采用新型包层材料和基于微结构的光纤与光纤光栅的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学纤维以优良的光传输特性被广泛地应用到通信系统、传感、医疗器械和各种光学器件等众多领域,研究热点逐渐从研究衰减到研究光纤的色散和非线性,并有大量的有源和无源的光器件应运而生。近年来,特殊结构的光纤和光器件由于可以实现一些特殊的传输,满足常规光纤很难满足的要求和更容易的设计,越来越受到人们的关注,尤其在光器件设计上得到了广泛的应用。
     本论文理论和实验研究了采用新型材料包层结构(即采用单轴晶体材料包层)和基于全内反射微结构的两种新型光纤及光栅。
     首先提出了单轴各向异性材料为包层、其主轴沿光纤光栅轴线(Z轴)方向的布喇格光纤光栅模型,引入了单轴晶体材料主轴折射率比参数K_(cl),从波动方程推出了理想正规模的特征方程,计算了基模HE_(11)模的有效折射率、色散和功率限制因子;应用耦合模理论研究了该类布喇格光纤光栅的反射率、布喇格波长、反射波带宽及色散,理论研究了对该类光纤的电光效应和弹光效应。本部分的研究对基于以单轴晶体材料为包层的光纤和光栅器件的研究提供了理论依据,可以根据这些结论设计新型可调谐滤波器、波长选择器和电压、应力等传感器。
     应用改进的有效折射率法,分别用标量和矢量计算了微结构光纤(Microstructured Fiber,MF)的传输特性和全内反射微结构光纤Bragg光栅(MFBG)的反射特性和填充比的关系,提出了增大反射率的方法;应用BMP法设计了一种具有三层不同的空气孔直径的宽带色散补偿微结构光纤;设计和加工了长周期光纤光栅压力传感装置,对普通单模光纤进行了压力传感实验,实验表明传感器性能良好,线性度和灵敏度高;在高非线性微结构光纤上用机械压力法写制了一种长周期光纤光栅,测定了透射谱深度和压力大小的关系。
     本论文主要研究内容和创新点如下:
     1、单轴晶体包层光纤及光栅
     (1)提出了单轴各向异性材料为包层、其主轴沿光纤轴(Z轴)方向的光纤模型,矢量分析了特征方程、基模有效折射率和色散。研究表明光纤的色散随波长的增加而由负而正的增大,但零色散波长随K_(cl)的增加而减小。当K_(cl)<1时,零色散波长随K_(cl)的增大而减小的很剧烈,但当K_(cl)>1,零色散波长变化不明显。
     (2)研究了功率限制因子和包层单轴晶体材料主轴折射率比参数K_(cl)的关系,模拟了电光效应和弹光效应对此类光纤内光能量分布的影响。结果表明并且外加电场越强,纤芯内的光能量越少,光能量越集中到包层中;施加应变场越强,光能量越集中到纤芯中。
     (3)模拟计算了包层为单轴晶体材料的布喇格光纤光栅的反射率、Bragg波长、反射波带宽及色散和K_(cl)的关系,得出了单轴晶体包层光纤Bragg光栅比均匀各向同性包层的Bragg光栅更容易获得高反射率;单轴晶体包层折射率的变化可以使Bragg波长产生移动;包层为各向同性材料的光纤比包层为单轴晶体材料的光纤更容易把光能量集中在纤芯中传输;对光纤Bragg光栅来说,包层中传输的能量更容易耦合到反向导模中。
     (4)基于上述理论,提出了分别采用铌酸锂(LiNbO_3)和磷酸二氢钾(KDP)两种单轴晶体材料做包层的光电器件的设想,即分别利用铌酸锂的电光效应和磷酸二氢钾弹光效应设计可调谐滤波器、压力和电场(压)传感器方法。
     2、微结构光纤及光栅
     (5)应用改进的有效折射率方法(IEIM)分别用标量法和矢量法分析MF的有效折射率和基于全内反射MF的Bragg光栅的反射谱。计算结果表明标量法只适合填充比小于0.45的情况,对于比较大的填充比,要用矢量法来计算;包层中空气比分增大时,基空间填充模的有效折射率变小,Bragg波长移向短波长一边;随着包层中空气比分的增加,可以有效的提高微结构光纤Bragg光栅的反射率。
     (6)在高非线性微结构光纤上用机械压力法写制了10个周期,周期为1.2mm的长周期光纤光栅,测定了透射谱深度和压力大小的关系,表明长周期光纤光栅的透射谱透射深度随应力增加而单调增加,即能量从纤芯耦合到包层;当应力进一步增大,透射谱深度开始减小,即光开始从包层耦合回纤芯。
     (7)采用金属凹槽板完成了可调谐普通单模光纤的压力传感实验,结果表明在0-70N的测量范围内,透射峰衰减值随压力变化曲线的线性度达0.9915,灵敏度可达0.2dBm/N。
     (8)与他人合作,应用BMP法设计了一种1.55um波段宽带色散补偿微结构光纤,该光纤具有三层不同的空气孔直径,调节各结构参量得到最佳色散补偿光纤,在100nm范围内补偿普通单模光纤(G.652),补偿倍数超过100倍,比目前已报道的都大。
Optical fibers have many important applications in communication systems, sensors, medical instrumentation, and various optical components due to its super transmission properties, the hot research topics shifted from the attenuation to dispersion and nonlinearity research, and numerous passive and active optical components were invented. During the past few years, the optical fibers and optical components with special structure attracted much more attentions and were used wildly specially in optical components designing for its unique transmission characteristics and flexible designing that cannot be achieved from conventional fibers.
