基于微结构光纤的全光功能器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文工作是围绕以下项目展开的:以任晓敏教授为首席科学家的国家重点基础研究发展计划(973计划)项目“新一代通信光电子集成器件及光纤的重要结构工艺创新与基础研究”(项目编号:2003CB314900);国家863计划项目“光子晶体光纤及器件的研制与开发”(项目编号:2007AA03Z447);教育部科学技术重大研究项目“基于微结构光纤的新一代光通信器件及系统”(项目编号:104046)和教育部“高等学校学科创新引智计划”(简称“111计划”)(项目编号:B07005)。
     微结构光纤(Microstructured Fibers, MFs)以其特殊的色散、非线性特性向人们展示了一个充满想象的应用前景。近年来,关于微结构光纤的设计、制造以及应用已成为研究热点。同时,随着全光通信概念的提出,基于全光的中继再生、信息处理、波长变换、码型变换以及色散补偿等已经成为全光通信的核心技术。本文的主要内容就是围绕利用微结构光纤的优异特性来完成全光通信中的几个核心技术展开的。微结构光纤中微米量级的可控结构使得基于微结构光纤的全光功能器件在高度集成中占有极大优势。
     本论文的主要工作有以下几个方面:
     1.全面研究了微结构光纤(MFs)的损耗、色散、偏振、非线性等特性,与单模光纤的耦合、熔接,以及微结构光纤的分类和分析方法
     2.实验完成了基于MF中自相位调制(SPM)效应的全光2R再生。对10Gb/s的脉冲光信号进行了高质量的全光再生,信号消光比从3.0dB提高到12.0dB,峰值抖动从0.8降低到0.05。同时实验研究了一路光信号向20nm波长范围的光组播。此外还设计了两种分别基于概率运算原理和光折变效应的全光时钟提取方案,这两种方案都可以克服大随机时延抖动。
     3.实验研究了基于MF的全光NOLM型光开关,该开关消光比达到21.3dB,开关速率达到10Gb/s,插入损耗为4.7dB。
     4.实验验证了基于MF中的超连续谱的DWDM光源的可行性。对于1525nm到1575nm范围内,几十个特定波长分别滤波,得到良好的光源信号。在1562nm处,调节滤波带宽,观察到了信号从脉冲向连续信号的演变过程。
     5.完成了基于四波混频(FWM)效应的全光波长变换实验,转换带宽为1558nm-1574nm,转换效率在-19.8dB到-28.7dB之间。完成了基于MF中的四波混频(FWM)的全光波长变换和码型转换实验,将波长为1550.1nm、传输速率为10Gb/s的NRZ光信号成功转换成了波长为1561nnm的RZ光信号。分析了WDM信号向OTDM信号的变换,理论上推导出了WDM+OTDM复用方案中的波长利用率限制。
     6.实验上完成了基于MF中的SPM效应的四进制信号向二进制信号的全光转换。将10Gb/s的四进制光信号转换为20Gb/s的二进制信号,转换信号的消光比约3.2dB。
     7.与他人合作,完成了基于微结构光纤的宽带色散补偿。对优选的MF进行了色散测量,测量结果表明:在120nm(1520nm-1640nm)范围内,该光纤可补偿其自身长度70倍的标准单模光纤,残余色散率在-2%-6%之间。完成了44nm (1523nm-1567nm)范围内的多处光信号的色散补偿实验。
The research works of this dissertation are supported by the National Basic Research Program of China (973 Project, Grant 2003CB314906), the National 863 High Technology Project of China (2007AA03Z447), the Foundation for the Key Program of Ministry of Education of China (Grant 104046) and "111 Project" (B07005).
     Microstructured fibers (MFs) show us an amazing and promising application potentiality for their novel properties, such as flexible and controllable dispersion property, controllable nonlinearity, and high birefringence. In recent years, the design, fabrication and application of MFs have become hot research tropics. With the conception of all-optical telecommunication, the all-optical technology based 3-R regeneration, optical information processing, wavelength conversion, pattern conversion and dispersion compensation have become core technologies of all-optical telecommunication. The content for this dissertation focuses on how to realize the key technologies in the all-optical telecommunication system by applying unique properties of MFs. The superiority of MFs based implementation scheme in the high integration results from the controllable sturcture of micron order of MFs.
     In this dissertation, MF-related all-optical functional devices are studied both theoretically and experimentally. The main contents and achievements are as follows.
     1. Comprehensive research on the properties of MFs, including loss, dispersion, polarization, nonlinearity, coupling and fusion to signal mode fiber, and the classification and analysis methods of MFs.
     2. Extensive study on all-optical regeneration. The 2R all-optical regeneration scheme based on SPM effect of MFs. High-quality regeneration (amplitude jitter reduction and extinction ratio enhancement) of a 10Gb/s optical data stream is achieved. The extinction ratio is enhanced from 3.0dB to 12.0dB, and the amplitude jitter was reduced from 0.8 to 0.05. One-to-multi wavelength conversion was achieved based on the SPM in MFs too, and the 10Gb/s optical data is conversed to four wavelengths between 1555nm and 1570nm simultaneously. At the same time, two clock recovery technologies based respectively on probabilistic computation and photo introduced refractive index change effect which can overcome large stochastic time jitter were put forword.
     3. NOLM structure all optical switching based on MFs is discussed. The extinction ratio of this all optical switching is 21.3dB, and the response rate is 10 GB/s the insert loss is 4.7dB.
     4. The feasibility of applying the supercontinuum (SC) of MFs into DWDM light source is verified. Clock pulses can be filterred out at different wavelength between 1525nm to 1575nm from the SC. At 1562nm, the changing process from clock pulse to CW light was observed after adjusting filter bandwidth.
     5. The wavelength conversion between two CW lights based on the FWM in MFs is achieved and discussed. The conversion bandwidth is 1558nm-1574nm, and the conversion efficiency is-19.8dB--28.7dB. The wavelength conversion and pattern conversion is completed simultaneously based on the FWM in MF. A 10 GB/s NRZ signal at 1550nm was conversed to an RZ signal at 1561nm. The wavelength utilization limitation of WDM+OTDM multiplexing scheme is derived theoretically.
     6. The all-optical quaternary-binary conversion based on SPM effect of MFs is put forward theoretically. A 10Gb/s quaternary optical signal was conversed to a 20Gb/s binary signal with extinction ratio of-3.2dB.
     7. The wideband dispersion compensation scheme based on MFs is completed with colleague cooperation. The dispersion compensating MF is carried out the dispersion measurement experiment within the range of 120nm (1520nm-1640nm), meanwhile is the dispersion compensation experiment of multi-points light signal within the range of 44nm (1523nm-1567nm).
引文
[1]K.C.Kao, G.A.Hockham, Dielectric-fiber surface waveguides for optical frequencies, IEE Proc.1966,113(7):1151-1158
    [2]C.Baaek and G.Walf, "Photonics in future telecommunications" proceeding of the IEEE, vol.81, pp.1624-1632,1993.
    [3]Tucker R.S., Eisenstein G., and Korotky S.K., "Optical time-division multiplexing for very high bit-rate transmission," J. L.T., Vol.6, No.11,1988, pp.1737-1749.
    [4]Spirit D.M., Ellis A.D. and Barnsley P.E., "Optical time division multiplexing: systems and networks," IEEE Commun. Mag., Vol.32, Issue 12, Dec.1994, pp.56-62.
    [5]Glesk I., Sokoloff J.P., and Prucnal P.R., "Demonstration of all-optical demultiplexing of TDM data at 250 G bit/s," Electron. Lett., Vol.30, No.4, 1994,pp.339-341.
    [6]B.Doshi, "Towards optical core:demand and technology driven future WAN architeeture " Internalional Conference on Communication Technology Proceedings 2000, vol.1, pp.618.
    [7]O. Croehat and J.Y. Le Boudee, "Design Protection for WDM optical networks" Selected Areas in Communications, IEEE Journal on, vol.16, pp.1158-1165,1998.
    [8]A. Jukan and H.R. van As, "Service-specific resource allocation in WDM networks with quality constraints"Selected Areas in Communications, IEEE Journal on, vol.18, pp.2051-2062,2000.
    [9]张瑞康,黄永清,任晓敏.全光再生中的时钟恢复技术.半导体光电,2002,Vol.23,NO.3:pp.182-186
    [10]张勇,吴重庆,陶滢.光网络中的光3R再生技术.光网络技术,2003,Vol.27,NO.1:pp.9-12
    [11]赵永鹏,叶培大.光网络中的全光再生.半导体光电,2002,Vol.22,NO.3:155-160 G. I. Papadimitriou, C. Papazoglou and A.S.Po mport sis," Optical Switching:Switch Fabrics, Techniques, and Architectures", Journal of Lightwave Technology, Vol.2 1, No.2,2003, pp384-404.
    [12]Z. Yusoff, P. Petropoulos, K. Furusawa, et al. A 36-channel 10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber [J]. IEEE Photon. Technol. Lett., 15(12),2003, pp.1689-1691.
