Jiang TY, Li LX, Ma CQ, Xu P. Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production [J]. Appl Microbiol Biotechnol, 2010,87:965-70.
    [25]Petrov K, Petrova P. High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31 [J]. Appl Microbiol Biotechnol,2009,84:659-65.
    [26]Sun L H, Wang X D, Dai J Y, et al. Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae [J]. Appl Microbiol Biotechnol, 2009,82:847-52.
    [27]Qureshi N, Cheryan M. Production of 2,3-butanediol by Klebsiella oxytoca [J]. Appl Microbiol Biotechnol,1989,30:440-3.
    [28]Cao N, Xia Y, Gong C S, et al. Production of 2,3-butanediol from pretreated corn cob by Klebsiella oxytoca in the presence of fungal cellulose [J]. Appl Biochem Biotechnol, 1997,63:129-39.
    [29]Zhang L Y, Sun J A, Hao Y L, et al. Microbial production of 2,3-butanediol by a surfactant (serrawettin)-deficient mutant of Serratia marcescens H3O [J]. J Ind Microbiol Biotechnol,2010a,37:857-62.
    [30]Gao J, Xu H, Li Q J, et al. Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R, R-2,3-butanediol [J]. Bioresour Technol,2010,101:7087-93.
    [31]Alam S, Capit F, Weigand W A, et al. Kinetics of 2,3-butanediol fermentation by Bacillus amyloliguefaciens:effect of initial substrate concentration and aeration [J]. J Chem Technol Biotechnol,1990,47:71-84.
    [32]Moes J, Griot M, Keller J, et al. A microbial culture with oxygensensitive product distribution as a potential tool for characterizing bioreactor oxygen transport [J]. Biotechnol Bioeng,1985,27:482-9.
    [33]Chen X, Xiu Z L, Wang J F, et al. Stoichiometric analysis and experimental investigation of glycerol bioconversion to 1,3-propanediol by Klebsiella pneumoniae under microaerobic conditions [J]. Enzyme Microb Technol,2003,33:386-394.
    [34]Abbad-Andaloussi S, Guedon E, Spiesser E et al. Glycerol dehydratase activity:the limiting step for 1,3-propanediol production by Clostridium butyricum DSM5431 [J].Lett Appl Microl,1996,22:311-314.
    [35]Dong X Y, Xiu Z L, Hou Y M, et al. Enhanced production of 1,3-propanediol in Klebsiella pneumoniae induced by dielectric barrier discharge plasma in atmospheric air[J]. IEEE Transactions on Plasma Science,2009,37:920-926.
    [36]Ma C Q, Wang A L, Qin J Y, et al. Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM [J]. Applied Microbiology and Biotechnology,2009,82:49-57.
    [37]Zhang X, Li Y, Zhuge B, et al. Construction of a novel recombinant Escherichia coli strain capable of production 1,3-propanediol and optimization of fermentation parameters by statistical design [J]. World Journal of Microbiology and Biotechnology, 2006,22(9):945-952.
    [38]Homann T, Tag C, Biebl H, et al. Fermentation of glycerol to 1,3-propanediol by klebsiella and Citrobacter strains [J]. Bioteehnol,1990,33:121-126. [39] Emptage M, Haynie S L, Laffend L A, et al. Process for the biological production of 1,3-propanediol with high titer. US,6514733 [P/OL].2000-08-18[2003-02-04]. http://www. google. com. hk/patents?id=6toNAAAAEBAJ&printsec=abstract&zoom=4&source= gbs_overview_r&cad=0#v=onepage&q&f=false.
    [40]Ma C W, Zhang L, Dai JY, et al. Relaxing the coenzyme specificity of 1,3-propanediol oxidoreductase from Klebsiella pneumoniae by rational design. Journal of Biotechnology,2010,146:173-178.
    [41]Hao J, Wang W, Tian J S, et al. Decrease of 3-hydroxypropionaldehyde accumulation in 1,3-propanediol production by over-expressing dhaT gene in Klebsiella pneumoniae TUAC01 [J].J Ind Microbiol Biotechnol,2008,35:735-741.