     In this dissertation, theoretical and experimental research on fibers and fiber gratings with a novel matieraial such as uniaxial crystal material and the Total Internal Reflection microstructured cladding.
     The model of fiber and fiber Bragg grating with cladding made of uniaxial crystal material whose optical axis is parallel to the axis (z-axis) of fiber was proposed, the parameter K_(cl), i.e., the ratio of the extraordinary to the ordinary ray refractive index, were introduced, the characteristic equation of the ideal normal mode were derived from the wave equation, the effective index, dispersion and power confinement factor of the HE_(11) mode of the fiber were simulated, the reflectivity, Bragg wavelength, bandwidth and dispersion of this kind fiber Bragg gratings were examined using coupled-mode theory and numeric solution and Electro-optic Effect and Elasto-Optic Effect of the fiber were theoretically investigated. These research results provide a theoretic basis for designing optical components based on fiber and fiber Bragg grating with cladding made of uniaxial crystal material, and a novel tunable filter, wavelength selector, voltage and strain sensors and etc can been designed according to the conclusions.
     The transmission properties of Microstractured fiber (MF), the relationship between the filling factor and the reflectivity of fiber Bragg grating formed in the Total Internal Reflection microstructured fiber were investigated by the scalar and fully vectorial improved effective index method (FVIEIM), and the ways to increase the reflectivity were concluded. The BeamPROP (BMP) method is used to design a broadband dispersion compensation MF whose structure is three-tier air hole with different diameters. A pressure sensor based on long-period fiber grating (LPG) were designed and fabricated, a pressure sensing experiment was conducted, and the results show that the LPG pressure sensor has great performance such as excellent linearity degree and high sensitivity. A kind of long-peroid fiber grating was inscribed in the high nonlinear microstructured fiber by mechanical pressure and the relationship between the depth of the transmission spectrum and the pressure was mensurated.
     The main contents and achievements are as follows.
     1, Fibers and fiber gratings with uniaxial crystal material cladding
     (1) The model of fiber with cladding made of uniaxial crystal material whose optical axis is parallel to the axis (z-axis) of fiber was proposed, the characteristic equation of the ideal normal mode were derived from the wave equation, the effective index, dispersion of the HE_(11) mode of the fiber were simulated. The research results indicate that the dispersion increases from negative to positive with the wavelength increasing, the larger K_(cl) is, the less the zero dispersion wavelength changes. When K_(cl) <1, the zero dispersion wavelength decreases rapidly, but when K_(cl) >1, it decreases slowly.
     (2) The impact of K_(cl) on the power confinement factor of the HE_(11)mode of the fiber and the influence of Electro-optic Effect and Elasto-Optic Effect on the power distribution of this kind of the fiber was inverstigated. The calculated results indicate that the stronger the electri field is, the less optical power transmitted in the core, and more power was concentrated in the cladding. The stronger the strain is, the more energy is transmitted in the core.
