光纤参量放大器中快慢光机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光波群速度的调控是近年来光电子学的研究热点,具有重要的理论意义,并在光通信、光传感和微波光子学等方面具有重要的应用价值。目前快慢光的调控主要包括基于原子体系中的大色散机理、波导结构设计和光波非线性放大等方法。光纤参量放大器(FOPA)中的快慢光调控主要基于光波非线性放大实现,由于能提供几十吉赫兹的带宽和几十皮秒的可调谐延时,在高速光通信系统中具有潜在应用价值。论文针对宽带与窄带光纤参量放大器中的快慢光机理进行了深入研究,论文主要工作如下:
     1)研究了宽带光纤参量放大器中信号光延时的综合特性,解析得到了最大延时的波长与抽运光功率、抽运光波长以及光纤色散参数之间的定量关系。仿真分析了单个高斯脉、确定比特序列和伪随机序列三种宽带输入信号的延时特性,仿真结果表明信号带宽等于50GHz时,在原有的大延时波长上,延时量减小为原来的一半,但眼开度代价仅为0.46dB。最后还讨论了抽运光功率与光纤长度的选取方法,研究结果表明在相同增益的条件下,长光纤更有利于慢光的产生。
     2)分析了FOPA增益谱边带的延时特性,提出了一种近零增益条件下信号光延时的可调谐方案,给出了信号光波长与抽运光功率、波长和光纤色散参数之间的定量关系。仿真实现了信号光增益1.29至3dB时,10GHz信号光延时(超前)时间0到22.4ps范围内的调谐。该机理为全光缓存与同步等应用中与增益无关的延时实现提供了新思路。
     3)研究了包含SRS效应的窄带光纤参量放大器中的快慢光增强特性。提出了同时考虑受激拉曼散射极化率实部与虚部的理论分析模型,得到了SRS与光参量过程同时作用时的完整相位变化解析式。研究结果表明在不同的拉曼作用强度下,均有SRS增强快慢光现象,但是增强的频率区域不同。以外快慢光增强的频率区域还会随抽运光功率或者光纤长度的不同而发生变化。论文给出了拉曼频移约为14THz(SRS效应最强的区域)时,不同非线性作用强度下最大快慢光产生的条件和计算信号光波长的定量公式。仿真结果表明带宽为1.5GHz和1GHz时,可分别实现大于200ps和300ps的延时。在该信号光波长上,群折射率的变化达到10-4量级,比常规SRS作用下FOPA中的群折射率高了近一个数量级。
     4)研究了FOPA中偏振态变化以及放大过程中信号光饱和两种非理想情况下的延时变化特性。通过分析抽运光、信号光和闲散光波取不同偏振态情况下的延时特性,得出了FOPA中光波偏振态对快慢光影响的解析表达式。此外,还分析了信号光饱和对延时的影响,仿真分析结果表明当信号光位于增益谱边带的延时增强频率区域时,延时量仅为小信号条件下的一半。
     5)提出了一种利用光纤参量放大器增益谱的波长相关性进行微波频率测量的新方法。该方法可以通过抽运光功率的变化调谐微波频率的测量范围。通过光纤参数和初始信号光功率的优化选择,用500mW的抽运光功率和3公里光纤仿真实现了频率范围为25-45 GHz的微波频率测量。
Recently, controlling the group velocity of light becomes a key issue in photonics. Its importance not only lies on the theory, but also attributes to its potential values in the area of optical communication, optical sensor technology and microwave photonics. Up to now, the method generating the slow and fast light mainly contains: the large dispersion in atom system, the design of waveguide structure and the nonlinear amplification of signal wave. The slow and fast light in FPOA is realized by the nonlinear amplification of signal wave. We theoretically investigate the phenomenon of slow and fast light in both the wideband FOPA and the narrowband FOPA because this new mechanism contains following advantages:relatively large delay bandwidth, the delay time fitted for high speed telecommunication and the tunable ability for delay time. The major contributions of this paper can be summarized as follows:
     1) The comprehensive characters of delay time in fiber optical parametric amplifier are investigated theoretically. The analytical relation between the maximum delay time and the dispersion parameters, pump power, pump wavelength in this type of FOPA is deduced. Then the delay character of single pulse, data stream with certain bit pattern and pseudo random data stream are analyzed comprehensively. The results show that the delay time will reduce to the half of the value under narrow band condition when the signal with the bandwidth 50GHz is located at the wavelength with maximum delay time. Finally, the selection of pump power and fiber length is present, and long fiber benefits to the large delay time when the signal gain is fixed.
     2) The delay time in the band-edge of gain spectrum of wide band FOPA is deduced for the first time, and a novel method is proposed theoretically to generate the slow and fast light with large bandwidth and low gains. In our scheme, the formula of the signal wavelength is demonstrated, and then signal waves will be delayed or advanced with low signal gains because of the peculiar feature of signal gain and phase shift in certain signal wavelength region. At last, the simulation results of delayed signal waves are shown. The tunable range of delay(advanced) time is from Ops to 22.4ps for the signal bandwidth of lOGHz, and their signal gains are from 1.29dB to 3dB. This proposal can provide the new mechanism to make tunable delay time independent of the signal gain in both optical buffer and synchronization.
     3) By considering both the real and imaginary part of the Raman susceptibility, a delay time formula in the stimulated Raman scattering assisted fiber optical parametric amplifier is presented to calculate the delay time spectrum. The wavelengths with maximum delay and advanced time are calculated numerically. Then we find some frequency regions with the enhanced slow and fast light in both stokes and anti-stokes regions, which is the result of the interaction between the stimulated Raman scattering and four-wave-fixing effect at the strong absorption region. Simulation shows that the delay time by using signal waves with 1.5GHz and 1 GHz can reach over 200ps and 300ps, respectively. The group index can reach the order of 10-4, which is ten times larger than the former delay time in conventional frequency regions.