    [42]Ui S, Okajima Y, Mimura A, et al. Molecular generation of an Escherichia coli strain producing only the meso-isomer of 2,3-butaneciol [J]. Journal of Fermentation and Bioengineering,1997,84(3):185-189.
    [43]Ui S, Otagiri M, Mimura A, et al. Cloning, expression and nucleotide sequence of the L-2,3-butanediol dehydrogenase gene from Brevibacterium saccharolyticum C-1012 [J]-Journal of Fermentation and Bioengineering,1998,86:290-295.
    [44]Ui S, Takusagawa Y, Ohtsuki T, et al. Stereochemical applications of the expression of the L-2,3-butanediol dehydrogenase gene in Escherichia coli [J]. Letters in applied Microbiology,2001,32:93-98.
    [45]Ui S, Takusagawa Y, Sato T, et al. Production of L-2,3-butanediol by a new pathway constructed in Escherichia coli [J]. Letters in applied Microbiology, 2004,39(6):533-537.
    [46]Peng W L, Yang Y S, Deng W L, et al. Identification and characterization of acok:a regulatory gene of the Klebsiella acoABCD Operon [J]. Journal of Bacteriology, 1997,175:1497-1504.
    [47]Cheng K K, Liu H J, Liu D H. Multiple growth inhibition of Klebsiella pneumoniae in 1,3-propanediol fermentation [J]. Biotechnol Lett,2005,27:19-22.
    [48]修志龙.微生物发酵法生产1,3-丙二醇的研究进展[J].微生物学通报,2000,27(4):300-302.
    [49]Hartlep M, Hussmann W, Prayitno N. Study of two-stage processes for the microbial production of 1,3-propanediol from glucose [J].Appl Microbiol Biotechnol, 2002,60:60-66.
    [50]Lin R H, Liu H J, Hao J, et al. Enhancement of 1,3-propanediol production by Klebsiella pneumonia with fumarate addition [J]. Biotechnology Letters,2005,27:1755-1759.
    [51]黄和,纪晓俊,李霜,等.外源添加因子促进微生物合成2,3-丁二醇的方法:中国,200710024498.5[P].2007,06,20.
    [52]Laube V M, Groleau D, Martin S M.2,3-butanediol production from xylose and other hemicellulosic components by Bacillus polymyxa [J].Biotechnology Letters, 1984,6(4):257-262.
    [53]Eiteman M A, Miller J H. Effect of succinic acid on 2,3-butanediol production by Klebsiella oxytoca [J]. Biotechnology letters,1995,17(10):1057-1062.
    [54]Nakashimada Y, Marwoto B, Kashiwamura T, et al. Enhanced 2,3-butanediol production by addition of acetic acid in Paenibacillus polymyxa [J]. Journal of Bioscience and Bioengineering,2000,90(6):661-664.
    [55]Qureshi N, Cheryan M. Effect of lactic acid on growth and butanediol production by Klebsiella oxytoca [J]. Journal of Industrial Microbiology,1989,4:453-456.
    [56]Liu H J, Zhang D J, Xu Y H, et al. Microbial production of 1,3-propanediol from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot scale [J]. Biotechnology Letters,2007,29(8):1281-1285.
    [57]Ma B B, Xu X L, Zhang G L, et al. Microbial production of 1,3-propanediol by Klebsiella pneumoniae XJPD-Lji under different aeration strategies [J]. Applied Biochemistry and Biotechnology,2009,152(1):127-134.
    [58]Ji X J, Huang H, Zhu J G, et al. Efficient 1,3-propanediol production by fed-batch culture of Klebsiella pneumoniae:The role of pH fluctuation [J]. Applied Biochemistry and Biotechnoloy,2009,159(3):605-613.
    [59]Petiedemange E, Durr C, Abbad-Andaloussi S, et al. Fermentation of raw glycerol to 1,3-propanediol by new strains of Clostridium butyricum [J]. Journal of Industrial Microbiology and Biotechnology,1995,15(6):498-502.
    [60]Boenigk R, Bowien S, Gottschalk G. Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii [J]. Applied Microbiology and Biotechnology,1993,38(4):453-457.
    [61]Homann T, Tag C, Biebl H, et al. Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains[J]. Applied Microbiology and Biotechnology, 1990,33(2):121-126.