     (3) The influence of K_(cl) on the reflectivity, Bragg wavelength, bandwidth and dispersion of fiber Bragg gratings with uniaxial crystal material cladding were demonstrated, the calculated results indicate that the reflectivity of the fiber Bragg grating with cladding made of uniaxial crystal material is much higher than that with cladding made of isotropy material, the Bragg wavelength could be shifted due to different index contribution of the uniaxial crystal material cladding. More power is confined in the core of the fiber with cladding made of isotropic materials than that with cladding made of isotropic material while keeping the other parameters of the fiber as constant. For fiber Bragg grating, the power transmitted by the cladding is more easily coupled into the backward-propagating guided fundamental mode.
     (4) The design of Optoelectronic devices with LiNbO_3 and KDP cladding, respectively, were predicted based on the above theory, i.e., a novel tunable filter, electric field (or voltage) and strain sensors and etc were proposed due to Electro-optic Effect of LiNbO_3 and Elasto-optic Effect of KDP crystal materials.2, Total Internal Reflection Microstructured fibers and gratings
     (5) The effective index of MF and the reflectivity of fiber Bragg grating formed in the Total Internal Reflection microstructured fiber were investigated by the scalar and fully vectorial improved effective index method (FVIEIM), the calculated results indicate that the scalar approximation condition will not be satisfied and full vector should be used when the filling factor is more than 0.45, the effective index of the fundamental space filling mode (FSFM) decreases, the reflectivity increases and the Bragg wavelength shifts to shorter wavelength with the filling factor increasing.
     (6) A 10-peroids and 1.2mm-long-peroid fiber grating was inscribed in the high nonlinear microstructured fiber by mechanical pressure and the relationship between the depth of the transmission spectrum and the pressure was mensurated. The result indicates that the depth of the transmission spectrum increases with the pressure increasing, i.e., the optical energy transmitted in the core is coupled to the cladding, but when the pressure become larger, the depth of the transmission spectrum decreseas, i.e., the optical energy is coupled back to the core.
     (7) A pressure sensing experiment was conducted using a metal groove plate whose period can be tunable, the results show that when the pressure varies between 0 and 70N, the linearity degree of the pressure-transmission peak attenuation curve is as much as 0.9915 and the sensitivity is 0.2dBm/N.
     (8) The BeamPROP (BMP) method is used to design a broadband dispersion compensation MF in 1550nm wavelength range. The MSF structure is three-tier air hole with different diameters, the best structure with 100 nm bandwidth is found to compensate ordinary single-mode fiber (G.652) more than 100 times which is the largest, to our knowledge.
引文
[1]F.P.Kapron,D.B.Keck,and R.D.Maurer,Appl.Phys.Lett.17,423(1970).
    [2]I.Hayashi,M.B.Panish,P.W.Foy,and S.Sumski,Appl.Phys.Lett.17,109(1970).
    [3]J.P.Gordon,Opt.Lett.11,662,(1986)
    [4]G.P.Agrawal,Fiber-Optic Communications Systems(3 Ed)[M]:NewYork,Wiley,2002.
    [5]李永民,刘勇,朱庆军.FTTH的发展及我国策略分析,电信科学,2007,5:52-55
    [6]Y.J.Rao,Recent progress in applications of in-fibre Bragg grating sensors,Optics and Lasers in Engineering 31:297-324,1999.
    [7]E.Yablonvitch,Inhibited spontaneous emission in solidstate physics and electronics,Phys.Rev.Lett.,58(20),1987,pp.2059-2062.
    [8]S.John,Strong localization of photons in certain disordered dielectric super-lattices,Phy.Rev.Lett.,58(23),1987,pp.2486-2489.
    [9]J.C.Knight,T.A.Birks,P.St.J.Russell,et al,Pure silica single-mode fibre with hexagonal photonic crystal cladding,OFC'96,paper PD3-1.
    [10]J.C.Knight,T.A.Birks,P.St.J.Russell,et al,All-silica single-mode optical fiber with photonic crystal cladding,Opt.Lett.,21(19),1996,pp.1547-1549.
    [11]P.St.J.Russel,Photonic crystal fibers,Science,299,2003,pp.358-362.
    [12]J.C.Knight,New ways to guide light,Science,296,2002,pp.276-277.
    [13]P.Rigby,A photonic crystal fiber,Nature,396,1998,pp.415-416.
    [14]T.A.Birks,J.C.Knight,P.St.J.Russell,Endlessly single-mode photonic crystal fiber,Opt.Lett.,22(13),1997,pp.961-963.