     4) The changes of delay time are investigated in two nonideal cases:the changing of polarization states and signal saturation. By analyzing the delay time with different polarization states of pump wave, signal wave and idler wave, we propose a formula containing the changing of polarization states in FOPA. Then the influence of the signal saturation on the delay time is analyzed. The results show that the delay time calculated numerically is only one half of the result from the analytical formula when the signal wave is located in the band-edge of the gain spectrum in FOPA.
     5) We propose an approach to measure the microwave frequency in optical domain with adjustable measurement range and resolution by using four wave mixing process in the single mode fiber. Results show that the measurement range of this scheme can be adjusted easily by changing the pump power. After the elaborate selection of the fiber parameters and initial signal power, the measurement range 20-45 GHz is obtained by choosing 500 mW pump power and 3km fiber.
引文
[1]A. E. Willner, "The optical network of the future:Can optical performance monitoring enable automated, intelligent and robust systems?" Opt. Photon. News, vol.17, pp.30-35,2006.
    [2]K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, "All-optical wavelength multicasting with extinction ratio enhancement using pump-modulated fourwave mixing in a dispersion-flattened nonlinear photonic crystal fiber "IEEE J. Sel. Topics Quantum Electron., vol.12, no.4, pp.838-842,Jul./Aug.2006.
    [3]D. K. Hunter, M. C. Chia, and I. Andonovic, "Buffering in optical packet switches," J. Lightw. Technol, vol.16, no.12, pp.2081-2094, Dec.1998.
    [4]P. Green, "Progress in optical networking," IEEE Commun. Mag., vol.39, no.1, pp.54-61,2001.
    [5]M. C. Cardakli, S. Lee, A. E. Willner, V. Grubsky, D. Starodubov, and J. Feinberg, "Reconfigurable optical packet header recognition and routingusing time-to-wavelength mapping and tunable fiber Bragg gratings for correlation decoding," IEEE Photon. Technol. Lett, vol.12, no.5,pp.552-554, May 2000.
    [6]A. E.Willner, D. Gurkan, A. B. Sahin, J. E. McGeehan, and M. C. Hauer, "All-optical address recognition for optically-assisted routing in next generation optical networks," IEEE Commun. Mag., vol.41, pp. S38-S44,2003.
    [7]李亚捷 双环耦合全光缓存器中若干关键问题的研究[学位论文],北京:北京交通大学,2008
    [8]季伟 光分组交换网络中的若干关键技术研究[学位论文],北京:北京邮电大学,2006
    [9]S. Kumar and A. E. Willner. Simultaneous four-wave mixing and cross-gain modulation for implementing an all-optical XNOR logic gate using a single SOA. Opt. Exp.,vol.14, no.12,pp.5092-5097,2006.
    [10]D.M.F. Lai, C.H. Kwok, K. K. Y. Wong. All-optical picoseconds logic gates based on a fiber optical parametric amplifier. Opt. Exp., vol.16,no.22, pp. 18362-18370,2008.
    [11]S. Radic and C. J. McKinstrie, "Optical amplification and signal processing in highly nonlinear optical fiber," IEICE Trans. Electron., vol. E88C, pp.859-869, 2005.
    [12]D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, "Nonlinear optics for high speed digital information processing," Science, vol.286, pp.1523-1528,1999.
    [13]K. Inouel, H. Odal, N. Ikeda, et.al. Enhanced third-order nonlinear effects in slow light photonic-crystal slab waveguides of line defect. Opt. Exp.,17(9): 7206-7216(2009).
    [14]C.Monat, Bill Corcoran, Dominik Pudo, et.al. Slow Light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides. IEEE J. Sel. Topics Quantum Electron.,. vol.16,no.1,pp.344-356,2010.
    [15]L.Brillouin.Wave Propagation and Group Velocity. New York,Academic Press,1960:1-3
    [16]Stratton J.A. Electromagnetic Theory, McGraw-Hill, Book Company, New York,1941.
    [17]Sommerfeld A. Ber die Fort pflanzung des Lichtes in dispergierenden. Medien. Ann. Physik,1914,44:177-202.
    [18]Brillouin L. The third derivatives propagate also at the phase velocity. Ann. Physik,1914,44:203-240.
    [19]C. K. N. Patel and R. E. Slusher, "Self-Induced Transparency in Gases," Physical Review Letters 19,1019 (1967).
    [20]S.E.Harris,J.E.Field,and A.Imamoglu, "Nolinear optical processes using Electromagnetically Induced Transparency,"Phys.Rev.Lett 64,1107-1110(1990).
    [21]L.V.Hau,S.E.Harris,and Z.Dutton,"Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature vol.397,pp.594-598,1999.
    [22]M.M.Kash,V.A.Sautenkov,A.S.Zibrov, et al., "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Physical Review Letters vol.82,pp.5229-5232,1999.
    [23]D.Budker, D.F.Kimball, S.M.Rochester, andV.V.Yashchuk, "Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation,"Physical Review Letters vol.83,1pp.767-1770,1999.
    [24]A.V.Turukhin,V.S.Sudarshanam,and M.S.Shahriar,"Observation of Ultraslow and Stored Light Pulses in a Solid," Phys.Rev.Lett 65,036608, 036601-036605(2002).
    [25]S. E. Schw art z, T. Y. Tan. Wave int eract ions in saturable absorbers. App1. Phys. Lett. vol.10, no.1, pp.4~7,1967
    [26]Hillman L W, Boyd R W, Krasinski J an d Stroud C R 1983 Opt.Commun.45 416
    [27]M.S.Bigelow,N.N.Lepeshkin,and R.W.Boyd,"Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature,"Phys.Rev.Lett 90,113903, 113901-113904,2003.