    [13]K. Kudo et al.,1.55-μm wavelength-selectable microarray DFB-LD's with integrated MMI combiner, SOA, and EA-modulator, OFC'2000, paper TuL5
    [14]H.Hatakeyama et al., Wavelength-selectable microarray light sources for S-,C-, and L-bands WDM applications, OFC'2002, paper WF2
    [15]Y.A.Akulova, C.Schow, A.Karim et al., Widely-tunable elecroabsorption modulated sampled grating DBR laser integrated with semiconductor optical amplifier, OFC'2002, paper ThV1
    [16]G.Busico et al., A widely tunable digital supermode DBR laser with high SMSR, ECOC'2002, paper Tu 3.3.2
    [17]M.Jiang, C-C.Lu, P.Chen et al.,Error free 2.5 Gb/s transmission over 125 km conventional fiber of a directly modulated widely tunable vertical cavity surface emitting laser, OFC'2001, Paper TuJ3-1
    [18]G.S.Li, R.F.Nabiev, W.Yuen et al., Electrically-pumped directly-modulated tunable VCSEL for metro DWDM applications, ECOC'2001, Paper Tu.B.3.3
    [19]J.D.Berger et al., Widely tunable external cavity diode laser based on a MEMS electrostatic rotary actuator, OFC'2001, paper TuJ2
    [20]D.Anthon, J.D.Berger, and A.Tselikov, C+L band MEMS tunable external cavity semiconductor laser, OFC'04, Paper WL2
    [21]L. P. Shen, W.-P. Huang, G. X. Chen, et al, Design and optimization of photonic crystal fibers for broad-band dispersion compensation, IEEE Photon. Technol. Lett.15(4),2003, pp.540-542.
    [22]Yi Ni, Lei Zhang, Liang An, et al, Dual-core photonic Crystal fiber for dispersion compensation, IEEE Photon. Technol. Lett.16(6),2004, pp.1516-1518.
    [23]Lin-Ping Shen, Wei-Ping Huang, Shui-Sheng Jian, Design of photonic crystal fibers for dispersion-related applications, J. Lightwave Technol.,21(7),2003, pp.1644-1651.
    [24]S.K Varshney, K.Saitoh, M. Koshiba, A novel design for dispersion compensating photonic crystal fiber Raman amplifier, IEEE Photon. Technol. Lett.17(10),2005, pp.2062-2064.
    [25]T. Matsui, K. Nakajima, I. Sankawa, Dispersion Compensation Over All the Telecommunication Bands With Double-Cladding Photonic-Crystal Fiber, IEEE Photon. Technol. Lett.25(3),2007, pp.757-762.
    [26]Sivalingam K M, Subramaniam S.Optical WDM Networks:Principles and Practice. Boston:Kluwer academic publishers,2000.
    [27]E.N. Lallas, N.S kannoutsos, D.SyVridis, "Coherent eneoding of optical FSK header for all optical label swapping systems, "J. L.T., vol.23 no.3, Mar.2005, pp 1199-1209.
    [28]Wendi Li, Minghua Chen, Yi Dong, et al., "All-Optical Format Conversion From NRZ to CSRZ and Between RZ and CSRZ Using SOA-Based Fiber Loop Mirror"IEEE Photonics Technology Letters, VOL.16, NO.1, JAN 2004, pp.203-205.
    [29]C. Kim and G. Li, "Hyrid RZ to CSRZ format conversion, " Electronics Letters Vol.40, No.10, May2004, pp.620-621.
    [30]Matthias Seimetz, Markus Noelle, and ErwinPatzak, "Optical Systems With High-Order DPSK and Star QAM Modulation Based on Interferometric Direct Deteetion, " Journal of Lightwave Technology, Vol.25, No.6, Jun.2007, pp.1515-1530.
    [31]M.Obm and J. Speidel, "Receiver sensitivity, chromatic dispersion tolerance and optical receiver bandwidths for 40Gb/s 8-level optical ASK-DQPSK and optical 8-DPSK, " in Proc.6th Conf. Photon. Netw., Leipzig, Germany, May 2005 pp.211-217.
    [32]K. Sekine, N.Kikuchi, S. Sasaki, et al., "proposal and demonstration of 10-Gsymbol/sec 16-ary (40Gb/s) optical modulation/demodulation seheme, " in Proe. ECOC,2004, pp.424-425.
    [33]Jun-Hyuk Seo, and Woo-Young Choi, " Gigabit Transmission in 60-GHz-Band Using Optical Frequency Up-Conversion by Semiconductor Optical Amplifier and Photodiode Configuration, " IEEE,2006, pp.22-25.
    [34]Zhensheng Jia, Jianjun Yu, Muhammad Haris, " A Bi-directional Radio-over-Fiber System withAll-optical Up-converted DPSK for Downstream and Re-modulated OOK for Upstream, "IEEE,2006, TuV3.
    [35]WuYun Ying, Su Gimura, H Inouey, et al. Preparation of hard and ultar water-repellent silicon oxide films by microwave plasma-enhanced CVD at low subst-rate temperuaters [J]. Thin Solid Films,2003,435(1-2):ppl61-164.
    [36]Woo-Snyg Hna, J. Hyum Lee, Jung-Chul Park, and Youn-gBumKoh, "Deep UV Positive tone dry development Porecss using chemically amplified resist and its application to 256mega bit DRAM", Pore. Advances in Resist Technology and Processing X, William D.Hinsbegr, vol.1925, SPIE1993, pp291-301.
    [37]Dinaa X.Ma, et.al, "Metal Etch Technology for Sub-half-micron Devices, " July1996, Semieonductor Inetmational, pp.181.
    [38]Chunming Qiao, " Labeled optical burst switching for IP-over-WDM integration", Communications Magazine, IEEE, VOl:38 (9) Sep.2000, pp104-114:
    [39]C.Qiao, M.Yoo, " A Novel Switching Paradigm for Buffer-less WDM Networks", Proceedings of optical Fiber Communication Conference (OFC), paper ThM6, Feb.1999, pp.177-179;
    [40]M. Yoo, C. Qiao, "Just-Enough-Time (JET):a high speed Protocol for bursty traffic in optical networks",1997 Digest of the IEEE/LEOS Summer Topical Meetings, Aug.1997, pp26-27.
    [41]E. Yablonvitch, Inhibited spontaneous emission in solidstate physics and electronics, Phys. Rev. Lett.,58 (20),1987, pp.2059-2062.
    [42]S. John, Strong localization of photons in certain disordered dielectric super-lattices, Phy. Rev. Lett.,58 (23),1987, pp.2486-2489.
    [43]J. C:Knight, T. A. Birks, P. St. J. Russell, et al, Pure silica single-mode fibre with hexagonal photonic crystal cladding, OFC'96, paper PD3-1.
    [44]J. C. Knight, T. A. Birks, P. St. J. Russell, et al, All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett.,21 (19),1996, pp.1547-1549.
    [45]P. St. J. Russel, Photonic crystal fibers, Science,299,2003, pp.358-362.
    [46]J. C.Knight, New ways to guide light, Science,296,2002, pp.276-277.
    [47]P. Rigby, A photonic crystal fiber, Nature,396,1998, pp.415-416.
    [48]T. A. Birks, J. C. Knight, P. St. J. Russell, Endlessly single-mode photonic crystal fiber, Opt. Lett.,22(13),1997, pp.961-963.
    [49]J. C. Knight, T. A. Birks, P. St. J. Russell, et al, All-silica single mode optical fiber with photonic crystal cladding, Opt. Lett.,21,1996, pp.1547-1549.
    [50]J. C. Knight, J. Arriaga, T. A. Birks et al, Anomalous dispersion in photonic crystal fiber, IEEE Photon. Technol. Lett.,12(7),2000, pp.807-809.
    [51]J. K. Ranka, R. S. Windeler, A. J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm, Opt. Lett.,2000,25 (1):pp.25-27.
    [52]A. Ferrando, E. Silvestre, J. J. Miret, et al, Nearly zero ultraflattened dispersion in photonic crystal fibers, Opt. Lett.,25,2000, pp.790-792.
    [53]W. H. Reeves, J. C. Knight, P. St. J. Russell, Demonstration of ultra-flattened dispersion in photonic crystal fibers, Opt. Express,10:,2002, pp.609-613.
    [54]K. Saitoh and M. Koshiba, Chromatic dispersion control in photonic crystal fibers:Application to ultraflattened dispersion, Opt. Express,11,2003, pp.843-852.
    [55]R. K. Sinha and S. K. Varshney, Dispersion properties of photonic crystal fibers, Microwave Opt. Technol. Lett.,37,2003, pp.129-132.
    [56]F. Gerome, J.L. Auguste, J. M. Blondy, Design of dispersion-compensating fibers based on a dualconcentric-core photonic crystal fiber, Opt. Lett., 29,.2004, pp.2725-2727.
    [57]F. Poli, A. Cucinotta, S. Selleri, et al, Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers, IEEE Photon. Technol. Lett.,16 (4), 2004, pp.1065-1067.
    [58]Tzong-Lin Wu, Chia-Hsin Chao, A novel ultraflattened dispersion photonic crystal fiber, IEEE Photon. Technol. Lett.,17(1),2005, pp.67-69.
    [59]A. Huttunen and P. Torma, Optimization of dual-core and microstructured fibers geometries for dispersion compensation and large mode area, Opt. Express,13,2005, pp.627-635.
    [60]T. Fujisawa, K. Saitoh, K. Wada, et al, Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation, Opt. Express,14(2),,2006, pp.893-900.
    [61]Sigang Yang, Yejin Zhang, Xiaozhou Peng, et al, Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field, Opt. Express,14(7),2006, pp.3015-3023.
    [62]J. C. Knight, T. A. Birks, R. F. Cregan, P. St. Russell, et al, Large mode area photonic crystal fibre, Electron. Lett.,34(13),1998, pp.1347-1348.
    [63]T. M. Monro, D. J. Richardson, N. G. R. Broderick, et al, Holey optical fibers: An efficient modal model, J. Lightwave Technol.,17,1999, pp.1093-1102.