    [15]J.C.Knight,T.A.Birks,P.St.J.Russell,et al,All-silica single mode optical fiber with photonic crystal cladding,Opt.Lett.,21,1996,pp.1547-1549.
    [16]J.C.Knight,J.Arriaga,T.A.Birks et al,Anomalous dispersion in photonic crystal fiber,IEEE Photon.Technol.Lett.,12(7),2000,pp.807-809.
    [17]J.K.Ranka,R.S.Windeler,A.J.Stentz,Visible continuum generation in airsilica microstructure optical fibers with anomalous dispersion at 800nm,Opt.Lett.,2000,25(1):25-27.
    [18]A.Ferrando,E.Silvestre,J.J.Miret,et al,Nearly zero ultraflattened dispersion in photonic crystal fibers,Opt.Lett.,25,2000,pp.790-792.
    [19]W.H.Reeves,J.C.Knight,P.St.J.Russell,Demonstration of ultra-flattened dispersion in photonic crystal fibers, Opt. Express, 10:,2002, pp.609~613.
    [20] K. Saitoh and M. Koshiba, Chromatic dispersion control in photonic crystal fibers: Application to ultraflattened dispersion, Opt. Express, 11, 2003,pp.843~852.
    [21] R. K. Sinha and S. K. Varshney, Dispersion properties of photonic crystal fibers, Microwave Opt. Technol. Lett., 37,, 2003, pp. 129-132.
    [22] F. Gerome, J.L. Auguste, J. M. Blondy, Design of dispersion-compensating fibers based on a dualconcentric-core photonic crystal fiber, Opt. Lett.,29, .2004, pp.2725~2727.
    [23] F. Poli, A. Cucinotta, S. Selleri, et al, Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers, IEEE Photon. Technol. Lett.,16 (4), 2004,pp. 1065-1067.
    [24] Tzong-Lin Wu, Chia-Hsin Chao, A novel ultraflattened dispersion photonic crystal fiber, IEEE Photon. Technol. Lett.,17(1), 2005, pp.67~69.
    [25] A. Huttunen and P. Torma, Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area, Opt. Express, 13,2005, pp.627~635.
    [26] T. Fujisawa, K. Saitoh, K. Wada, et al, Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation, Opt. Express, 14(2),, 2006, pp. 893-900.
    [27] Sigang Yang, Yejin Zhang, Xiaozhou Peng, et al, Theoretical study and experimental fabrication of high negative dispersion photonic crystal fiber with large area mode field, Opt. Express,14(7), 2006, pp.3015-3023.
    [28] J. C. Knight, T. A. Birks, R. F. Cregan, P. St. Russell, et al, Large mode area photonic crystal fibre, Electron. Lett., 34(13), 1998, pp.1347-1348.
    [29] T. M. Monro, D. J. Richardson, N. G. R. Broderick, et al, Holey optical fibers:An efficient modal model, J. Lightwave Technol., 17, 1999, pp.1093-1102.
    [30] N. G. R. Broderick, T. M. Monro, P. J. Bennett, et al, Nonlinearity in holey optical fibers: measurement and future opportunities, Opt. Lett., 24,1999,pp.1395-1397.
    [31] N. A. Mortensen, Effective area of photonic crystal fibers, Opt. Express, 10,2002, pp.341~348.
    [32] Niels Asger Mortensen, Effective area of photonic crystal fibers,Opt. Express,14(7), 2002, pp.341~348.
    [33]L.Lavoute,P.Roy,A.Desfarges-Berthelemot,et al,Design of microstructured single-mode fiber combining large mode area and high rare earth ion concentration,Opt.Express,14(7),2006,pp.2994-2999.
    [34]John M.Fini,Bend-resistant design of conventional and microstructure fibers with very large mode area,Opt.Express,14(1),2006,pp.69-81.
    [35]A.Ortigosa-Blanch,J.C.Knight,W.J.Wadsworth,et al,Highly birefringent photonic crystal fibers,Opt.Lett.,25(18),2000,pp.1325-1327.
    [36]T.P.Hansen,J.Broeng,S.E.B.Libori,et al,Highly birefringent index-guiding photonic crystal fibers,IEEE Photon.Technol.Lett.,13(6),2001,pp.588-590.
    [37]Saitoh,K.;Koshiba,M.,Photonic bandgap fibers with high birefringence,IEEE Photon.Technol.Lett.,14(9),2001,pp.1291-1293.