    [28]M.S.Bigelow,N.N.Lepeshkin, and R.W.Boyd,"Superluminal and Slow Light Propagation in a Room-Temperature Solid," Science 301,200-202,2003.
    [29]P. Palinginis, S. Crankshaw, F. Sedgwick, etal., "Ultraslow light(<200 m/s) propagation in a semiconductor nanostructure," Appl. Phys.Lett., vol.87, no.17, p. 171102, Oct.2005
    [30]J. M(?)rk, R. Kj(?)r, M. van der Poel, and K. Yvind, "Slow light in a semiconductor waveguide at gigahertz frequencies," Opt. Express, vol.13,pp.8136-8145,2005.
    [31]Alexander V. Uskov, Forrest G Sedgwick, and Connie J. Chang-Hasnain, "Delay Limit of Slow Light in Semiconductor Optical Amplifiers," IEEE Photon. Technol. Lett., vol.18, no.6, pp.731-733, Sep.2006.
    [32]F. Sedgwick, B. Pesala, J.-Y. Lin, W. S. Ko, X. Zhao, and C. J. Chang-Hasnain, "THz-bandwidth tunable slow light in semiconductor optical amplifiers," Opt. Express, vol.15, pp.747-753,2007.
    [33]A.Schweinsberg,N.N.Lepeshkin,M.S.Bigelow, R.W.Boyd, and S.Jarabo, "Observation of superluminal and slow light propagation in erbium-doped optical fiber,"Europhysics Letters vol.73,pp.218-224,2006.
    [34]Y.D.Zhang,B.H.Fan,and P.Yuan,"Observation of Slow Light Propagation in Solid State Material,"Acta Optica Sinica vol.24,pp.1688-1690,2004.
    [35]B.H.Fan,Y.D.Zhang,and P.Yuan, "Ultra slow light propagation in a solid," Acta Physica Sinica vol.54,pp.4692-4695,2005.
    [36]王号 饱和及反饱和吸收介质中的慢光和超光速研究[学位论文],哈尔滨:哈尔滨工业大学,2009
    [37]Bowden, C. M., Dowling, J. P.& Everitt, H.O. "Special issue on development and applications of materials exhibiting photonic band gaps," J. Opt. Soc. Am. B vol.10, pp.280-413,1993.
    [38]Joannopoulos, J. D., Meade, R. D.& Winn, J. N. Photonic Crystals-Moulding the Flow of Light (Princeton Univ. Press, Princeton,1995).
    [39]Photonic Crystals and Light Localization in the 21st Century (ed. Soukoulis, C. M.) (Kluwer, Dordrecht,2001).
    [40]掌蕴东,翁文,喻波,袁萍,光子晶体波导慢光技术激光与光电子学进展44卷,10期,2007年。
    [41]Arnout Imhof, Willem L.Vos, Rudolf Sprik et al., "Large dispersive effects near the band edges of photonic crystals," Phys. Rev. Lett.,vol.83,no.15, pp.2942-2945,1999.
    [42]M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett., vol.92, pp.083901,1-4, Feb.2004.
    [43]Notomi, M. et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett.87,253902 (2001).
    [44]Vlasov, Y. A., O'Boyle, M., Hamann, H. F.& McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 438,65-69 (2005).
    [45]Toshihiko Baba, Takashi Kawasaki, Hirokazu Sasaki,Jun Adachi, and Daisuke Mori "Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide," Opt. Express, vol.16, no.12, pp.9245-9253,2008.
    [46]A. Saynatjoki, M. Mulot, J. Ahopelto and H. Lipsanen "Dispersion engineering of photonic crystal waveguides with ring-shaped holes." Opt. Express, vol.15, no.13, pp.8323-8328,2007.
    [47]Shousaku Kubo, Daisuke Mori, and Toshihiko Baba," Low-group-velocity and low-dispersion slow light in photonic crystal waveguides," Opt. Lett.vol.32, no.20, pp.2981-2983,2007.
    [48]Jing Ma, and Chun Jiang, "Flatband Slow Light in Asymmetrical Line-Defect Photonic Crystal Waveguide Featuring Low Group Velocity and Dispersion", IEEE J. Quantum Electron., vol.44, no.8, pp.763-769,2008.
    [49]马婧 基于光纤参量放大器的光交换器件和新型慢光波导的研究[学位论文],上海:上海交通大学,2008
    [50]Ran Hao,Eric Cassan, Xavier Le Roux, et al., "Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion," Opt. Express, vol. 18, pp.5942-5950,2010.
    [51]Feng-Chun Leng, Wen-Yao Liang, Bin Liu, et al.," Wideband slow light and dispersion control in oblique lattice photonic crystal waveguides," Opt. Express, vol.18, pp.5707-5712,2010.
    [52]Jin Hou, Huaming Wu, D. S. Citrin, et al., " Wideband slow light in chirped slot photonic-crystal coupled waveguides," Opt. Express, vol.18, no.10, pp. 10567-10580,2010.
    [53]J.Pedersen, S. Xiao, and N.Mortensen, "Limits of slow light in photonic crystals," Phys. Rev.B, vol.78,153101,1-4,2008.
    [54]S. Mazoyer, J. P. Hugonin, and P. Lalanne "Disorder-Induced Multiple Scattering in Photonic-Crystal Waveguides," Phys. Rev. Lett.103,063903 (2001).