    [64]N. G. R. Broderick, T. M. Monro, P. J. Bennett, et al, Nonlinearity in holey optical fibers:measurement and future opportunities, Opt. Lett.,24,1999, pp.1395-1397.
    [65]N. A. Mortensen, Effective area of photonic crystal fibers, Opt. Express,10, 2002, pp.341-348.
    [66]Niels Asger Mortensen, Effective area of photonic crystal fibers,Opt. Express, 14(7),2002, pp.341-348.
    [67]L. Lavoute, P. Roy, A. Desfarges-Berthelemot, et al, Design of microstructured single-mode fiber combining large mode area and high rare earth ion concentration, Opt. Express,14(7),2006, pp.2994-2999.
    [68]John M. Fini, Bend-resistant design of conventional and microstructured fiberss with very large mode area, Opt. Express,14(1),2006, pp.69-81.
    [69]A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, et al, Highly birefringent photonic crystal fibers, Opt. Lett.,25(18),2000, pp.1325-1327.
    [70]T. P. Hansen, J. Broeng, S. E. B. Libori, et al, Highly birefringent index-guiding photonic crystal fibers, IEEE Photon. Technol. Lett.,13 (6), 2001,pp.588-590.
    [71]Saitoh, K.; Koshiba, M., Photonic bandgap fibers with high birefringence, IEEE Photon. Technol. Lett.,14(9),2001, pp.1291-1293.
    [72]娄淑琴,王智,任国斌等,折射率导模高双折射光子晶体光纤,光学学报,24(10),2004,pp.1310-1315.
    [73]Yue, Y., Kai, G., Wang, Z., et al, Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core, IEEE Photon. Tech. Lett.; 18(24),2006, pp.2638-2640.
    [74]Zografopoulos D.C., Kriezis E.E., Tsiboukis T.D., Tunable highly birefringent bandgap-guiding liquid-crystal microstructured fibers, J. Lightwave Technol., 24(9),2006, pp.3427-3432.
    [75]Chen, D., Shen, L., Ultrahigh Birefringent Photonic Crystal Fiber with Ultralow Confinement Loss, IEEE P.T.L.,19(4),2007, pp.185-87.
    [76]R. F. Cregan, B. J. Mangan, J. C. Knight, et al, Single-mode photonic band gap guidance of light in air.Science,285,1999, pp.1537-1539.
    [77]D.G. Ouzounov, F.R. Ahmad, D. Muller, et al, Generation of megawatt optical solitons in hollow-core photonic band-gap fibers, Science,301,2003, pp.1702-1704.
    [78]J. Laegsgaard, N.A. Mortensen, J. Riishede, et al, Material effects in air-guiding photonic bandgap fibers, J. Opt. Soc. Am. B:Opt. Phys.,20,2003, pp.2046-2051.
    [79]F. Luan, J. C. Knight, P. St. J. Russell, et al, Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers, Opt. Express,12(5),2004, pp.835-840.
    [80]J.D. Shephard, J.D.C. Jones, D.P. Handet al, High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers, Opt. Express, 12,2004, pp.717-723.
    [81]C. Peucheret, B. Zsigri, T.P. Hansen and P. Jeppesen,10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm, Electron. Lett,41(1), 2005, pp.27-29.
    [82]K. Kurokawa, K. Tajima, K. Tsujikawa, et al, Penalty-Free Dispersion-Managed Soliton Transmission Over a 100-km Low-Loss PCF, J. Lightwave Technol.,24(1),2006, pp.32-37.
    [83]B. Zsigri, C. Peucheret, M. D. Nielsen, et al, Demonstration of Broadcast, Transmission, and Wavelength Conversion Functionalities Using Photonic Crystal Fibers, IEEE Photon. Technol. Lett.,18(21),2006, pp.2290-2292
    [84]Jay E. Sharping, Mark A. Foster, and Alexander L. Gaeta, Octave-spanning, high-power microstructurefiber-based optical parametric oscillators, Opt. Express,15(4),2007, pp.1474-1479.
    [85]K. Sasaki, S. K. Varshney, K. Wada, Optimization of pump spectra for gain-flattened photonic crystal fiber Raman amplifiers operating in C-band, Opt. Express,15(5),2007,pp.2654-2668.
    [86]A. Tonello and S. Wabnitz, Switching Off Polarization Modulation Instabilities in Photonic Crystal Fibers, IEEE Photon. Technol. Lett.,18(8), 2006, pp.953-955.
    [87]Hai-Han Lu, Wen-I Lin, Ching-Yin Lee, et al, A Full-Duplex Radio-on-Photonic Crystal Fiber Transport System, IEEE Photon. Technol. Lett.,19(11), 2007, pp.831-833.
    [88]H. Hasegawa, Y. Oikawa and M. Nakazawa,10 Gbit/s 2 km photonic crystal fibre transmission with 850nm directly modulated singlemode VCSEL, IEE Electron. Lett.,43(2),2007, pp.119-121.
    [89]Y. Xu, X. Ren, Z. Wang, X. Zhang and Y. Huang, Flatly broadened supercontinuum generation at 10 Gbits using dispersion-flattened photonic crystal fibre with small normal dispersion, IEE Electron. Lett..,43(2),2007, pp.87-88.
    [90]C.H. Kwok, S.H. Lee, K.K. Chow, et al, Photonic crystal fibre based all-optical modulation format conversions between NRZ and RZ with hybrid clock recovery from a PRZ signal, IET Optoelectronics,1(1),2007, pp.47-53.
    [91]Hui Wang, Christine P. Fleming, and Andrew M. Rollins, Ultrahigh-resolution optical coherence tomography at 1.15μm using photonic crystal fiber with no zero-dispersion wavelengths, Opt. Express,15(6),2007,pp.3085-3092.
    [1]P. St. J. Russel, Photonic crystal fibers, Science,299,2003, pp.358-362.
    [2]J. C. Knight, New ways to guide light, Science,296,2002, pp.276-277.
    [3]P. Rigby, A photonic crystal fiber, Nature,396,1998, pp.415-416.
    [4]Knight J C, Birks T A, Russell P St J et al.1996,21 (19):1547
    [5]Birks T A, Mogilevtsev D, Knight J C et al. The analogy between photonic crystal fibres and step index fibres, OFC'98, FG4:114-116.
    [6]A. Ferrando, E. Silvestre, J. J. Miret, et al. Fullvector analysis of a realistic photonic crystal fiber, Opt. Lett.,1999, vol.24:276-278.
    [7]D. Mogilevtsev, T. A. Birks and P. St. J. Russell.1998, Paper CFB7, CLEO/Europe.
    [8]Laegsgaard J, Hansen K P et al. Photonic crystal fiber[A], SBMO/IEEE MTT-S IMOC'03,2003,262-263
    [9]J. C. Knight, J. Broeng, T. A. Birks, et al, Photonic band gap guidance in optical fibers, Science,282(5393),1998, pp.1476-1478.
    [10]T. A. Birks, J. C. Knight, and P. St. J. Russell, Endlessly single-mode photonic crystal fiber, Opt. Lett.,22(13),1997, pp.961-963.
    [11]J. C. Knight, T. A. Birks, P. St. J. Russell, et al, Properties of photonic crystal fiber and the effective index model, J. Opt. Soc. Am. A,15(3),1998, pp.748-752.
    [12]E. Silvestre, P.St.J. Russell, T.A. Birks, et al, Analysis and design of an endlessly single-mode finned dielectric waveguide, J. Opt. Soc. Am. A,15, 1998,pp.3067-3075.
    [13]李曙光,刘晓东,侯蓝田,光子晶体光纤的导波模式与色散特性,物理学报,52(11),2003,pp.2811-2817.
    [14]王智,任国斌,娄淑琴等,光子晶体光纤模式特征的研究,光学学报,24(3),2004,pp.324-329.
    [15]任国斌,王智,娄淑琴等,应用有效折射率方法研究光子晶体光纤,光学学报,31(6),2004,pp.723-727.
    [16]栗岩锋,王清月,胡明列,光子晶体光纤的矢量有效折射率分析方法,中国激光,31(11),2004,pp.1332-1336.
    [17]Yan-feng Li, Ching-yue Wang, Ming-lie Hu, A fully vectorial effective index method for photonic crystal fibers:application to dispersion calculation, Opt. Comm.,238,2004, pp.29-33.
    [18]张德生,董孝义,张伟刚等,用阶跃有效折射率模型研究光子晶体光纤色散特性,物理学报,54(3),2005,pp.1235-1240.
    [19]R. K. Sinha and Anshu D. Varshney, Dispersion properties of photonic crystal fiber:comparison by scalar and fully vectorial effective index methods, Opt. and Quantum Electron.,37,2005, pp.711-722.
    [20]K.M. Ho, C.T. Chen, I. Kurland, Existence of a photonic gap in periodic structure, Phys. Rev. Lett.,65,1990, pp.3152-3155.
    [21]S. E. Barkou, J. Broeng, and A. Bjarklev, Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect, Opt. Lett., 24(1),1999, pp.46-48.
    [22]A. Ferrando, E. Silvestre, J. J. Miret, et al, Full-vector analysis of a realistic photonic crystal fiber, Opt. Lett.,24(5),1999, pp.276-278.
    [23]J. Broeng, S. E. Barkou, T. S(?)ndergaard, et al, Analysis of air-guiding photonic bandgap fibers, Opt. Lett.,25(2),2000, pp.96-98.
    [24]A. Ferrando, E. Silvestre, J. J. Miret, et al, Vector description of higher-order modes in photonic crystal fibers, J. Opt. Soc. Am. A,17(7),2000, pp.1333-1340.