    [62]Garg S K, Jain A. Fermentative Production of 2,3-Butanediol:A Review [J]. Bioresource Technology,1995,51:103-109. [63] Perlman D. Production of 2,3-butylene glycol from wood hydrolyzates [J]. Industrial and Engineering Chemistry Research, 1944,36:803-804.
    [64]Barden T J, Croft M Y, Murby E J, et al. Gas chromatographic determination of organic acids from fruit juices by combined resin mediated methylation and extraction in supercritical carbon dioxide [J].J Chromatogr A,1997,785:251-261.
    [65]Zeng A P, Biebl H, Dechwer W D. Effect of pH and acetic acid on growth and 2,3-butanediol production of Enterobacter aerogenes in continuous culture [J]. Applied Microbiology and Biotechnology,1990,33(5):485-489.
    [66]Jansen N B, Flickinger M C, Tsao G T. Production of 2,3-butanediol from D-xylose by Klebsiella oxytoca ATCC 8724 [J]. Biotechnology and Bioengineering, 1984,26(4):362-369.
    [67]Beronio P B, Tsao G T. Optimization of 2,3-butanediol production by Klebsiella oxytoca through oxygen transfer rate control [J].Biotechnology and Bioengineering, 1993,42:1263-1269.
    [68]Zeng A P, Byun T G, Possten C, et al. Use of respiratory quotient as a control parameter for optimum oxygen supply and scale-up of 2,3-butanediol production under microaerobic conditions [J]. Biotechnology and Bioengineering,1994,44:1107-1114.
    [69]王剑锋,修志龙,刘海军,等.克雷伯氏菌微氧发酵生产1,3-丙二醇的研究[J].现代化工,2001, 21(5):28-31.
    [70]Hao J, Liu X L, Zheng Z M, et al. Isolation and characterization of microorganism able to produce 1,3-propanediol under aerobic conditions [J]. World Journal of Microbiology and Biotechnology,2008,24(9):1731-1740.
    [71]Menzel K, Zeng A P, Deckwer W D. High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae [J]. Enzyme and Microbial Technology,1997,20(2):82-86.
    [72]Liu H J, Zhang D J, Xu Y H, et al. Microbial production of 1,3-propanediol from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot scale [J]. Biotechnol Lett,2007,29:1281-1285.
    [73]Xiu Z L, Zeng A P. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol [J].Appl Microbiol Biotechnol,2008,78:917-926.
    [74]张代佳,高素军,孙亚琴,等.超滤-醇沉法从发酵液中提取1,3-丙二醇[J].过程工程学报,2006,6(3):454-457.
    [75]齐笑飞,乔建援,毕生雷,等.金属膜在1,3-丙二醇发酵液预处理中的应用.膜科学与技术,2010,30(1):96-99.
    [76]李凡锋,周玉杰,刘德华.1,3-丙二醇发酵液的絮凝预处理研究[J].微生物通报,2004,31(3):30-35.
    [77]李世强,王崇辉,佟明友.1,3-丙二醇发酵液的絮凝除菌研究[J].精细与专用化学品,2006,14(16):17-30.
    [78]Hao J, Xu F, Liu H J, et al. Downstream processing of 1,3-propanediol fermentation broth [J].Chem Technol Biotechnol,2006,81:102-108.
    [79]鲁诗锋,张代佳,修志龙.1,3-丙二醇发酵液的絮凝处理及絮凝细胞的再利用[J].食品与发酵工业,2006,32(9):10-13.
    [80]吴艳阳,朱家文,陈葵,等.2,3-丁二醇的絮凝预处理研究[J].化学工程,2009,37(11):47-50.
    [81]张江红,孙丽慧,修志龙.2,3-丁二醇发酵液的絮凝除菌与絮凝细胞的循环利用[J].过程工程学报,2008,8(4):779-783.
    [82]Kret S J, Carduck F J, Deckwer W D. Fermentive production of 1,3-propanediol. US,5254467 [P/OL].1991-04-25[1993-10-19]. http://www.google.com.hk/patents?id=YV8eAAAAEBAJ&printsec=abstract&zoom=4&source= gbs_overview_r&cad=0#v=onepage&q&f=false.