    [55]Miller S.E. "IntegratedOPties:An Introduetion." Bell Labs Teehnical Journal, 1969,48:2059-2061
    [56]张小贝 微环谐振器及应用的理论与实验研究[学位论文],武汉:华中科技大学,2009
    [57]A. Yariv, Y. Xu, R. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis." Opt. Lett. Vol.24,pp.711-713,1999.
    [58]XiaF., SekarieL., O, BoyleM., etal.Coupled resonator optical waveguides based on silicon-on-insulator Photonic wires. Applied Physies Letters,89,041112,2006
    [59]Xia F, et al., "Ultracompact optical buffers on a silicon chip, " Nature Photonies, 2007,1(1):65-71
    [60]M.NOTOMI, EIICHI KURAMOCHI, and T. TANABE "Large-scale arrays of ultrahigh-Q coupled nanocavities," Nature Photonies,2008,2(1):741-747
    [61]Zhenshan Yang and J. E. Sipe "Increasing the delay-time-bandwidth product for microring resonator structures by varying the optical ring resonances," Opt. Lett. Vol.32,pp.918-920,2007.
    [62]Jacob B. Khurginl, and Paul A, "MortonTunable wideband optical delay line based on balanced coupled resonator structures," Opt. Lett. Vol.34,pp. 2655-2657,2009.
    [63]Robert W. Boyd Nonlinear Optics 3th ed (Academic Press,2008)
    [64]G. P. Agrawal, Nonlinear Fiber Optics,4th ed. (Academic Press,2007).
    [65]K. Y. Song, M. G. Herraez, and L. Thevenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express, vol.13, no.1, pp.82-88, Jan.2005.
    [66]Y. Okawachi, M. S. Bigelow, J. E. Sharping, et al., "Tunable all-optical delay via Brillouin slow light in an optical fiber," Phys. Rev. Lett., vol.94, no.15, pp. 153902,1-4, Apr.2005.
    [67]Z. Zhu, D. J. Gauthier, Y. Okawachi, et al., "Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber," J. Opt. Soc.Amer. B, Opt. Phys., vol.22, no.11, pp.2378-2384, Nov.2005.
    [68]M.G.Herraez, K.Y.Song,and Luc Thevenaz,"Arbitrary-bandwidth Brillouin slow light in optical fibers,"Optics Express,vol.14,pp.1395-1400,2006.
    [69]A. Minardo, R. Bernini, and L. Zeni, "Low distortion Brillouim slow light in optical fibers using AM modulation," Opt. Express, vol.14, pp.5866-5876,2006.
    [70]L. Yi, L. Zhan, W. Hu, and Y. Xia, "Delay of broadband signals using slow light in stimulated Brillouin scattering with phase-modulated pump,"IEEE Photon. Technol. Lett., vol.19, no.8, pp.619-621, Apr.2007.
    [71]B. Zhang, L.-S. Yan, L. Zhang, S. Nuccio, L. Christen, T. Wu, and A. E. Willner, "Spectrally-efficient slow light using multi-level phase modulated formats," Opt. Lett., vol.33, no.1, pp.55-5, Jan.2008.
    [72]B. Zhang, L.-S. Yan, L. Zhang, and A. E. Willner, "Broadband SBS slow light using simple spectrally-sliced pumping," presented at the ECOC 2007, Berlin, Germany, Paper P025.
    [73]A. Zadok, A. Eyal, and M. Tur, "Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp,"Opt. Express, vol.14, pp.8498-8505,2006.
    [74]Z.Zhu, A.M.C.Dawes, D.J.Gauthier, et al., "12-GHz-bandwidth SBS slow light in optical fibers,"OFC06 PDP1.
    [75]K. Y. Song and K. Hotate, "25 GHz bandwidth Brillouin slow light inoptical fibers," Opt. Lett., vol.32, pp.217-219,2007.
    [76]V. I. Kovalev, N. E. Kotova, and R. G Harrison, "'Slow Light'in stimulated Brillouin scattering: on the influence of the spectral width of pump radiation on the group index," Opt. Express vol.17,no.20, pp.17317-17323,2009.
    [77]Z. W. Lu, Y. K. Dong, and Q. Li, "Slow light in multi-line Brillouin gain spectrum," Opt. Express vol.15, pp.1871-1877,2007.
    [78]义理林 光分组交换网络中的光信号处理技术研究[学位论文],上海:上海交通大学,2008
    [79]刑亮, 光纤中可控慢光的研究[学位论文],上海:上海交通大学,2008’
    [80]杨四刚 光子晶体光纤色散与非线性特性的研究[学位论文],北京:清华大学,2009
    [81]王胤 基于微结构光纤中非线性光学过程的慢光现象研究[学位论文],北京:清华大学,2008
    [82]孙中亮 基于光纤受激布里渊散射的慢光研究[学位论文],北京:北京交通大学,2008
    [83]Jay E. Sharping, Y. Okawachi, and A.L.Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express, vol.13, pp.6092-6098,2005.
    [84]Y.Okawachi, Mark A. Foster, Jay E. Sharping, et al., "All-optical slow-light on a photonic chip," Opt. Express, vol.14, pp.2317-2322,2006.
    [85]J. F. McMillan, X. D. Yang, N. C. Panoiu, et al., "Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides," Opt. Lett. Vol.31, pp.1235, 2006.
    [86]Slaven Moro, Evgeny Myslivets, Nikola Alic, et al., "720-ns Continuously Tunable Parametric Delay of a 10-Gb/s Optical Signal," IEEE Photon. Technol. Lett.,vol.21, pp.1250-1252,2009.
    [87]Mark A. Foster, Amy C. Turner, Jay E. Sharping, et al.," Broad-band optical parametric gain on a silicon photonic chip," Nature vol.441,pp.960-963,2006.