    [25]S. G. Johnson and J. D. Joannopoulos, Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis, Opt. Express,8,2001, pp.173-190.
    [26]D. Mogilevtsev, T. A. Birks, and P. S. J. Russell, Group-velocity dispersion in photonic crystal fibers, Opt. Lett.,23(21),1998, pp.1662-1664.
    [27]T. M. Monro, D. J. Richardson, N. G. R. Broderick, et al, Holey optical fibers: An efficient modal model, J. Lightw. Technol.,17(6),1999, pp.1093-1102.
    [28]D. Mogilevtsev, T. A. Birks, and P. S. J. Russell, Localized function method for modeling defect modes in 2-D photonic crystals, J. Lightw. Technol., 17(11),1999, pp.2078-2081.
    [29]T. M. Monro, D. J. Richardson, N. G. R. Broderick, et al, Modeling large air fraction holey optical fibers, J. Lightw. Technol.,18(1),2000, pp.50-56.
    [30]任国斌,王智,娄淑琴等,改进的正交函数算法研究光子晶体光纤,光电子·激光,15(7),2004,pp.806-813.
    [31]任国斌,王智,娄淑琴等,光子晶体光纤的正交函数模型,光学学报,24(8),2004,pp.1130-1136.
    [32]M.D. Feit, and J. A. Fleck, Computation of mode properties in optical fiber waveguides by a propagating beam method, Appl. Opt.,19,1980, pp.1154-1164.
    [33]C. E. Kerbage, B. J. Eggleton, P. S. Westbrook, et al, Experimental and scalar beam propagation analysis of an air-silica microstructured fibers, Opt. Express, 7(3),2000, pp.113-122.
    [34]B. J. Eggleton, P. S. Westbrook, C. A. White, et al, Cladding-mode resonances in air-silica microstructure optical fibers, J. Lightw. Technol.,18(8),2000, pp.1084-1100.
    [35]F. Fogli, L. Saccomandi and P. Bassi, Full vectorial BPM modeling of Index-Guiding Photonic Crystal Fibers and Couplers, Opt. Express,10(1), 2002, pp.54-59.
    [36]Y.Z. He, F.G. Shi, Finite-difference imaginary-distance beam propagation method for modeling of the fundamental mode of photonic crystal fibers, Opt. Comm.,225,2003, pp.151-156.
    [37]G. E. Town and J. T. Lizer, Tapered holey fibers for spot-size and numerical-aperture conversion, Opt. Lett.,26(14),2001, pp.1042-1044.
    [38]J. T. Lizier and G. E. Town, Splice losses in holey optical fibers, IEEE Photon. Technol. Lett.,13(8),2001, pp.794-796.
    [39]M. Qiu, Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method, Microw. Opt. Technol. Lett.,30(5), 2001,pp.327-330.
    [40]朱燕杰,董小鹏,杨晓理,时域有限差分法在光波导分析中的应用及改进,光学学报,23(5),2003,pp.565-571.
    [41]池灏,双折射光子晶体光纤传输特性分析,光学学报,24(11),2003,pp.1552-1556.
    [42]刘珂,杨冬晓,FDTD方法在光子晶体光纤中的应用,光学仪器,27(4)2005,pp.22-25.
    [43]武劲青,薛文瑞,周国生,方形渐变空气孔微结构光纤的色散特性分析,光学学报,25(2),2005,pp.174-178.
    [44]Wei Jiang, Linfang Shen, Daru Chen,et al,An Extended FDTD method with inclusion of material dispersion for the full-vectorial analysis of photonic crystal fibers, J. Lightwave Technol.,24(11),2006, pp.4417-4423.
    [45]F. Brechet, J. Marcou, D. Pagnoux, P.Roy, Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method, Opt. Fiber Technol.,6(2),2000, pp.181-191.
    [46]M. Koshiba and K. Saitoh, Numerical verification of degeneracy in hexagonal photonic crystal fibers, IEEE Photon. Technol. Lett.,13(12),2001, pp.1313-1315.
    [47]Cucinotta A., Selleri S., Vincetti, L., et al, Perturbation analysis of dispersion properties in photonic crystal fibers through the finite element method, IEEE Photon. Technol. Lett.,20(8),2002, pp.1433-1442.
    [48]A. Cucinotta, S. Selleri, L. Vincetti, et al, Holey fiber analysis through the finite-element method, IEEE P. T. L.,14 (11),2002, pp.1530-1532.
    [49]K. Saitoh and M. Koshiba, Full-vectorial imaginary-distance beam propagation method based on a finite element scheme:application to photonic crystal fibers, IEEE J. Quantum Electron.,38(7),2002, pp.927-933.
    [50]S. Guenneau, A. Nicholet, F. Zolla, et al, Modeling of photonic crystal optical fibers with finite elements, IEEE Trans. Magn.,38(2),2002, pp.1261-1264.
    [51]M. Koshiba, Full-vector analysis of photonic crystal fibers using the finite element method, IEICE Trans. Electron.,85-C (4),2002, pp.881-888.
    [52]T. Fujisawa and M. Koshiba, Finite element characterization of chromatic dispersion in nonlinear holey fibers, Opt. Express,11(13),2003, pp.1481-1489.
    [53]M. Koshiba and K. Saitoh, Finite-element analysis of birefringence and dispersion properties in actual and idealized holey-fiber structures, Appl. Opt., 42(31),2003, pp.6267-6275.
    [54]胡明列,王清月,栗岩锋,微结构光纤的有限元分析计算法,中国激光,31(11),2004,pp.1337-1342.
    [55]Saitoh K., Koshiba M., Numerical modeling of photonic crystal fibers, J. Lightwave Technol.,23(11),2005, pp.3580-3590.
    [56]M. J. Steel, T. P. White, C. M. de Sterke, et al, Symmetry and degeneracy in microstructured optical fibers, Opt. Lett.,26(8),2001, pp.488-490.
    [57]T. P. White, R. C. McPhedran, C. M. de Sterke, et al,Confinement losses in microstructured optical fibers, Opt. Lett.,26(21),2001, pp.1660-1662.
    [58]T.P. White, R.C. McPhedran, L.C. Botten,et al, Calculations of air-guided modes in photonic crystal fibers using the multipole method, Opt. Express, 9(13),2001, pp.721-732.
    [59]T. P. White, B. T. Kuhlmey, R. C. McPhedran, et al, Multipole method for microstructured optical fibers, I. Formulation. J. Opt. Soc. Am. B,19(10), 2002, pp.2322-2330.
    [60]B. T. Kuhlmey, T. P. White, G. Renversez, et al, Multipole method for microstructured optical fibers. II. Implementation and results, J. Opt. Soc. Am. B,19(10),2002, pp.2331-2340.
    [61]陆洋,张冶金,杨四刚等,多极化方法研究微结构光纤特性,半导体光电26(3),2005,pp.239-243.
    [62]Wang Zhi, Jian Shuisheng et al. Supercell lattice method for photonic crystal fibers. Optics Express,11:980-991,2003;
    [63]Wang Zhi, Ren Guobin, Lou Shuqin, et al. Dependence of mode characteristics on the central defect in elliptical hole photonic crystal fibers. Optics Express,11(17):1966-1979,2003;
    [64]Ren Guobin, Wang Zhi, Lou Shuqin, et al. Mode classification and degeneracy in photonic crystal fibers, Optics Expres,11(11):1310-1321, 2003;
    [65]Wang Zhi, Ren Guobin, Lou Shuqin, et al. Supercell lattice method for photonic crystal fibers, Optics Express,11(9):980-991,2003;
    [66]李玉全,2002,光波导理论与技术,人民邮电出版社。
    [67]Jin W, Hoo Y L, Ju J, Lo H L.Loss analysis of single-mode fiber/photonic crystal fiber splice. Technical Digest.The 16th International Conference on Optical Fiber Sensors, Nara, Japan (2003)
    [68]唐仁杰,低衰减光子晶体光纤的最新进展,全国第十一次光纤通信暨第十二届集成光学学术会议论文集:481-484。
    [69]T. P. White, R. C. McPhedran, C. M. de Sterke, et al. Confinement losses in microstructured optical fibers, Opt. Lett., Vol.26, No.21:1660-1662.
    [70]Vittoria Finazzi, Tanya M. Monro, and David J. Richardson. The role of confinement loss in highly nonlinearsilica holey fibers, IEEE Photonics technology letters, Vol.15, No.9,2003:1246-1248.
    [71]T. Sorensen, J. Broeng, A. Bjarklev, et al. Macro-bending loss properties of photonic crystal fibre, Electronics letters,2001,Vol.37, No.5:287-289.
    [72]A. Ortigosa-Blanch, J. C. Knight, W. Wadsworth, et al, Highly birefringent photonic crystal fibers, Opt Lett.,25:1325-1327,2000;
    [73]G. P. Agrawal, Nonlinear Fiber Optics, Academic Press:San Diego,1989
    [74]Broderick NGR, Monro TM, Bennett PJ, et al. Nonlinearity in holey optical fibers:measurement and future opportunities, Opt.Lett.,1999,24(20): 1395-1397
    [75]L. H. Lee, W. Beardi, K. Furusawa, et al. Four-wave mixing based 10 Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold. IEEE Photonics Techn Lett,2003,15:440-442
    [76]P. L. Chu, Nonlinear effects in rare-earth-doped fibers and waveguides, Lasers and Electro-Optics Society Annual Meeting (LEOS'97), TUDD1:371-372, 1997;
    [77]A. Ortigosa-Blanch, J.C.Knight, W.J.Wadsworth, et al. Highly Birefringence Photonic Crystal Fibers. Optics Letters,2000,25(18):1325-1327
    [78]K.Suzuki, H.Kubota, M.Tanaka, et al. Highly Speed Bi-directional Polarization Division Multiplexed Optical Transmission in Ultra Low-loss Polarization-Maintaining Photonic Crystal Fiber. Electronics Letters,2001, 37(23):1399-1401
    [79]T.P.Hansen, J.Broeng, E.B.Libori, et al.Highly Birefringent Index-guiding Photonic Crystal Fibers. IEEE Photon.Tech.Lett.,2001,13(5):588-590
    [1]O. Leclerc, B. Lavigne, E. Balmefrezol, P. Brindel, et al, Optical regeneration at 40 Gb/s and beyond, J. Lightwave Technol.21,2003, pp.2779.