    [38]娄淑琴,王智,任国斌等,折射率导模高双折射光子晶体光纤,光学学报,24(10),2004,pp.1310-1315.
    [39]Yue,Y.,Kai,G.,Wang,Z.,et al,Highly birefringent elliptical-hole photonic crystal fiber with two big circular air holes adjacent to the core,IEEE Photon.Tech.Lett.,18(24),2006,pp.2638-2640.
    [40]Zografopoulos D.C.,Kriezis E.E.,Tsiboukis T.D.,Tunable highly birefringent bandgap-guiding liquid-crystal microstructured fibers,J.Lightwave Technol.,24(9),2006,pp.3427-3432.
    [41]Chen,D.,Shen,L.,Ultrahigh Birefringent Photonic Crystal Fiber With Ultralow Confinement Loss,IEEE Photon.Tech.Lett.,19(4),2007,pp.185-87.
    [42]R.F.Cregan,B.J.Mangan,J.C.Knight,et al,Single-mode photonic band gap guidance of light in air.Science,285,1999,pp.1537-1539.
    [43]D.G.Ouzounov,F.R.Ahmad,D.Muller,et al,Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,Science,301,2003,pp.1702-1704.
    [44]J.Laegsgaard,N.A.Mortensen,J.Riishede,et al,Material effects in air-guiding photonic bandgap fibers,J.Opt.Soc.Am.B:Opt.Phys.,20,2003,pp.2046-2051.
    [45]F.Luan,J.C.Knight,P.St.J.Russell,et al,Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers,Opt.Express,12(5),2004,pp.835-840.
    [46] J.D. Shephard, J.D.C. Jones, D.P. Handet al, High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers, Opt. Express,12, 2004, pp.717-723.
    [47] C. Peucheret, B. Zsigri, T.P. Hansen and P. Jeppesen, 10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm, Electron. Lett., 41(1),2005, pp.27~29.
    [48] K. Kurokawa, K. Tajima, K. Tsujikawa, et al, Penalty-Free Dispersion-Managed Soliton Transmission Over a 100-km Low-Loss PCF, J. Lightwave Technol.,24(1), 2006, pp.32~37.
    [49] B. Zsigri, C. Peucheret, M. D. Nielsen, et al, Demonstration of Broadcast,Transmission, and Wavelength Conversion Functionalities Using Photonic Crystal Fibers, IEEE Photon. Technol. Lett., 18(21), 2006, pp.2290~2292
    [50] Jay E. Sharping, Mark A. Foster, and Alexander L. Gaeta, Octave-spanning,high-power microstructurefiber-based optical parametric oscillators, Opt.Express, 15(4), 2007, pp.1474-1479.
    [51] K. Sasaki, S. K. Varshney, K. Wada, Optimization of pump spectra for gain-flattened photonic crystal fiber Raman amplifiers operating in C-band,Opt. Express, 15(5), 2007,pp.2654~2668.
    [52] A. Tonello and S. Wabnitz, Switching Off Polarization Modulation Instabilities in Photonic Crystal Fibers, IEEE Photon. Technol. Lett., 18(8), 2006,pp.953~955.
    [53] Hai-Han Lu, Wen-I Lin, Ching-Yin Lee, et al, A Full-Duplex Radio-on-Photonic Crystal Fiber Transport System, IEEE Photon. Technol. Lett., 19(11),2007, pp.831-833.
    [54] H. Hasegawa, Y. Oikawa and M. Nakazawa, 10 Gbit/s 2 km photonic crystal fibre transmission with 850nm directly modulated singlemode VCSEL, IEE Electron. Lett., 43(2), 2007, pp.119-121.
    [55] Y. Xu, X. Ren, Z. Wang, X. Zhang and Y. Huang, Flatly broadened supercontinuum generation at 10 Gbits using dispersion-flattened photonic crystal fibre with small normal dispersion, IEE Electron. Lett.., 43(2), 2007,pp.87~88.
    
    [56] C.H. Kwok, S.H. Lee, K.K. Chow, et al, Photonic crystal fibre based all-optical modulation format conversions between NRZ and RZ with hybrid clock recovery from a PRZ signal, IET Optoelectronics, 1(1), 2007, pp.47~53.
    [57] Hui Wang, Christine P. Fleming, and Andrew M. Rollins, Ultrahigh-resolution optical coherence tomography at 1.15 μm using photonic crystal fiber with no zero-dispersion wavelengths, Opt. Express, 15(6), 2007,pp.3085~3092.