    [88]Yitang Dai,Yoshitomo Okawachi,Amy C. Turner-Foster, et al., "Ultralong continuously tunable parametric delays via a cascading discrete stage," Opt. Express, vol.18, pp.333-339,2010.
    [89]David Dahan and Gadi Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Express,13, (2005) 6234-6249.
    [90]E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, "Large tunable delay with low distortion of 10 Gbit/s data in a slow light system based on narrow band fiber parametric amplification," Opt. Express, vol.14, pp.8540-8545,2006.
    [91]E. Shumakher et al., "Large delay and low distortion of a 40Gb/s signal propagating in a slow light system based on parametric amplification in optical fibers," in Proc. ECOC 2006, paper We4.3.4
    [92]Lilin Yi, W. Hu, Y. Su, Mingyi Gao and Lufeng Leng, "Design and System Demonstration of a Tunable Slow-Light Delay Line Based on Fiber Parametric Process," IEEE Photon. Technol. Lett., vol.18, pp.2575-2577,2006.
    [93]Fangfei Liu, Yikai Su, Paul L. Voss, "Optimal operating conditions and modulation format for 160 Gb/s signals in a fiber parametric amplifier used as a slow-light delay line element," OFC,2007, paper OWB5.
    [94]L. Schenato, M. Santagiustina, C. G. Someda, "Fundamental and Random Birefringence Limitations to Delay in Slow Light Fiber Parametric Amplification," IEEE J.Lightwave Technol., vol.26, pp.3721-3726,2008.
    [95]A.Willinger, E. Shumakher, and G. Eisenstein, "On the Roles of Polarization and Raman-Assisted Phase Matching in Narrowband Fiber Parametric Amplifiers," IEEE J. Lightw. Technol., vol.24, pp.2260-2268,2008.
    [96]D.N.Christodoulides,and R.I.Joseph,"Slow Bragg solitons in nonlinear periodic structures,"Phy.Rev.Lett vol.62, pp.1746-1749,1989.
    [97]D.Janner,GGalzerano,G.Della Valle,P.Laporta,S.Longhi,and M.Belmonte,"Slow light in periodic superstructure Bragg gratings," Physical Review E vol.72, 056605,2005.
    [98]J.T.Mok,C.M.de Sterke,I.C.M.Littler,and B.J.Eggleton,"Dispersionless slow light using gap solitons,"Nature Physics vol.2, pp.775-780,2006.
    [1]L.Brillouin.Wave Propagation and Group Velocity. New York,Academic Press,1960:1-3
    [2]张克潜,李德杰,微波与光电子学中的电磁理论,北京:电子工业出版社,2001。
    [3]Jacob B. Khurgin, "Slow light in various media: a tutorial," Advances in Optics and Photonics,vol.2,no.3,287-318,2010.
    [4]G P. Agrawal, Nonlinear Fiber Optics,4th ed. (Academic Press,2007).
    [5]R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, "Slow-light optical buffers: Capabilities and fundamental limitations," J. Lightw. Technol., vol.23, no.12, pp. 4046-4066, Dec.2005.
    [6]David A. B. Miller, "Fundamental limit to linear one-dimensional slow light structures," Physical Review Letters vol.99,203903,2007.
    [7]朱晓瑛 慢光的产生及其延时测量的研究[学位论文],北京:北京邮电大学,2009
    [1]. A. E. Willner, B. Zhang, L. Zhang, L.-S. Yan, and I. Fazal, "Optical Signal Processing using Tunable Delay Elements Based on Slow Light," IEEE J. of Sel. Top. in Quant. Electr. Vol.14, no.3,pp.691-705,2008.
    [2]. B. Zhang, L. Zhang, L. S. Yan, I. Fazal, J. Y. Yang, and A. E. Willner, "Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line," Opt. Exp., vol.15,no.13,8317-8322,2007.
    [3]. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature,438, (2005) 65-69.
    [4]. J. E. Heebner and R. W. Boyd. "'Slow'and'fast'light in resonator-coupled waveguides," J. Mod. Opt., vol.49,no.14-15, pp.2629-2636,2002.
    [5]. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett.94,153902 (2005).
    [6]. K. Y. Song and K. Hotate, "25 GHz bandwidth Brillouin slow light in optical fibers," Opt. Lett. Vol.32, pp.217-219,2007.
    [7]. Jay E. Sharping, Y. Okawachi, and A.L.Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Exp., vol.13, pp.6092-6098,2005.
    [8]. David Dahan and Gadi Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Exp., vol.13, pp.6234-6249,2005.
    [9]. Lilin Yi, W. Hu, Y. Su, Mingyi Gao and Lufeng Leng, "Design and System Demonstration of a Tunable Slow-Light Delay Line Based on Fiber Parametric Process," IEEE Photon. Technol. Lett., vol.18, pp.2575-2577,2006.
    [10]. Fangfei Liu, Yikai Su, Paul L. Voss, "Optimal operating conditions and modulation format for 160 Gb/s signals in a fiber parametric amplifier used as a slow-light delay line element," OFC,2007, paper OWB5.
    [11]. E. Shumakher, A. Willinger, R. Blit, D. Dahan, and G. Eisenstein, "Large tunable delay with low distortion of 10 Gbit/s data in a slow light system based on narrow band fiber parametric amplification," Opt. Exp., vol.14, pp. 8540-8545,2006.
    [12]. E. Shumakher et al., "Large delay and low distortion of a 40Gb/s signal propagating in a slow light system based on parametric amplification in optical fibers," in Proc. ECOC 2006, paper We4.3.4
    [13]. L. Schenato, M. Santagiustina, C. G. Someda, "Fundamental and Random Birefringence Limitations to Delay in Slow Light Fiber Parametric Amplification," IEEE J.Lightw. Technol., vol.26, pp.3721-3726,2008.