    [2]Z. Huang, A. Gray, I. Khrushchev and I. Bennion,10-Gb/s transmission over 100 Mm of standard fiber using 2R regeneration in an optical loop mirror, Photon. Technol. Lett.16,2004, pp.2526.
    [3]P. Brindel, O. Leclerc, D. Rouvillain, et al, Experimental validation of new regeneration scheme for 40Gbit/s dispersion-managed long-haul transmission, in Proc. Optical Fiber Communication (OFC'00), Anaheim CA,2000, p42.
    [4]P. V. Mamyshev, All-optical data regeneration based on self-phase modulation effect, in Proceedings of the 1998 European Conference on Optical Communications (ECOC, Madrid),1,1998, pp.475-476.
    [5]G. Raybon, Y. Su, J. Leuthold, et al,40Gbit/s Pseudo-linear transmission over one million kilometres, in Proceedings of IEEE Conference on Optical Fiber Communications, (Institute of Electrical and Electronics Engineers, Anaheim,2002), FD-10 1-3.
    [6]T. H. Her, G. Raybon, C. Headley, Optimization of Pulse Regeneration at 40 Gb/s Based on Spectral Filtering of Self-Phase Modulation in Fiber, IEEE Photonics Technol. Lett.16,2004, pp.200-202.
    [7]N. Yoshikane, I. Morita, T. Tsuritani, et al, Benefit of SPM-based all-optical reshaper in receiver for long-haul DWDMtranmission systems, IEEE J. Sel. Top. Quantum Electron.10,2005, pp.412-420.
    [8]M. Rochette, J. L. Blows, B. J. Eggleton, An all-optical regenerator that descriminates noise from signal, in Proceedings of the 2005 European Conference on Optical Communications (ECOC, Glasgow,2005)3,403-404.
    [9]S. Taccheo, K. Ensner, Investigation of amplitude noise and timing jitter of supercontinuum spectrum-sliced pulses, IEEE Photonics Technol. Lett.14, 2002, pp.1100-1102.
    [10]M. Matsumoto, Performance analysis and comparison of optical 3R regenerators utilizing self-phase modulation in fibers, J. Lightwave Technol. 22,2004, pp.1472-1482.
    [11]J. T. Mok, J. L. Blows, and B. J. Eggleton, Investigation of group delay ripple distorted signals transmitted through all-optical 2R regenerators, Opt. Express,12,2004, pp.4411-4422.
    [12]M. Vasilyev, T. I. Lakoba, All-optical multichannel 2R regeneration in a fiber-based device, Opt. Lett.30,2005, pp.1458-1460.
    [13]M. Rochette, J. N. Kutz, J. L. Blows, et al, Bit-error ratio improvement with 2R optical regenerators, IEEE Photonics Technol. Lett.,17,2005, pp.908-910.
    [14]G. Raybon, Y. Su, J. Leuthtold, R-J. Essiambre, et al,40 G b/s Psuedo-linear transmission over one million kilometers, in Proc. Optical Fiber Communications (OFC'02), Anaheim CA, postdeadline paper FD10,2002.
    [15]Y. Xu, X. Ren, Z. Wang, X. Zhang and Y. Huang, Flatly broadened supercontinuum generation at 10 Gbit/s using dispersion-flattened photonic crystal fibre with small normal dispersion, IEE Electronics Letters,43(2), 2007, pp.87-88.
    [16]XU Yong-Zhao, REN Xiao-Min, WANG Zi-Nan, ZHANG Xia, HUANG Yong-Qing. Flat supercontinuum generation at 1550 nm in a dispersion-flattened microstructure fibre using picosecond pulse. Chinese Physics Letters,24(3),2007, pp.734-737.
    [17]Jung-Jui Kang, Yu-Chan Lin, Chao-Kuei Lee, and Gong-Ru Lin, "Peak equalization of rational-harmonic-mode-locking fiberized semiconductor laser pulse via optical injection induced gain modulation", Opt. Express 17, pp.850-859 (2009)
    [18]O. Pottiez, B. Ibarra-Escamilla, and E. A. Kuzin "High-quality amplitude jitter reduction and extinction enhancement using a power-symmetric NOLM and a polarizer" Optics Express, Vol.15, Issue 5, pp.2564-2572 (2007)
    [19]Rouskas G N, "Optical layer multicast:rationale, building blocks, and challenges, " IEEE Network 17, 1,pp60-65
    [20]Yan Ni, Monroy Idelfonso Tafur, Jung Hyn-Do et al, "Optical Multicast Technologies by multi-wavelength conversion for optical Routers " Communication Technology,2006,11, ppl-4
    [21]Contestabile G. Calallretta N, Proietti R et al " Simultaneous Multi-wavelength Conversion by Double Stage XGM in SOAs" Lasers and Electro-optics Society 2005,2005,10, pp155-156
    [22]Yan Ni, HyUn-Do Jung, Monroy IT et al "All optical Multi-wavelength Conversion with Negative Power Penalty by a Commereial SOA-MZI for WDM wavelength Multicast, " Optical Fiber Communication and the National Fiber optical Engineers Conference 2007 OFC/NFOEC2007 Conference on 2529, ppl-3
    [23]Chung H S, Inohara R, Nishimura et al "All-optical multi-wavelength conversionon of lOGbit/s signals based on SOA-MZI for WDM multicasting" Electronics Letters,41,7,432-433
    [24]Pleumeekers J L, Leuthold J, Kauer M et al "All-optical wavelength Conversion and Broadcasting to Eight Separate Channels by a Single SOA Daley Interferometer " Optical Fiber Communication Conference and Exhibit 2002 OFC2002,17,22,596-597
    [25]Contestabile G. Martelli F, Meeozzi A et al "Efficieney Flattening and Equalization of Frequency Up-and Down-Conversion Using FWM in SOA "10,10,1398-1400
    [26]G Contestabile, M Presi, E ciaramella et al"Multiple wavelength Conversion for WDM Multicast by FWM in an SOA"16,7, pp.1775-1777
    [27]Gosset C, Guang-Hua Duan, " Multi-wavelength conversion and ^synchronization of WDM signals by use of FWM in SOA",17,706-707
    [28]Teixeira A L J, Nogueira R, Lima M J N et al "Multi-wavelength Conversion Based on an SOA Self Pumped converter" Teleommunications 2003 10th Internation Conference on,1,23, pp.661-664
    [29]Terji Duthuns, Benny Mikkelsen, Carsten Joergensen et al "All-optical Wavelength Conversion by SOA" Lightwave Technology Journal of,14,6, pp.942-978
    [30]N.J.Doran and D.Wood, "Nolinear optical loop mirror,"Opt.Lett.,1988, 13(l):pp.56-58
    [31]N.J.Doran, D.S.Forrester, and B.K.Nayar, "Experimental invesigation of all-optical switching in fiber loop mirror device," Electron. Lett.,1989, 25(4):267
    [32]I.D.Phillips, A.D.Ellis, T.Widdowson, et al,80Gb/s optical clock recovery using an electrical phase locked loop, and commercially available components, OFC2000, ThP4-1
    [33]M.Puleo, A.Miras, E.Legros, et al, A simple high sensitivity clock recovery circuit for 40 Gbit/s return to zero signals Optical Fiber Communication Conference and Exhibit, OFC'98., Technical Digest,22-27 1998, pp:200-201
    [34]Vehovc.S, Vidmar.M, et al,80 Gbit/s optical clock recovery with automatic lock acquisition using electrical phase-locked loop Electronics Letters Vol.39(8) 17 April 2003, pp:673-674
    [35]J.P.Turkiewicz, E.Tangdiongga, et al,Clock recovery and demultiplexing performance of 160Gb/s OTDM field experiments, IEEE PTL, Vol.16, No.6, June 2004, pp.1555-1557
    [36]A.Hati, M.Ghosh and B.C. Sarkar, Phase detector for data-clock recovery circuit, Electronics Letters,2002(38):pp.161-163
    [37]Thomas F.Carruths, and Janet W.Lou,80-to 10-Gb/s clock recovery using an electro-optic phase-locked loop, ECOC 01 pp:284-285
    [38]D.M.Patrick, R.J.Manning,20 Gbit/s all-optical clock recovery using semiconductor nonlinearity, Electronics Letters,2000(37):pp.151-152
    [39]Dong Hwan Kim, Sang Hyuck Kim, et al., Ultrahigh-speed clock recovery with optical phase look loop based on FWM in an SOA, Optical communications,2000(182) pp:329-334
    [40]O.Kamatani, S.Kawanishi, Prescaled timing extraction from 400 Gb/s optical signal using a phase look loop based on FWM in a laser diode amplifier, PTL, IEEE Volume 8,Issue 8,Aug.1996 pp:1094-1096
    [41]Cisternino.F, Girardi R, et al., A novel approach to pre-scaled clock recovery in OTDM systems. Optical Communication.1998.24th European Conference on Volume 1,20-24 Sept.1998 pp:477-478 vol.1
    [42]M.Shrane, Y Hashimoto, H Kurita, et al, Optical sampling measurement with all-optical clock recovery using mode-locked diode laser,OFC'01,MG2-1-MG2-2