    [58] N. J. Florous, K. Saitoh, M. Koshiba, Numerical Modeling of Cryogenic Temperature Sensors Based on Plasmonic Oscillations in Metallic Nanoparticles Embedded Into Photonic Crystal Fibers, IEEE Photon. Technol.Lett., 19(5), 2007, pp.324~326.
    [59] K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photo-sensitivity in optical fiber waveguides: Application to reflection filter fabrication," Appl.Phys. Lett., vol. 32, pp. 647-649, 1978.
    [60] B. S. Kawasaki, K. O. Hill, D. C. Johnson, and Y. Fujii, "Narrow-band Bragg reflectors in optical fibers," Opt. Lett., vol. 3, pp. 66-68, 1978.
    [61] G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett., vol. 14, pp.823-825, 1989.
    [62] K. O. Hill and G. Meltz, "Fiber Bragg Grating Technology Fundamentals and Overview ", Journal of Lightwave technology, Vol 15, pp.1263—1276,1997.
    [63] Albert, J., et al.: 'Grating formation in pure silica-core fibers', Opt. Lett, 2002,27, pp. 809-811
    [64] Eggleton B J, Westbrook P S, Windeler R S et al, Gratting resonances in air-silica microstructured optical fibers [J]. Optics Letters, 1999, 24(21):1460-1462
    [65] Eggleton, B.J., et al.: 'Cladding-mode-resonances in air-silica microstructure optical fibers', J. Lightwave Technol., 2000, 18, pp. 1084-1100
    [66] Groothoff, N., et al.: 'Bragg gratings in air silica structured fibers', Opt. Lett.,2003, 28, pp. 233-235
    
    [67] L.B. Fu, G.D. Marshall, J.A. Bolger, et al. Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres, Electronics Letters , 41(11): 131-133.
    [1]Kao C.K.,et al.Dielectric-fiber surface waveguide for optical frequencies.Proc.IEE(London),1966;113:1151-1158
    [2]Kapron F.P.,et al.Radiation losses in optical waveguide.Appl.phys.lett.,1970;17:423-425
    [3]饭野显等.光学,1990,19(2):113-120
    [4]王黎蒙,张廷荣,秦大甲.用大功率红外传输的特种光纤.激光与光电子学进展.2003,(3).
    [5]Snyder A.W.and Love J.D.,Optical Waveguide Theory,Chapman & Hall,New York,1983
    [6]Stevenson J L,Dyott R B.Optical fiber waveguide with a single-crystal core[J].Electron Lett.,1974,10:449-450.
    [7]Cozens J.Propagation in cylindrical fibers with anisotropic crystal cores[J].Electron.Lett.,1974,12:413-415.
    [8]Zhangxiaoping,Tanzhihong.Analysis of Transmission Characteristics of Doubly Clad Fibers with an Inner Cladding Made of Uniaxial Crystal Materials [J].Optics communications,2002,204:127-136.
    [9]Wakaki M.,Komachi Y.,Machida H.,Fiber-optic polarizer using birefringent crystal as a cladding[J].Applied optics.1996,35(15):2591-2594.
    [10]G.P.Agrawal,Nonlinear Fiber Optics(Third Edition)[M],NewYork,Wiley,2002.
    [11]陈孟尧,许福永,赵克玉.电磁场与微波技术.北京:高等教育出版社.1989.
    [12]叶培大,光纤理论,知识出版社,1985.6:48-55.
    [13]D.Marcuse,Light Transmission Optics(Van Nostrand Reinhold,New York,1982),Chaps.8 and 12.
    [14]Amnon Yariv.Introduction to Optical Electronics[M],Holt,Rinchart and Winston,1976.
    [15]Shanglin Hou,Chunlian Hu,Xiaomin Ren,Xia Zhang,Yongqing Huang.Influence of uniaxial crystal material cladding on reflectivity and dispersion of uniform fiber Bragg grating.Optics Communications,271(1):109-115,2007.
    [16]Zhang xiaoping,Hou shanglin,Study on characteristics of fiber Bragg grating with uniaxial crystal cladding[J],Optics communications,2003,219:193-198.