    [14]. A.Willinger, E. Shumakher, and G. Eisenstein, "On the Roles of Polarization and Raman-Assisted Phase Matching in Narrowband Fiber Parametric Amplifiers," IEEE J. Lightw. Technol., vol.24, pp.2260-2268,2008.
    [15]. Yaman F, Lin Q, Agrawal G P. "Effects of polarization-mode dispersion in dual-pump fiber-optic parametric amplifiers," IEEE Photon.Technol.Lett., vol.16,no.2, pp.431-433,2004.
    [16]. Yaman F, Lin Q, Radic S, Agrawal G P, "Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers," IEEE Photon. Technol. Lett., vol.16,no.5,pp.1292-1294,2004.
    [17]. Boyd et al., "Maximum time delay achievable on propagation through a slow-light medium," Physical Review A vol.71,023801,2005.
    [18]. G. P. Agrawal, Nonlinear Fiber Optics,4th ed. (Academic,2007).
    [19]. Hansryd J, Peter A A. "Broad-Band Continuous-Wave-Pumped Fiber Optical Parametric Amplifier with 49-dB Gain and Wavelength-Conversion Efficiency," IEEE Photon. Technol. Lett., vol.13, pp.194-196,2001.
    [20]. T.Torounidis, P. A. Andrekson, and B-E Olsson. "Fiber-Optical Parametric Amplifier With 70-dB Gain," IEEE Photon. Technol. Lett., vol.18,no.10, pp.1194-1196,2006.
    [21]. E. Shumakher, N. Orbach, A. Nevet, D. Dahan, and G. Eisenstein, "On the balance between delay, bandwidth and signal distortion in slow light systems based on stimulated Brillouin scattering in optical fibers," Opt. Exp., vol.14, pp.5877-5884,2006.
    [22]. M. D. Stenner and M. A. Neifeld, "Distortion management in slow-light pulse delay," Opt. Exp.,vol.13, pp.9995-10002,2005.
    [23]. Ravi Pant, Michael D. Stenner, Mark A. Neifeld, and Daniel J. Gauthier. "Optimal pump profile designs for broadband SBS slow-light systems," Opt. Exp., vol.16, pp.2764-2777,2006.
    [24]. L. zhang, T. Luo and C. Yu et al "Pattern Dependence of Data Distortion in Slow-Light Elements," IEEE J. Lightw. Technol., vol.25, pp.1754-1760, 2007.
    [1]A. E. Willner, B. Zhang, L. Zhang, L.-S. Yan, and I. Fazal, "Optical Signal Processing using Tunable DelayElements Based on Slow Light," IEEE J. of Sel. Top. in Quant. Electr. Vol.14, no.3,pp.691-705,2008.
    [2]J. E. Heebner and R. W. Boyd. "'Slow'and'fast'light in resonator-coupled waveguides," J. Mod. Opt.,vol.49,no.14-15,pp.2629-2636,2002.
    [3]Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Tunable all-optical delays via Brillouin slow light in an optical fiber, Phys. Rev. Lett.94,153902,2005.
    [4]S. Chin, M. G. Herraez, Luc Thevenaz, "Zero-gain slow & fast light propagation in an optical fiber," Opt. Exp., vol.14, no.22,pp.10684-10692,2006.
    [5]D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Exp., vol.13,no.16,pp.6234-6249,2005.
    [6]E. Shumakher, A. Willinger, R. Blit, et al., "Large tunable delay with low distortion of 10 Gbit/s data in a slow light system based on narrow band fiber parametric amplification," Opt. Exp., vol.14, no.19,pp.8540-8545,2006.
    [7]Lilin Yi, W. Hu, Y. Su, Mingyi Gao and Lufeng Leng, "Design and System Demonstration of a Tunable Slow-Light Delay Line Based on Fiber Parametric Process," IEEE Photon. Technol. Lett., vol.18, no.24,pp.2575-2577,2006.
    [8]A.Willinger, E. Shumakher, and G Eisenstein, "On the Roles of Polarization and Raman-Assisted Phase Matching in Narrowband Fiber Parametric Amplifiers," IEEE J. Lightw. Technol., vol.26,no.14,pp.2260-2268,2008.
    [9]L. Schenato, M. Santagiustina, C. G. Someda, "Fundamental and Random Birefringence Limitations to Delay in Slow Light Fiber Parametric Amplification," IEEE J. Lightwave Technol., vol.26,no.23, pp.3721-3726,2008.
    [10]L. Gui, K.Xu, D.Wang, et al.," Character analysis of slow light with communication waveband in fiber optical parametric amplifier," Opt. Commun., vol.283,no.21, pp.4350-4357,2010.
    [11]G. P. Agrawal, Nonlinear Fiber Optics,4rd ed. (Academic,2007).
    [1]A. E. Willner, B. Zhang, L. Zhang, L.-S. Yan, and I. Fazal, "Optical Signal Processing using Tunable DelayElements Based on Slow Light," IEEE J. of Sel. Top. in Quant. Electr., Vol.14, no.3,pp.691-705,2008.
    [2]B. Zhang, L. Zhang, L. S. Yan, I. Fazal, J. Y. Yang, and A. E. Willner, "Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line," Opt. Exp., vol.15,no.13,8317-8322,2007.
    [3]J. E. Heebner and R. W. Boyd. "'Slow'and'fast'light in resonator-coupled waveguides," J. Mod. Opt.,vol.49,no.14-15,pp.2629-2636,2002.
    [4]Jacob B. Khurgin, "Slow light in various media: a tutorial," Advances in Optics and Photonics,vol.2,no.3,287-318,2010.
    [5]K. Y. Song, M. Gonzalez Herraez and L. Thevenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Exp., vol.13,no.l,pp.82-88,2005.