    [83]Qureshi N, Meagher M M, Hutjins R W. Recovery of 2,3-butanediol by vacuum membrane distillation[J]. Separation Science and Technology,1994,29(13):1733-1748.
    [85]Ames T T. Process for isolation of 1,3-propanediol from fermentation broth. US,6361983 Bl [P/OL].2000-09-27[2002-03-26]. http://www. google. com. hk/patents?id=th8KAAAAEBAJ&printsec=abstract&zoom=4&source= gbs_overview_r&cad=0#v=onepage&q&f=false.
    [86]李学梅,刘茉娥.发酵液中乳酸的电渗析法分离[J].高校化学工程学报,1998,12(3):231-235.
    [87]Cheryan M, Parekh S R. Separation of glycerol and organic acids in model ethanol stillage by electrodialysis and predpitation [J].Proc Biochem,1995,30:17-23.
    [88]龚燕,唐宇,王晓琳,等.电渗析用于1,3-丙二醇发酵液脱盐的实验研究[J].膜科学和技术,2004,24(5):33-62.
    [89]Gong Y, Tang Y, Wang X L, et al. The possibility of the desalination of actual 1, 3-propanediol fermentation broth by electrodialysis [J]. Desalination, 2004,16(1):169-178.
    [90]唐宇,龚燕,王晓琳,等.1,3-丙二醇发酵液电渗析脱盐的中试研究[J].化工进展,2004,23(1):84-87.
    [91]郝健,刘德华.1,3-丙二醇发酵液电渗析法脱盐[J].过程工程学报,2005,5(1):36-39.
    [92]Gong Y, Dai L M, Wang X L, et al. Effects of transport properties of ion-exchange membranes on desalination of 1,3-propanediol fermentation broth by electrodialysis [J]. Desalination,2006,191:193-199.
    [93]徐丰,戴玲妹,刘德华.酸处理后1,3-丙二醇发酵液电渗析脱盐研究[J].现代化工,2006,26(2):249-253.
    [94]张鹏,王琨,曹兴龙.正丁醇稀释法提纯发酵液中1,3-丙二醇的工艺研究[J].吉林化工学院学报,2008,25(3):9-11.
    [95]Li S G, Tuan V A, Falconer J L, et al. Effects of zeolite membrane structure on the separation of 1,3-propanediol from glycerol and glucose by pervaporation [J].Chem. Mater,2001,13:1865-1873.
    [96]Li S G, Tuan V A, Falconer J L, et al. Separation of 1,3-propanediol from glycerol and glucose using a ZSM-5 zeolite membrane [J]. Journal of Membrane Science, 2001,191:53-59.
    [97]Li S G, Tuan V A, Falconer J L, et al. Separation of 1,3-propanediol from aqueous solutions using pervaporation through an X-type zeolite membrane [J]. Ind Eng Chem Res, 2001,40:1952-1959.
    [98]Shao P, Kumar A. Recovery of 2,3-butanediol from water by a solvent extraction and pervaporation separation scheme [J]. Journal of Membrane Science,2009,329:160-168.
    [99]Kalcheva S V, Iotov P I. On the electrosorption of 1,3-Propanediol at Pt/Au-alloy electrode in an alkaline medium [J]. Bulletin of Electrochemistry,2001,17(8):351-356.
    [100]Roturier J M, Fouache C, Berghmans E. Process for the purification of 1,3-propanediol from a fermentation medium. US,6428992[P/OL].2000-11-14[2002-08-06]. http://www.google.com.hk/patents?id=D5kKAAAAEBAJ&printsec=abstract&zoom=4&source= gbs_overview_r&cad=0#v=onepage&q&f=false
    [101]Hilaly A K, Binder T P. Method of recovering 1,3-propanediol from fermentation broth. 2002, US Patent. US,0133049[P/OL].2001-03-15[2002-11-12]. http://www.google.com.hk/patents?id=LRILAAAAEBAJ&printsec=abstract&zoom=4&source= gbs_overview_r&cad=0#v=onepage&q&f=false
    [102]彭益强,兰琳,陈巍,等.树脂分离技术在酶法制备1,3-丙二醇中的应用[J].化工进展,2008,27(7):1129-1134.