    [17]Hou Shanglin,Li Suoping,Wang Daobin,Lei Jingli,Study on dispersion of optical fiber with cladding made ofuniaxial crystal materials,ICMMT2008:6~(th)International Conference on Microwave and Millimeter Wave Technology,2008,04.Nanjing
    [18]侯尚林,李鸿伯,黎锁平,王道斌,雷景丽,对包层为各向异性材料的光纤Bragg光栅反射谱的物理解释,量子电子学报,已接收。
    [19]侯尚林;胡春莲;刘延君;陈玉红.电光效应对光纤波导效率的影响.兰州理工大学学报,2006,Vol.32(6).
    [20]HOU Shang-lin,LI Hong-bo,LI Suo-ping,WANG Dao-bin,LEI Jing-li,Influence of Elasto-Optic Effect on power confinement factor of optical fiber with uniaxial crystal material cladding,Far East Journal of Electronics and Communications,1(2):147-154.,2007.
    [1]K.O.Hill and G Meltz.Fiber Bragg Grating Technology Fundamentals and Overview[J].Journal of Lightwave technology,1997,15:1263-1276.
    [2]Turan Erdogan.Fiber Grating Spectra[J].Journal of Lightwave technology,1997,15:1277-1294.
    [3]Ball G A,Glenn W H.Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors[J].J.Lightwave Technol.1992,10:1338-1343.
    [4]A.D.Kersey.A review of recent developments in fiber optic sensor technology [J].Optic Fiber Technol..1996,2:291-317.
    [5]HOU Shang-lin,MA Qiong-fang and ZHANG Xiaoping.Study on power distribution of optical fiber with uniaxial crystal material cladding[J].2004,21(4):516-519.
    [6]HUANG Gui-ling,ZHAO Qi-da,LIU Song-fen and et al.Study of the Relation Between the Transmission Spectra and the Structural Parameters for a Long-period Fiber Grating[J].Journal of Optoelectronics.Laser.2007,18(5):519-522.
    [7]Davis D D,Gaylord T K,Glytsis E N et al,Long-period fiber grating fabrication with foused CO_2 laser pulse,Electron.Lett.1998,34(3):302-303.
    [8]Davis D D,Gaylord T K,Glytsis E N et al,CO_2 laser-induced long-period fiber grating:spectrum characteristics cladding mode and polarization independence,Electron.Lett.1998,34(14):1416-1417.
    [9]Ouellette F,Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides.Opt.Lett.1987,12(10):847-849.
    [10]Mizrahi V,Sipe J E,Optical properties of photosensitive fiber phase grating,J.of Lightwave Technol.1993,11(10):1513-1517
    [11]Giles C R,Lightwave application of fiber Bragg grating,J.of Lightwave Technol.1997,15(8):1391-1404
    [12]Agrawal G,Radic S.Phase-shifted fiber Bragg grating and their applications for wavelength demultiplexing.IEEE Photon.Technol.Lett.1994,6(8):995-997.
    [13]Erdogan T,Sipe J E.Tilted fiber phase gratings.J.Opt.Soc.Am.A.1996,13(2):196-313.
    [14]D.P.Hand and P.St.J.Russell,"Photoinduced Refractive-index Changes in Germanosilicate Fibers",Opt.Lett.,Vol.15,pp.102-104,1990.
    [15]J.P.Bernardin and N.M.Lawandy,"Dynamics of the Formation of Bragg Gratings in Germanosilicate Optical Fibers",Opt.Commun.,Vol.79,pp.194-199,1990.
    [16]A.M.Vengsarkar,Lemaire P J,Judkins J B et al.Long-Period gratings as band-rejection filters.J.of Lightwave Technol.1996,14(1):58-65.
    [17]Bhatia V,Vengsarkar A.M.Optical fiber Long-Period grating sensors.Opt.Lett.1996,21:692-694.
    [18]Erdogan T.Cladding-mode resonance in short and long period fiber grating filters.J.Opt.Soc.Am.A.1997,14(8):1760-1773.
    [19]G.Meltz,W.W.Morey,and W.H.Glenn,"Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt.Lett.,vot.14,pp.823-825,1989.
    [20]K.O.Hill,B.Malo,K.A.Vineberg,F.Bilodeau,D.C.Johnson,and I.Skinner,"Efficient mode conversion in telecommunication fiber using externally written gratings," Electron.Lett.,vol.26,pp.1270- 1272,1990.
    [21]K.O.Hill,B.Malo,F.Bilodeau,D.C.Johnson,and J.Albert,"Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl.Phys.Lett.,vol.62,pp.1035-1037,1993.