    [6]K. Y. Song, M. G Herraez, and L. Thevenaz, "Long optically controlled delays in optical fibers," Opt. Lett.vol.30,no.14, pp.1782-1784,2005.
    [7]K. Y. Song and K. Hotate, "25 GHz bandwidth Brillouin slow light in optical fibers," Opt. Lett. Vol.32,no.3, pp.217-219,2007.
    [8]V. I. Kovalev, N. E. Kotova, and R. G. Harrison,"'Slow Light' in stimulated Brillouin scattering: on the influence of the spectral width of pump radiation on the group index," Opt. Exp, vol.17,no.20, pp.17317-17323,2009.
    [9]Jay E. Sharping, Y. Okawachi, and A.L.Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Exp, vol,13, no.16,pp.6092-6098,2005.
    [10]D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Exp., vol.13,no.16,pp.6234-6249,2005.
    [11]E. Shumakher, A. Willinger, R. Blit, et al., "Large tunable delay with low distortion of 10 Gbit/s data in a slow light system based on narrow band fiber parametric amplification," Opt. Exp., vol.14, no.19,pp.8540-8545,2006.
    [12]E. Shumakher et al., "Large delay and low distortion of a 40Gb/s signal propagating in a slow light system based on parametric amplification in optical fibers," in Proc. ECOC 2006, paper We4.3.4.
    [13]A.Willinger, E. Shumakher, and G. Eisenstein, "On the Roles of Polarization and Raman-Assisted Phase Matching in Narrowband Fiber Parametric Amplifiers," IEEE J. Lightw. Technol, vol.26,no.14,pp.2260-2268,2008.
    [14]L. Schenato, M. Santagiustina, C. G. Someda, "Fundamental and Random Birefringence Limitations to Delay in Slow Light Fiber Parametric Amplification." J. Lightw Technol., vol.26,no.23, pp.3721-3726,2008.
    [15]Lilin Yi, W. Hu, Y. Su, Mingyi Gao and Lufeng Leng, "Design and System Demonstration of a Tunable Slow-Light Delay Line Based on Fiber Parametric Process," IEEE Photon. Technol. Lett., vol.18, no.24,pp.2575-2577,2006.
    [16]L.Gui,et al.," Character analysis of slow light with communication waveband in fiber optical parametric amplifier," Opt. Commun., vol.283,no.21, pp.4350-4357,2010.
    [17]L.Gui,et al.,"Tunable slow and fast light with large bandwidth in the band edge of gain spectrum of the wide band fiber optical parametric amplifier" Opt. Commun., vol.284,no.12, pp.3095-3100,2011.
    [18]P.Tcho Dinda, E.seve Gmillot, "Raman-assisted three wave mixing of non-phase-matched waves in optical fibers: application to wide-range frequency conversion," Opt. Commun., vol.192,no.21,pp.107-121,2001.
    [19]A. S. Y. Hsieh, G. K. L. Wong, S. G Murdoch et al., "Combined effect of Raman and parametric gain on single-pump parametric amplifiers," Opt. Exp., vol.15, no.13, pp.8104-8114,2007.
    [20]G P. Agrawal, Nonlinear Fiber Optics,4th ed. (Academic,2007).
    [21]T. Sylvestre, H. Maillotte, and E. Lantz, P. Tchofo Dinda. "Raman-assisted parametric frequency conversion in a normally dispersive single-mode fiber," Opt. Lett. Vol.24,no.22, pp.1561-1563,1999.
    [22]M.-C. Ho, K. Uesaka, M. Marhic, Y. Akasaka, and L. Kazovsky, "200-nm-bandwidth fiber optical amplifier combining parametric and raman gain," J. Lightwave Technol, vol.19, no.7, pp.977-981,2001.
    [23]C. J. S. de Matos, D. A. Chestnut, P. C. Reeves-Hall, and J. R. Taylor, "Continuous-wave-pumped Raman-assisted fiber optical parametric amplifier and wavelength converter in conventional dispersion-shifted fiber," Opt. Lett. Vol.26, no.20,pp.1583-1585,2001.
    [24]F.Vanholsbeeck, P. Emplit, and S. Coen, "Complete experimental characterization of the influence of parametric four-wave mixing on stimulated Raman gain," Opt. Lett. Vol.28, no.20,pp.1960-1962,2003.
    [25]J. C. C. Wang, S. G. Murdoch,R. Leonhardt, and J. D. Harvey. "Strong signal suppression in single-pump optical parametric amplifiers," Opt. Lett. Vol.33, no.9, pp.935-937,2008.
    [26]Hsieh, A S Y; Murdoch, S G; Coen, S; Leonhardt, R; Harvey, J D, "Influence of Raman susceptibility on optical parametric amplification in optical fibers," Opt. Lett. Vol.32, no.5, pp.521-523,2007.
    [27]S. Trillo and S.Wabnitz, "Parametric and Raman amplification in birefringent fibers," J. Opt. Soc. Amer. B., vol.9, no.7, pp.1061-1082,1992.
    [28]Silva, N.A. Muga, N.J. Pinto, A.N. "Influence of the Stimulated Raman Scattering on the Four-Wave Mixing Process in Birefringent Fibers," J. Lightwave Technol, vol.27, no.22, pp.4979-4988,2009.
    [29]Q. Lin, F. Yaman, and Govind P. Agrawal, "Raman-Induced Polarization-Dependent Gain in Parametric Amplifiers Pumped With Orthogonally Polarized Lasers," IEEE Photon. Technol. Lett.,vol.18, no.2, pp.397-399,2006.
    [1]D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier:a route to all optical buffering," Opt. Exp., vol,13,no.16,pp.6234-6249,2005.