    [103]苏建英,吴家鑫,谭天伟.疏水硅沸石吸附1,3-丙二醇的研究[J].化学工程,2007,35(5):1-4.
    [104]Adkesson D M, Alsop A W, Ames T T. Purification of biologically-produced 1,3-propanediol. US,0069997[P/OL].2004-05-05[2005-03-31]. http://www.google.com.hk/patents?id=UIqVAAAAEBAJ&printsec=abstract&zoom=4&source= gbs_overview_r&cad=0#v=onepage&q&f=false
    [105]Corbin D R, Norton T. Process to separate 1,3-propanediol or glycerol, or a mixture there of from a biological mixture. US,6603048 B1[P/OL].2000-09-29[2003-08-05]. http://www. google. com. hk/patents?id=4f4NAAAAEBAJ&printsec=abstract&zoom=4&source= gbs_overview_r&cad=0#v=onepage&q&f=false
    [106]Othmer D F, Berger W S, Shlechter N, et al. Liquid-liquid extraction data:system used in butadiene manufacture from butylenes glycol[J]. Industrial and Engineering Chemistry Research,1945,37:890-894.
    [107]Tsao G T. Conversion of biomass from agriculture into useful products. USDDE EG-77-S-02-4298[R].1978.
    [108]Malinowski J J. Evaluation of liquid extraction potentials for downstream separation of 1,3-propanediol [J].Biotechnol Tech,1999,13:127-130.
    [109]向波涛,陈书锋,刘德华.发酵液中1,3-丙二醇的萃取分离[J].清华大学学报,2001,41(12):53-55.
    [110]Baniel A M, Jansen R P, Vitner A, et al. Process for producing 1,3-propanediol. US,7056439 [P/OL].2003-06-05[2006-06-06]. http://www.patentstorm.us/patents/7056439/fulltext.html
    [111]Cho M H, Joen S I, Pyo S H, et al. A novel separation and purification process for 1,3-propanediol [J]. Process Biochem,2006,41(3):739-744.
    [112]Masumeh A, Gholam K. In situ recovery of 2,3-butanediol from fermentation by liquid-liquid extraction [J].J Ind Microbiol Biotechnol,2009,36:313-317
    [113]Ghosh S, Swaminathan T. Optimization of the phase system composition of aqueous two-phase system for extraction of 2,3-butanediol by theoretical formulation and using response surface methodology [J]. Chemical and Biochemical Engineering, 2004,18(3):263-271.
    [114]Senkus M. Recovery of 2,3-butanediol produced by fermentation [J].Ind Eng Chem, 1946,38:913-916.
    [115]Broekhuis R R, Lynn S, King C J. Recovery of propylene glycol from dilute aqueous solutions via reversible reaction with aldehydes [J].Ind Eng Chem Res, 1994,33:3230-3237.
    [116]Broekhuis R R, Lynn S, King C J. Recovery of propylene glycol from dilute aqueous solutions by complexation with organoboronates in ion-pair extractants [J].Ind Eng Chem Res,1996,35:1206-1214.
    [117]Malinowski J J. Reactive extraction for downstream separation of 1,3-propanediol [J].Biotechnol Prog,2000,16:76-79.
    [118]Hao J, Liu H J, Liu D H. Novel route of reactive extraction to recover 1,3-propanediol from a dilute aqueous solution [J]. Ind Eng Chem Res,2005,44:4380-4385.
    [119]Hao J, Xu F, Liu H, et al. Downstream processing of 1,3-propanediol fermentation broth [J].J Chem Technol Biotechnol,2006,81:102-108.
    [120]Sanz M T, Blanco B, Beltran S, et al. Vapor liquid equilibria of binary and ternary systems with water,1,3-propanediol, and glycerol [J].J Chem Eng Data, 2001,46:635-639.
    [121]Wu Y Y, Zhu J W, Chen K, et al. Vapor-liquid equilibria for the binary mixtures of 2,3-butanediol with n-butanol, n-butyl acetate, and ethyl acetate at 101.3 kPa [J]. Fluid Phase Equilibria,2007,262:169-173.
    [122]高山林,方云进,戚一文.用ASPEN PLUS软件预测水-2,3-丁二醇汽液相平衡数据[J].浙江化工,2007,38(3):25-28.