    [43]T.Ohno, K.Sato,T. Shimizu, et al., Recovery of 40GHz optical clock from 160G bit/s data using regenerative mode-locked semiconductor laser,Electronics Letters,2003,Vol.39,No.5,453-455
    [44]T.Ohno, K.Sato, R. Ira, et al., Recovery of 160GHz optical clock from 160G bit/s data stream using mode-locked laser diode, Electronics Letters, Vol.40, No.4 2004,265-267
    [45]H.Kurita, T,Shimizu,et al., All optical clock extraction at bit rates up to 80 Gb/s with monolithic mode-locked laser diode,CLEO 97,1997 CtuJ5
    [46]R.Ludwig, A.Ehrhardt, Turn-key-ready wavelength repetition rate and pulse width tunable femotosec ond hybrid mode-locked semiconductor laser, Eletron. Lett.,1995,31 pp:1165-1167
    [47]H.Yokoyama, Y.Hashimoto, H.Kurita, et al., Two-stage all-optical sub harmonic clock recovery using mode-locked semiconductor lasers, Electronics Letters,2000, Vol.36,No.18, pp:1577-1578
    [48]B.Sartorius,3R All-Optical Signal Regeneration,ECOC 2001
    [49]P.Rees, P. McEvoy, Valle, et al., Theoretical analysis of optical clock extraction using a self-pulsating laser diode, IEEE Journal of Quantum Electronics,1999(35):pp.221-227
    [50]B.Satorius, C.Bornholdt, O.Brox, et al.,All-optical clock recovery module based on self-pulsating DFB laser,Electronics Letters,1998(34):1664-1665
    [51]C.Bornholdt, S.Bauer, M.M ohrle,et al.,All optical clock recovery at 80GHz and beyond, ECOC'01 Th.F.1
    [52]C.Bornholdt, B.Sartorius, S.Schelhase, M.Mohrle and S.Bauer:self-pulsating DFB laser for all-optical clock recovery at 40G bit/s, Electronics Lett.2000, 36 pp:327-328
    [53]Sartorius.B, Feiste.U,12-64 GHz continuous frequency tuning in self-pulsation 1.55um multi-quantum well DFB lasers IEEE Topics Quantum Electron,1995, pp535-538
    [54]Sartorius.B, Feiste.U, Self-pulsation at more than 20GHz in InGaAsP/InP DFB lasers Conf.Dig.13th IEEE int.Semicond.Laser Conf.1992, pp329-330
    [55]O.Brox, S.Bauer, C. Bobbert, et al.,160 to 40Gb/s demultiplexing using a self-pulsating laser based clock recovery, OFC 2003,Vol.1,105-106
    [56]Mao, W.; Wang, X.; et al.,40 Gb/s all-optical clock recovery using three section self-pulsation DFB lasers, Optical Fiber Communication Conference, 2000, Volume:3,2000 pp:79-80 vol.3
    [57]W.Mao, Y.Li, M.Al-Mumin, et al,40Gbit/s all optical clock recovery using two-section gain-coupled DFB laser and semiconductor optical amplifier, Electronics Letters,2001(37) pp:1302-1303
    [58]A dams, L.E., Kintzer, E.S., Fujimoto, et al.,All-optical timing extraction at 40GHz using a mode-locked figure-eight laser with an SLA, IEEE PTL, 2000(13) pp:1759-1761
    [59]Chongjin Xie, Peida Ye and Jintong Lin, Four-wave missing between short optical pulses in semiconductor optical amplifiers with the consideration of fast gain saturation, IEEE PTL,1999,11:pp.560-562
    [60]K.Vlachos, G.Theophilopoulos, A.Hatziefremidis, et al.,30 Gb/s all-optical clock recovery circuit, IEEE PTL,2000(12):pp.705-707
    [61]C.Schubert, S.Diez, J.Berger, et al.,160-Gb/s all-Optical demultiplexing using a gain-transparent ultrafast-nonlinear interferometer (GT-UNI), IEEE PTL, May2001, Vol.13,No.5
    [62]L.E.Adams, E.S.Kintzer, J.G.Fujimoto, Performance and scalability of an all-optical clock recovery figure-eight laser, IEEE PTL,1996,8 pp:55-57
    [63]Lijun Wang, Yikai Su, Agarwal, et al, All-optical laser synchronization and clock recovery based on dynamic parametric Gain modulation, OFC 2000, ThP6-1
    [64]YiKai Su, Lijun Wang, Anjali Agarwal, et al,Wavelength-tunable all-optical clock recovery using a giber optic parametric oscillator,optical communications,2000(184):151-156
    [65]Jinno.M, Matsumoto.T, et al.,All-optical timing extraction using an optical tank circuit, Photonics Technology Letters, IEEE Volume 2, Issue 3, March 1990 Page(s):203-204
    [66]Giampiero Contestabile, Antonio D'Errico, Marco Presi, and Ernesto Ciaramella,40GHz all-optical clock extraction using a semiconductor assisted Fabry-Perot filter, IEEE Photon.Technol.Lett, Vol.16, No.16,2004, 2523-2525
    [67]Masahiko Jinno, Takao Matsumoto., Optical tank circuits used for all-optical timing recovery Quantum Electronics, IEEE Journal of Volume 28, Issue 4, April 1992 Page(s):895-900
    [68]C.Bintjas, K.Yiannopoulos, N.Pleros, et al.,Clock recovery circuit for optical packets, IEEE PTL,vol.14,pp.1363-1365,Sept.2002
    [1]T. Morioka, K. Mori, S. Kawanishi et al, Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers, IEEE Photon. Technol. Lett.,6 (3),1994, pp.365-368.
    [2]T. Morioka, H. Takara, S. Kawanishi, et al,1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source, Electron. Lett.,32(10),1996, pp.906-907.
    [3]S. Kawanish, H. Takara, K. U chiyama, et al,3 Tb/s (200 Gb/s×19 channel), 50 km OTDM/WDM transmission experiment, OECC'97, Seoul, Korea, Oct 1997, PDP2-2:14-17.
    [4]S. Kawanishi,H. Takara, K. Uchiyama, L. Shake, et al,3 Tbit/s (160 Gbit/s×19 ch) OTDM/WDM transmission experiment, OFC'99,1999, PD1/1-PD1/3.
    [5]H. Sotobayshi, K. Kitayama,325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flat tened and non-decreasing normal dispersion fibre with pulse compression technique, E. L.,34(13),1998, pp.1336-1337.
    [6]T. Ohara, H. Takara,T. Yamamoto, et al, Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source, J. Lightw. Technol., 24(6),2006, pp.2311-2317.
    [7]R. R. Alfano, and S. L. Shapiro, Emission in the region 4000 to 7000 A via four-photon coupling in glass, Phys. Rev. Lett.,24,1970, pp.584-587.
    [8]P. B. Corkum, C. Rolland, and T. Srinivasanrao, Supercontinuum Generation in Gases, Phys. Rev. Lett.,57,1986, pp.2268-2271.
    [9]V. Francois, F. A. Ilkov, and S. L. Chin, Supercontinuum Generation in Co2 Gas Accompanied by Optical-Breakdown, J. Phys. B-At. Mol. Opt. Phys.,25, 1992,pp.2709-2724.
    [10]T. R. Gosnell, A. J. Taylor, and D. P. Greene, Supercontinuum Generation at 248nm Using High-Pressure Gases, Opt. Lett.,15,1990, pp.130-132.
    [11]V. Francois, F. A. Ilkov, and S. L. Chin, Experimental-Study of the Supercontinuum Spectral Width Evolution in Co2 Gas, Opt. Commun.,99, 1993, pp.241-246.
    [12]R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, and W. J. Tomlinson, Femstosecond white-light continuum pulses, Opt. Lett.,1983,8.
    [13]P. P. Ho, Q. X. Li, T. Jimbo, et al, Supercontinuum pulse generation and propagation in a liquid carbontetrachloride, Appl. Optics,26,1987, pp.2700-2702.
    [14]T. Jimbo, V. L. Caplan, Q. X. Li, et al, Enhancement of ultrafast supercontinuum generation in water by the addition of Zn-2+ and K+ Cations, Opt. Lett.,12,1987, pp.477-479.
    [15]W. Lee Smith, P. Liu, and N. Bloembergen, Superbroadenning in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser, Phys. Rev.,1977, A 15.
    [16]P. L. Baldeck, and R. R. Alfano, Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers, J. Lightwave Technol., 5,1987,pp.1712-1715.
    [17]K. Mori, T. Morioka, and M. Saruwatari, Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical-fiber pumped by a 1.5 Mu-M compact laser source, IEEE Trans. Instrum. Meas.,44,1995, pp.712-715.
    [18]J. K. Ranka, R. S. Windeler, A. J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm, Opt. Lett.,25(1),2000, pp.25-27.
    [19]V. V. Ravi Kanth Kumar, A. K. George, W. H. Reeves, et al, Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation, Opt. Express,10(25),2002, pp.1520-1525.
    [20]F. G. Omenetto, N. A. Wolchover,M. R. Wehner, Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers, Opt. Express,14(11),2006, pp.4928-4934.
    [21]Jones D J, Diddams S A, Ranka J H, et al.Carrier envelop phase control of femtosecond mode-locked lasers and direct optical frequency synthesis [J].Science,2000,288(5466):635-639.