    [2]E. Shumakher, A. Willinger, R. Blit, et al., "Large tunable delay with low distortion of 10 Gbit/s data in a slow light system based on narrow band fiber parametric amplification," Opt. Exp., vol.14, no.19,pp.8540-8545,2006.
    [3]A.Willinger, E. Shumakher, and G. Eisenstein, "On the Roles of Polarization and Raman-Assisted Phase Matching in Narrowband Fiber Parametric Amplifiers," IEEE J. Lightw. Technol, vol.26,no.14,pp.2260-2268,2008.
    [4]L. Schenato, M. Santagiustina, C. G. Someda, "Fundamental and Random Birefringence Limitations to Delay in Slow Light Fiber Parametric Amplification." J. Lightw Technol., vol.26,no.23, pp.3721-3726,2008.
    [5]Michel E. Marhic, Kenneth K. Y. Wong, and Leonid G. Kazovsky, "Fiber optical parametric amplifiers with linearly or circularly polarized waves," J. Opt. Soc. Amer. B., vol.20, no.12, pp.2425-2433,2003.
    [6]M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, "Fiber optical parametric amplifier with circularly-polarized pumps,"IEE Electron. Lett. Vol.39, pp.350-351, 2003.
    [1]. S. T.Winnall, A. C. Lindsay. A Fabry-Perot scanning receiver for microwave signal processing. IEEE Trans. Microw. Theory Tech., vol.47,no.7,pp.1385-1390, 1999.
    [2]. S. T. Winnall, A. C. Lindsay, M. W. Austin, et al. A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid fresnel lens system. IEEE Trans. Microw. Theory Tech., vol.54,no.2,pp.861-867,2006.
    [3]. Honglei Guo, Gaozhi Xiao, Nezih Mrad, et al., "Measurement of Microwave Frequency Using a Monolithically Integrated Scannable Echelle Diffractive Grating," IEEE Photon. Technol. Lett., vol.21,no.1, pp.45-47,2009.
    [4]. L. V. T. Nguyen, D. B. Hunter. "A photonic technique for microwave frequency measurement," IEEE Photon. Technol. Lett., vol.18,no.10,pp.1188-1190,2006.
    [5]. Linh V. T. Nguyen, "Microwave Photonic Technique for Frequency Measurement of Simultaneous Signals," IEEE Photon. Technol. Lett., vol.21,no.10, pp.642-644,2009.
    [6]. X. Zou, J. P. Yao. "An approach to microwave frequency measurement with adjustable measurement range and resolution," IEEE Photon. Technol. Lett., vol.20,no.23,pp.1989-1991,2008.
    [7]. H. Chi, X. Zou, J. P. Yao. "An approach to the measurement of microwave frequency based on optical power monitoring," IEEE Photon. Technol. Lett., vol.20,no.14, pp.1249-1251,2008.
    [8]. Junqiang Zhou, Songnian Fu, Perry Ping Shum, et al., "Photonic measurement of microwave frequency based on phase modulation," Opt. Exp., vol.17,no.9, pp.7217-7221,2009.
    [9]. Jianqiang Li, S.Fu,Kun Xu, et al., "Photonic-assisted microwave frequency measurement with higher resolution and tunable range," Opt. lett., vol.34,no.6,pp.743-745,2009.
    [10]. M.V.Drummond, P. Monteiro, and R. N. Nogueira, "Photonic RF instantaneous frequency measurement system by means of a polarization domain interferometer," Opt. Exp., vol.17,no.7,pp.5433-5438,2009.
    [11]. Xihua Zou, Hao Chi, and Jianping Yao, "Microwave Frequency Measurement Based on Optical Power Monitoring Using a Complementary Optical Filter Pair," IEEE Trans. Microw. Theory Tech., vol.57,no.2, pp.505-511,2009.
    [12]. Ze Li, Bo Yang, Hao Chi, et al., "Photonic instantaneous measurement of microwave frequency using fiber Bragg grating," Opt. Commun., vol.283, no.3, pp.396-399,2010.
    [13]. Ze Li, Chao Wang, Ming Li, et al., "Instantaneous Microwave Frequency Measurement Using a Special Fiber Bragg Grating," IEEE Microw.and wirele.compen.lett., vol.21, no.l, pp.52-54,2011.
    [14]. Lam A. Bui, Mark D. Pelusi,Trung D. Vo, et al., "Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber," Opt. Exp., vol.17,no.25, pp.22983-22991,2009.
    [15]. Gui lin, Li yan, Wang da-peng, et al., "A novel approach to measure microwave frequency by using optical fiber parametric amplifier," The Journal of China Universities of Posts and Telecommunications,2009,16(suppl.)
    [16]. R. H. Stolen, J. E. Bjorkholm. "Parametric amplification and frequency conversion in optical fibers," IEEE J. Quantum Electron.,vol.18,no.7,pp. 1062-1072,1982.
    [17]. M.-C. Ho, M. E. Marhic, Y. Akasaka. "200-nm bandwidth fiber optical amplifier combining parametric and Raman gain," J. Lightwave Technol.,vol.19, no.7, pp.977-981,2001.
    [18]. M. Gao, C.Jiang, W. Hu, et al. "Optimized design of two-pump fiber optical parametric amplifier with two-section nonlinear fibers using genetic algorithm," Opt. Exp., vol.12,no.23,pp.5603-5613,2004.
    [19]. C. Dorrer and D. N. Maywar, "RF Spectrum Analysis of Optical Signals Using Nonlinear Optics, " IEEE J.Lightwave Technol., vol.22, no.1,pp.266-274,2004.
    [20]. G P. Agrawal, Nonlinear Fiber Optics. San Diego, CA:Academic,389-415,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700