    [123]徐勇,寇春霞,刘峰.1,3-丙二醇-甘油汽液相平衡数据的推算[J].山东科技大学学报(自然科学版),2005,24(4):99-109.
    [124]刘茉娥,陈欢林.新型分离技术基础[M].浙江:浙江大学出版社,1999.
    [125]Hasmann F A, Santos V C, Gurpilhares D B, et al. Aqueous two-phase extraction using thermoseparating copolymer:a new system for phenolic compounds removal from hemicellulosic hydrolysate [J]. Journal of Chemical Technology and Biotechnology, 2008,83:167-173.
    [126]李伟,朱自强,梅乐和.双水相萃取技术在药物分离提纯中的应用[J].化工进展,1998,1:26-29.
    [127]谭平华,林金清,肖春妹,等.双水相萃取技术研究进展及应用[J].化工生产与技术,2003,10(1):19-23.
    [128]Benavides J, Rito-Palomares M. Practical experiences from the development of aqueous two-phase processes for the recovery of high value biological products [J]. Journal of Chemical Technology and Biotechnology,2008,83:133-142.
    [129]Aguilar 0, Rito-Palomares M. Processing of soybean (Glycine max) extracts in aqueous two-phase systems as a first step for the potential recovery of recombinant proteins [J]. Journal of Chemical Technology and Biotechnology,2008,83:286-293.
    [130]刘波,王英锋,郭雪清.新型萃取分离技术在生物技术中的应用[J].首都师范大学学报,2005,26(2):49-53.
    [131]杨善升,陆文聪,包伯荣.双水相萃取技术及其应用[J].化学工程师,2004,103(4):37-38.
    [132]郭黎平,傅冬梅,张卓勇,等.双水相萃取技术的研究进展[J].东北师大学报自然科学版,2000,32(3):34-40.
    [133]陆强,邓修.提取与分离天然产物中有效成分的新方法-双水相萃取技术[J].中成药,2000,22(9):653-655.
    [134]Zhu Z Q, Li M, Mei L H. Measurement and correlation of partition coefficients of urokinase in aqueous two-phase PEGP potassium phosphate systems [J]. Chinese J Chem Eng,1996,4(1):19-27.
    [135]谢海.双水相萃取技术研究现状[J].化学工业与工程,2006,23(5):463-466.
    [136]成坚.双水相体系萃取分离技术及其在生物技术中的应用[J].仲恺农业技术学院学报,2000,13(2):52-58.
    [137]Li X, Wan J F, Cao X J. Preliminary application of light-pH sensitive recycling aqueous two-phase systems to purification of lipase [J].Process Biochemistry,2010,45(4): 598-601.
    [138]霍清,林强.利用双水相体系的温度诱导效应萃取甘草酸[J].化学通报,2002,5:349-352.
    [139]Wu Y T, Pereira M, Venancio A, et al. Separation of endo-polygalacturonase using aqueous two-phase partitioning [J]. Journal of Chromatography A,2001,929:23-29.
    [140]Rito-Palomares M, Middelberg A P J. Aqueous two-phase systems for the recovery of a recombinant viral coat protein from Escherochia coli [J]. Journal of Chemical Technology and Biotechnology,2002,77:1025-1029.
    [141]张宏康.双水相萃取技术及其在食品与发酵工业中的应用[J].粮油食品,2001,9(2):17-19.
    [142]Saravanan S, Rao J R, Murugesan T, et al. Recovery of value-added globular proteins from tannery wastewaters using PEG-salt aqueous two-phase systems [J].Journal of Chemical Technology and Biotechnology,2006,81:1814-1819.
    [143]Gautam S, Simon L. Partitioning of β-glucosidase from Trichoderma reesei in poly(ethylene glycol) and potassium phosphate aqueous two-phase systems:Influence of pH and temperature [J]. Biochemical Engineering Journal,2006,30:104-108.
    [144]Ribeiro S C, Monteiro G A, Cabral J M S, et al. Isolation of plasmid DNA from cell lysates by aqueous two-phase systems [J]. Biotechnology and Bioengineering, 2002,78(4):376-384.