    [22]Husakou A V, Herrmann J.Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers [J]. Phys Rev Lett,2002, 87(11):203901-203904.
    [23]Nowak GA, Kim J, Islam M N,et al.Stable supercontinuum generation in short lengths of conventional dispersion-shifted fiber[J]. Appl Opt,1999, 38(36):7364-7369.
    [24]贾东方,余震虹,等译.非线性光纤光学原理及应用[M].北京:电子工业出版社,2002:42-83.
    [25]T. Okuno, M. Onishi, M. Nishimura, Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber, IEEE Photon. Technol. Lett.,10(1),1998, pp.72-74.
    [26]Y. Takushima, F. Futami, K. Kikuchi, Generation of over 140-nm-wide supercontinuum from a normal dispersion fiber by using a mode-locked semiconductor laser source, IEEE Photon. Technol. Lett.,10 (11),1998, pp.1560-1562.
    [27]F. Futami, Y. Takushima, K. Kikuchi, K, Generation of 10 GHz,200 fs Fourier-transform-limited optical pulse train from modelocked semiconductor laser at 1.55 μm by pulse compression using dispersion-flattened fibre with normal group-velocity dispersion, E. L.,34 (22),1998, pp.2129-2130.
    [28]K. Mori, H. Takara, S. Kawanishi, et al, Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile, Electron. Lett.,33 (21),1997, pp.1806-1808.
    [29]K. Mori, H. Takara, S. Kawanishi, Analysis and design of supercontinuum pulse generation in a single-mode optical fiber, J. Opt. Soc. Am. B,18(12), 2001,pp.1780-1792.
    [30]J. K. Ranka, R. S. Windeler, A. J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm, Opt. Lett.,25(1),2000, pp.25-27.
    [31]S. Coen, A. H. L. Chau, R. Leonhardt, et al, White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber, Opt. Lett., 26(17),2001, pp.1356-1358.
    [32]V. V. Ravi Kanth Kumar, A. K. George, W. H. Reeves, et al, Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation, Opt. Express,10(25),2002, pp.1520-1525.
    [33]J. M. Dudley, L. Provino, N. Grossard,et al, Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping, J. Opt. Soc. Am. B,19(4),2002, pp.765-771.
    [34]A. Apolonski, B. Povazay, A. Unterhuber, et al, Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses, J. Opt. Soc. Am. B,19 (9),2002, pp.2165-2170.
    [35]H. Hundertmark, D. Kracht, D. Wandt,et al, Supercontinuum generation with 200 pJ laser pulses in an ext ruded SF6 fiber at 1560 nm, O.E.,11(24),2003, pp.3196-3201.
    [36]K. L. Corwin, N. R. Newbury, J. M. Dudley, et al, Fundamental amplitude noise limitations to supercontinuum spect ra generated in a microst ructured fiber, Appl. Phys. B,77 (223),2003, pp.269-277.
    [37]S. G. Leon-Saval, T. A. Birks, W. J. Wadswort h, et al, Supercontinuum generation in submicron fibre waveguides, Opt. Ex press,12(13),2004, pp.2864-2869.
    [1]Li B, Chu X and Sohraby K., "Routing and wavelngth assignment vs.wavelength converter placement in all-Optical Networks", IEEE Commu.Maga., Vol.41, No.8,2003, pp.S22-S28.
    [2]Brackett C.A., Acampora A.S, Schweitzer.J. et al, "A Scalable Multiwavelength Multiple Optical Network:A Proposal for Research on All-Optical Networks.",J.Lightwave Technol., Vol.11, No.5,1993, pp.736-752.
    [3]Yoo S.J.B., "Wavelength conversion technologies for WDM network applications", IEEE J.L.T., Vol.14, No.6, June 1996, pp.955-966.
    [4]Ramamurthy B.and Mukherjee B., "Wavelength Conversion in WDM Networking",IEEE J. Sele.Areas in Commu., Vol.16,No.7,1998, pp.1061-1073.
    [5]Venugopal K.R., Rajan E.E., and Kumar P.S., "Impact of wavelength converters in wavelength routed all-optical networks", Computer Commun., Vol.22,1999, pp.244-257.
    [6]Elmlrghani J.M.H., and Mouftah H.T., "All-Optical Wavelength Conversion: Technologies and Applications in DWDM Networks", IEEE Commun.Mag., Vol.38,2000, pp.86-92.
    [7]Sato K., Okamoto S. and Hadama. H., "Network Performance and Integrity Enhancement with Optical Path Layer Technologies", J.Select Areas Commun., Vol.12, No.1,1994, pp159-170.
    [8]Stubkjaer K.E., Joergensen C, Danielsen S.L, et al, "Wavelength Conversion Device and Techniques ", in Proc.of ECOC'96, Oslo. Norway. Setp.1996.
    [9]Danielsen S.L, Hansen P.B. and Stubkjaer K.E., "Wavelength Conversion in Optical Packet Switching", IEEE J.L.T. Vol.16,No.12,1998, pp.2095-2109.
    [10]Danielsen S.L, Joergensen.C and Mikkelsen.B et al,"Optical Packet Switched Network Layer Without Optical Buffers", IEEE P.T.L., Vol.10, No.6,1998, pp.896-898.
    [11]Sato R., Magari K., et al., "Demonstration of packet-by-packet wavelength conversion from FP-LD light to ITU-T grid wavelengths", IEEE P.T.L., Vol.13, No.6,2001, pp.612-614.
    [12]Eramo V, and Listanti M, "Wavelength converter sharing in a WDM optical packet switch:dimensioning and performance issues", Computer Commun., Vol.32,2000, pp.633-651.
    [13]Okada A., Sakamoto T., Sakai Y., et al.,"All-optical packet routing by an out-of-band optical label and wavelength conversion in a full-mesh network based on a cyclic-frequency AWG", OFC'2001, Vol.4, ThG5,2001, pp.T1-3.
    [14]Yao S., Mukherjee B. and Ben Yoo.S.J, "A unified study of contention-resolution schemes in optical packet-switched networks", J.Lightwave Technol., Vol.21, No.3,2003, pp.1-12.
    [15]Eramo V, Listanti.M, and Pacifici.P, "A Comparison Study on the Number of Wavelength Converters Needed in Synchronous and Asynchronous All-Optical Switching Architectures", IEEE J.Lightwve Technol. Vol.21, No.2,2003, pp.340-355.
    [16]Eramo V. and Listanti.M, "Input Wavelength Conversion in Optical Packet Switches", IEEE Commun.Lett., Vol.7, No.6,2003, pp.281-283.
    [17]Ciaramella E., Contestabile G., Curti F., et al.,"Fast tunable wavelength conversion for all-optical packet switching", IEEE Photon.Technol.Lett., Vol.12, No.10,2000,pp.1361-1363.
    [18]Blumenthal D.J., Carena A, Rau. L., et al., "WDM optical IP tag switching with packet-rate wavelength conversion and subcarrier multiplexed addressing", OFC/IOOC'99.Technical Digest, Vol.3,1999, pp.162-164.
    [19]White I., Richard P., Webster M., et al., "Wavelength switching components for future photonic networks", IEEE Commun. Mag., Vol.40, No.9,2002, pp.74-81.
    [20]Sato K., Okamoto S. and Hadama H., "Network Performance and Integrity Enhancement with Optical Path Layer Technologies", J. Select Areas Commun., Vol 12,No.1,1994,pp159-170.
    [21]Rauschenbach K., Hall K., Livas J., et al,"All-optical pulse width and wavelength conversion at 10Gb/s using a nonlinear optical loop mirror," IEEE Photon.Technol.Lett.,Vol.6,No.9,1994, pp.1130-1132
    [22]Durhuus T., Mikkelsen B., Joergensen C., et al, "All-optical wavelength conversion by semiconductor optical amplifiers", IEEE J.L.T., Vol.14, No.6, 1996,pp.942-954.
    [23]Joergensen C., Danielsen S., Stubkjaer K., et al,"All-optical wavelength conversin at bit rates above 10Gb/s using semiconductor optical amplifers," IEEE J.Select.Topics in Quantum Electron., Vol.3, No.5,1997, pp.1168-1179.
    [24]Asghari M., White I.H., Penty R.V.,"Wavelength conversion using semiconductor optical amplifiers," IEEE J. Lightwave Technol., Vol.15, No.6, 1997, pp.1181-1190.
    [25]Edagawa N., Suzuki M., Yamamoto S., "Novel Wavelength Converter Using an Electroabsorption Modulator", IEICE Trans.Electron., Vol.E81-C, No.8,1998, pp.1251-1257.
    [26]Pak S. Cho, Mahgerefteh D. and Goldhar J., "All-optical 2R Regeneration and Wavelength Conversion at 20 Gb/s Using an Electroabsorption Modulator", IEEE Photonics Technology Letters, Vol.11, No.12,1999, pp.1662-1664.
    [27]Chen B. and Xu C.-Q., "Analysis of novel cascaded SFG+DFG wavelength conversions in quasi-phase-matched waveguides," IEEE J. Quantum Electron., Vol.40, Mar.2004, pp.256-261.
    [28]Lee H.J., Sohn M., Kim K., et al, "Wavelength dependent performance of a wavelength converter based on cross-gain modulation and birefingence of a semiconductor optical amplifier", IEEE Photon.Technol.Lett.Vol.11, No.2,1999, pp.185-187.
    [29]Zheng X., Liu F., Kloch A., "Experimental Investigation of the Cascadability of a cross-gain modulatin wavlength converter," IEEE P.T.L., Vol.12, March 2000, pp.272-274.