    [145]Duarte S, Fortes A G, Prazeres D M, et al. Integration of plasmid DNA purification and molecular therapy agent prearation using aqueous two-phase systems [J]. Journal of Biotechnology,2007,131:S6-S7.
    [146]Jorge B, Oscar A, Blanca H L E. Extraction and purification of bioproducts and nanoparticles using aqueous two-phase systems strategies [J].Chem. Eng. Technol, 2008,31 (6):838-845.
    [147]Trindade I P, Diogo M M, Prazeres D M F, et al. Purification of plasmid DNA vectors by aqueous two-phase extraction and hydrophobic interaction chromatography [J].J Chromatogr A,2005,1082:176-184.
    [148]瞿素玲,刘建刚,骆广生.双水相电泳分离氨基酸[J].高校化学工程学报,2000,14(3):293-297
    [149]Cisneros M, Benavides J, Brenes C H, et al. Recovery in aqueous two-phase systems of lutein produced by the green microalga Chlorella protothecoides [J]. Journal of Chromatography B,2004,807 (1):105-110.
    [150]Edahiro J, Masayuki N, Minoru S, et al. Enhanced accumulation of anthocyanin in cultured strawberry cells by repetitive feeding of 1-Phenylalanine into the medium [J].J Biosci Bioeng,2005,99(1):43-47.
    [151]Morre D M, Morre D J. Aqueous two-phase partition applied to the isolation of plasma membranes and Golgi apparatus from cultured mammalian cells [J].J Chromatogr B, 2000,743:377-387.
    [152]林金清,金春英,谭平华,等.亲水有机相-含盐水两相体系的形成机理与分相能力[J].应用化学,2005,22(11):1023-1026.
    [153]Cheluget E L, Marx S, Weber M E, et al. Equilibrium in Biphasic Aqueous Systems:A Model for the Excess Gibbs Energy and Data for the System H20-NaCl-1-Propanol at 25 ℃ [J]. Journal of Solution Chemistry,1994,23(2):275-305.
    [154]林金清,董军芳,李夏兰.乙醇/硫酸铵双水相体系萃取甘草酸钾的研究[J].精细化工,2004,21(3):165-167,173.
    [155]Tan T W, Huo Q, Ling Q. Purification of glycyrrhizin from Glycyrrhiza uralensis Fisch with ethanol/phosphate aqueous two phase system [J].Biotechnology Letters, 2002,24:1417-1420.
    [156]Wang H, Dong Y S, Xiu Z L. Microwave-assisted aqueous two-phase extraction of piceid, resveratrol and emodin from Polygonum cuspidatum by ethanol/ammonium sulphate systems [J]. Biotechnol Lett,2008,30:2079-2084.
    [157]Zhi W B, Deng Q Y. Purification of salvianolic acid B from the crude extract of Salvia miltiorrhiza with hydrophilic organic/salt-containing aqueous two-phase system by counter-current chromatography [J]. Journal of Chromatography A,2006,1116:49-152.
    [158]刘琳,董悦生,修志龙.微波辅助双水相提取盾叶薯蓣中的皂苷成分[J].过程工程学报,2009,9(6):1147-1152.
    [159]王丰莉,孙小梅,李步海.亲水醇/盐-水双液相体系萃取赤霉素的研究[J].分析化学,2007,35(3):405-408.
    [160]霍清,王强.利用丙酮/磷酸氢二钾双水相体系分离纯化绿原酸的研究[J].食品科学,2008,29(11):234-236.
    [161]卢俊彩,崔岩岩,陈火林,等.丙酮-硫酸铵双水相体系分离纯化红花红色素[J].化学研究与应用,2007,19(6):679-682.
    [162]高云涛,王伟.丙醇-硫酸铵双水相体系中萃取Au(Ⅲ)-氯化物-罗丹明B[J].化学研究与应用,2002,12(3):320-321.
    [163]马万山,钟黎,高素英.硫酸铵-溴化钾-乙醇体系萃取分离金[J].分析化学研究简报,2004,32(1):56-59.
    [164]吴艳平,赵春霞,李全民.硫酸铵-碘化钾-乙醇体系萃取分离铋[J].化学研究与应用,2001,13(3):329-331.