    [30]Obermann K., Kindt S., Breuer D., et al,"Performance Analysis of wavelength converters based on cross-gain modulation in semiconductor-optical amplifiers", IEEE J.Lightwave Technol., Vol.16, No.1,1998, pp.78-85.
    [31]Lacey J.P.R., Pendock. G J., Tucker R.S., "All-optical 1300-nm to 1550-nm wavelength conversion using cross-phase modulation in a semiconductor optical amplifier", IEEE P. T. L., Vol.7, No.8,1996, pp.885-887.
    [32]Perlin V.E. and Winful H.G., "All-Fiber Wavelength Conversion Using Cross-Phase Modulation and Bragg Gratings", IEEE P.T.L., Vol.14, No.2,2002, pp.176-178.
    [33]Sarker B.C., Yoshino T., and Majumder S.P.,"All-Optical Wavelength Conversion Based on Cross-Phase Modulation (XPM) in a Single-Mode Fiber and a Mach-Zehnder Interferometer", IEEE Photon.Technol.Lett., Vol.14, No.3, 2002, pp.340-342.
    [34]Kelly A.E., Ellis A.D., Nesset D., et al, "100Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier", IEE Electron. Lett., Vol.34, No.20,1998, pp.1955-1956.
    [35]Lacey J.P.R., Summerfield M.A., Madden S.J., "Tunability of Polarization-Insensitive Wavelength Converters Based on Four-Wave Mixing in Semiconductor Optical Amplifiers", IEEE J. Lightwave Technol., Vol.16, No.12, 1998, pp.2419-2427.
    [36]Nishimura K., Inohara R., Usami M., "All-Optical Wavelength Conversion by Electro absorption Modulator", IEEE J.Sele. Topic in Quantum Electron., Vol.11, No.1,2005,pp.278-284.
    [37]Stephens M.F.C., Asghari M., Penty R.V., and White I.H., "Demonstration of ultrafast all-optical wavelength conversion utilizing birefringence in semiconductor optical amplifiers," IEEE Photonics Technology Letters, Vol.9, No.4,1997,pp.449-451.
    [38]Liu Y., Hill M.T., Tangdiongga E., et al, "Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier," IEEE Photonics Technology Letters, Vol.15,2003, pp.90-92.
    [39]Liu Y., Hill M.T., Tangdiongga E., et al,"All-optical wavelength converter based on cross-polarization modulation in a single semiconductor optical amplifier," in Proceedings European Conference on Optical Communications (ECOC'2002), Copenhagen,Denmark, P2.14.2002.
    [40]Turkiewicz J.P., Khoe GD. and H.de Waardt, "All-optical 1310 to 1550 nm wavelength conversion by utilising nonlinear polarisation rotation in semiconductor optical amplifier", IEEE Electron. Lett.Vol.41, No.l,2005, pp.29-30.
    [41]Liu Y, Turkiewicz J.P., and Verdurmen E.J.M., et al, "All-optical wavelength conversion by utilizing cross-polarization in an electro-absorption modulator", in:Proc. ECOC,2003, We4.
    [42]Dorren Harm J.S., Mishra Arvind K., Yang Xuelin, et al,"All-Optical Switching and Wavelength Conversion Based on Ultrafast Nonlinearities in Semiconductor Optical Amplifiers", The Japan Society of Applied Physics, Vol.43, No.8B,2004, pp.5731-5741.
    [43]Dong,Yi; Li, Zhihong; Lu,Chao; Wang,Yixin; Cheng,Tee Hiang, "3R all-optical regeneration and wavelength conversion based on cross polarization modulation effect from a single semiconductor optical amplifier", Conference Proceedings-Lasers and Electro-Optics Society Annual Meeting-LEOS, Vol.1, 2003, pp.403-404.
    [44]Chow, C. W; Wong,C.S.; Tsang, H. K.; "All-optical format and wavelength conversion using polarization switching in a FP laser diode", Conference Proceedings-Lasers and Electro-Optics Society Annual Meeting-LEOS, v 2, 2002, pp.629-630.
    [45]Mishra, A.K.; Yang, X.; Lenstra, D.; Khoe, G.D.; Dorren, H.J.S., "Ultrafast all-optical wavelength conversion using nonlinear polarization rotation in a semiconductor optical amplifier", Proceedings of 2004 6th International Conference on Transparent Optical Networks, v 2,2004, pp 322-325.
    [46]Soto H., Erasme D., and Guekos G., "Cross-polarization modulation in semiconductor optical amplifiers," IEEE Photonics Technology Letters, Vol.11, No.8,1999,pp.970-972.
    [47]Pedersen R.J.S., Mikkelsen B., Durhuus T., et al, "Simple wavelength converter for bit-rate-independent operation at data rates as high as 10 Gbit/s.", in Conference on Optical Fiber Communication, Technical Digest Series,v 4, San Jose, California,1994, Th Q3, pp.249-250.
    [48]Stubkjaer. K. E., "Semiconductor Optical Amplifier-Based All-Optical Gates for High-Speed Optical Processing", IEEE J.Sele.Topic in Quantum Electron., Vol.6, No.6,2000, pp.1428-1435.
    [49]Walklin S and Conradi J 1997 A 10Gb/s 4-ary ASK lightwave system ECOC97 IEE Conf. Publication No.448 pp 255-258
    [50]Tanay Chattopadhyay and Jitendra Nath Roy. An all-optical technique for a binary-to-quaternary encoder and a quaternary-to-binary decoder. J. Opt. A:Pure Appl. Opt.11(2009)075501
    [51]Chattopadhyay, Tanay; Nath Roy, Jitendra. All-optical conversion scheme: Binary to quaternary and quaternary to binary number Optics and Laser Technology, v.41, iss.3, pp.289-294.
    [52]Tanay Chattopadhyay, Jitendra Nath Roy, Ajoy Kumar Chakraborty Polarization encoded all-optical quaternary R-S flip-flop using binary latch Optics Communications, Volume 282, Issue 7,1 April 2009, pp 1287-1293
    [1]顾婉仪,李国瑞,光纤通信系统[M],北京:北京邮电大学出版社,1999.
    [2]赵文玉,赵继军,纪越峰等,高速光通信系统中的色散问题及其补偿研究,电信科学,2002年第6期
    [3]Anders Bjarklev et al.Optimal design of single-cladded dispersion-compensating optical fibers, Optics Letters, Vol.19, Issue 7, pp.457
    [4]V. A. Semenov et al.. Broadband dispersion-compensating fiber for high-bit-rate transmission network use, Applied Optics,1995,34(24):5331
    [5]龚岩栋等,负色散斜率的色散补偿光纤的研制[J].,光学学报,1998,18(3):330-333
    [6]Gruner-Nielsen, B.Edvold, Status and future promises for dispersion-compensating fibers, Opt. Fiber Technol.2000,6:164-180
    [7]沈旷轶,宁提纲,基于光子晶体光纤的色散补偿和色散平坦技术,光子技术,第2期(总第12期)
    [8]Jinchae Kim, Un-Chul Paek, Dug Young Kim. Analysis of the dispersion properties of holey optical fibers using normalized dispersion [A]. OFC2001[C]. WDD86,2001.
    [9]任国斌,娄淑琴,王智,简水生,等效折射率模型研究光子晶体光纤的色散特性,光学学报,第24卷第3期,2004年3月
    [10]李曙光,刘晓东,侯蓝田,光子晶体光纤的导波模式与色散特性,物理学报,2003,53(11):2811-2817.
    [11]Birks T A, Mogilevtsev D,Knight J C,et al,Dispersion compensation using single-material fibers[J]. IEEE Photon. Technol. Lett.,1999,11(6):674-676
    [12]NI Yi, ZHANG Lei, AN N Liang, et al. Dual-Core Photonic Crystal Fiber for Dispersion Compension [J]. IEEE Photon Technol Lett,2004,16 (6):1516-1518.
    [13]Saitoh K, Koshiba M. Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion [J]. Opt.Exp.2003,11(8):843-852.
    [14]Flattened photonic crystal fiber with a large core and a concentric missing ring.
    [15]Kunimasa Saitoh and Masanori Koshiba. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window [J].Opt.Exp.,2004,12(10):2027-2032.
    [16]Wu T L, Chao C H. A novel ultraflattened dispersion photonic crystal fiber [J]. Photo.Technol. Lett.,2005,17(1):67-69.
    [17]Matsui T, Zhou J, Nakajima K, et al. Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss [J]. J. Lightwave Technol., 2005,23(12):4178-4183.
    [18]D. Ouzounov, D. Homoelle, W. Zipfel et al. Dispersion measurements of microstructured fibers using femtosecond laser pulses [J]. Opt. Comm.,2001, 192 (326):219-223
    [19]Agrawal G P, Nonlinear Fiber Optics,1995, (San Diego:Academic Press) Chap.1
    [20]X Zhang, X M Ren, Y Z Xu, Broadband dispersion compensation using microstructure fibers, Chinese Optics Letters,2007.01
    [21]Zinan Wang, Xiaomin Ren,Xia Zhang, et al.. A novel design for broadband dispersion compensation microstructure fiber, CHINESE OPTICS LETTERS Vol.4, No.11,2006.10.
    [22]Zinan Wang et al. Design of a microstructure fibre for slope-matched dispersion compensation.2007 J. Opt. A:Pure Appl. Opt.9 435-440。
    [23]杨广强,张霞,任晓敏等,利用光子晶体光纤实现10 Gb/s光传输系统的色散补偿,中国激光,第32卷,第9期,2005年9月。
    [24]原荣.色散补偿技术及其进展.光通信技术,2002,26(5):4-9。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700