    [165]高云涛,王伟.钯(Ⅱ)碘络合物在丙醇一硫酸铵双水相萃取体系中的分配行为及在钯测定中的应用[J].贵金属,2006,27(3):45-49.
    [166]李全民,耿新华,刘奇.硫酸铵存在下碘化钾-乙醇体系萃取分离镉[J].应用化学,2000,17(1):69-71.
    [167]Louwrier A. Model phase separations of proteins using aqueous/ethanol components [J]. Biotechnology Techniques,1998,12(5):363-365.
    [168]Chien W 0, Beng T T, Siew L H, et al. Purification of lipase derived from Burkholderia pseudomallei with alcohol/salt-based aqueous two-phase systems [J]. Process Biochemistry 44 (2009) 1083-1087.
    [169]Finck B N, Kelley K W, Dantzer R, et al. In vivo and in vitro evidence or the involvement of tumor necrosis factor-alpha in the induction of leptin by ipopolysaccharide [J]. Endocrinology,1998,139:2278-2283.
    [170]Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry,1976,72:248-251.
    [171]Geckil H, Barak Z, Chipman D M, et al. Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene [J]. Bioprocess and Biosystems Engineering,2004,26:325-330.
    [172]纪晓俊,黄和,杜军,等.3-羟基丁酮的合成及应用进展[J].现代化工,2008,28(4):18-22.
    [173]徐长波,王巍杰.双水相萃取技术研究进展[J].化工科技,2009,17(2):75-79.
    [174]刘海军.发酵法生产1,3-丙二醇过程及中试研究[D].大连:大连理工大学环境与生命学院,2007.
    [175]Krug F J, RUzicka J, Hansen E H. Determination of ammonia in low concentrations with Nessler's reagent by flow injection analysis [J]. Analyst,1979,104:47-54.
    [176]食物中磷的测定方法[S].中华人民共和国国家标准,1990,GB12393-90.
    [177]工业碳酸氢钠-碳酸钠的测定-滴定法[S].中华人民共和国国家标准,1986,GGB6393.1-86.
    [178]工业碳酸氢钠-碳酸钠的测定-滴定法[S].中华人民共和国国家标准,1986,GB6393.2-86.
    [179]牟英,王元好,修志龙,等.高效液相色谱法测定,1,3-丙二醇发酵液中的有机酸[J].分析化学,2006,34:183-186.
    [180]Yu E K, Saddler J N. Enhanced production of 2,3-butanediol by Klebsiella pneumoniae grown on high sugar concentrations in the presence of acetic acid [J].Appl Environ Microbiol,1982,44:777-784.
    [181]Bryn K, Ulstrup J C, Stormer F C. Effect of acetate upon the formation of acetoin in Klebsiella and Enterobacter and its possible practical application in a rapid Voges-Proskauer test [J].Appl Microbiol,1973,25:511-512.
    [182]蒋洁,张栩,谭天伟.乙酸对1,3-丙二醇发酵的影响.北京化工大学学报,2005,32(5):36-42.
    [183]王剑峰,修志龙,范圣第.甘油转化生产1,3-丙二醇发酵液中甘油含量的测定.工业微生物,2001,31(2):33-35.
    [184]Wang YH, Dong YS, Xiu ZL. Rapid determination of organic acids in 1,3-propanediol fermentation broth with gradient elution-high performance liquid chromatography [J]. Food Ferment Ind,2010,265:126-130.
    [185]Hong A A, Cheng K K, Peng F, et al. Strain isolation and optimization of process parameters for bioconversion of glycerol to lactic acid [J]. J Chem Technol Biotechnol, 2009,84:1576-1581.
    [186]吴宇琼,李定或,吴元欣.发酵法生产乳酸的提取与精制研究进展[J].食品工业科技,2003,1:106-108.
    [187]肖光耀,张金斌,王晖,等.从乳酸蒸馏残液中回收精制乳酸的膜分离工艺研究[J].化学与生物工程,2007,24(7):36-38.
    [188]Wheat J A, Leslie J D, Tomkins R V, et al. Production and properties of 2,3-butanediol. XXVIII. Pilot plant recovery of levo-2-3-butanediol from whole wheat mashes fermented by Aerobacillus polymyxa [M]. Can J Res,1948,26F:469-496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700