    [22]D.Z.Anderson,V.Mizrahi,T.Erdogan,and A.E.White,"Production of in-fiber gratings using a diffractive optical element," Electron.Lett.,vol.29,pp.566-568,1993.
    [23]K.C.Byron,K.Sugden,T.Bricheno et al,"Fabrication of Chirped Bragg Gratings in Photosensitive Fibers",Electron.Lett.,vol.29,pp.1659-1660,1993.
    [24]K.Sugden,I.Bennion,A.Molony et al,"Chirped Gratings Produced in Photosensitive Optical Fibers by Fiber Deformation During Exposure",Electron.Lett.,vol.30,pp.440-442,1994.
    [25]C.Farries,K.Sugden,D.C.J.Reid et al,"Very Broad Reflection Bandwidth (44nm)Chirped Fiber Gratings and Narrow Bandpass Filters Produced by the Use of an Amplitude Mask",Electron.Lett.,vol.30,pp.891-892,1994.
    [26]R.Kashyap,P.F.McKee,R.J.Camphbell,"Novel Method of Producing All Fiber Photoinduced Chirped Gratings",Electron.Lett.,vol.30,pp.996-997,1994.
    [27]P.A.Morton,V.Mizrahi,S.G.Kosinski,L.F.Mollenauer,T.Tanbun-Ek,R.A.Logan,D.L.Coblentz,A.M.Sergent,and K.W.Wecht,"Hybrid soliton pulse source with fiber external cavity and Bragg reflector," Electron.Lett.,vol.28,pp.561-562,1992.
    [28]C.E.Soccolich,V.Mizrahi,T.Erdogan,P.J.LeMaire,and P.Wyscoki,"Gain enhancement in EDFA's by using fiber-grating pump reflectors," in Conf.Optic.Fiber Commun.,OFC'94,San Jose,CA,1994.
    [29]K.O.Hill,F.Bilodeau,B.Malo,T.Kitagawa,S.Th' eriault,D.C.Johnson,J.Albert,and K.Takiguchi,"Aperiodic in-fiber Bragg gratings for optical fiber dispersion compensation," in Conf Optic.Fiber Commun.,OFC'94,San Jose,CA,1994.
    [30]K.O.Hill,S.Th' eriault,B.Malo,F.Bilodeau,T.Kitagawa,D.C.John-son,J.Albert,K.Takiguchi,T.Kataoka,and K.Hagimoto,"Chirped in-fiber Bragg grating dispersion compensators:Linearization of the dispersion characteristic and demonstration of dispersion compensation in a 100 km,10 Gbit/s optical fiber link," Electron.Lett.,vol.30,pp.1755-1756,1994.
    [31]J.A.R.Williams,I.Bennion,K.Sugden,and N.J.Doran,"Fiber dispersion compensation using a chirped in-fire Bragg grating," Electron.Lett.,vol.30,pp.985-987,1994.
    [32]M.Shigehara,T.Satoh,A.Inoue,and Y.Hattori,"Optical fiber identification system using fiber Bragg gratings," in Conf Optic.Fiber Commun.,OFC'95,San Jose,CA,1995.
    [33]C.-K.Chan,F.Tong,L.-K.Chen,J.Song,and D.Lam,"A practical passive surveillance scheme for optically amplified passive branched optical networks,"IEEE Photon.Technol.Lett.,vol.9,pp.526-528,1997.
    [34]顾畹仪,全光通信网[M],北京:北京邮电大学出版社,1999,59-60。
    [35]刘雪原,张杰。波长变换技术对全光网络设计和性能的影响[J].光通售研究.2000,(1):16-20.
    [36]陈高庭,瞿荣辉,等.基于光纤光栅外腔激光器的波长转换器件[J].光纤通信,1999,(4):34-36.
    [37]谢满红,原容.光纤光栅特性及其在光纤通信中的应用[J].光通信技术,1997,(2):117-121.
    [38]Y J.Rao,"Recent progress in applications of in-fibre Bragg grating sensors",[J].Optics and Lasers in Engineering 31(1999)297-324
    [39]叶培大,光纤理论,知识出版社,1985.6:48-55.
    [40]A.Yariv,"Coupled-mode Theory for Guided-wave Optics",IEEE J.Quantum Electron.,Vol 9,pp.919-933,1973.
    [41]H.Kogelnik,"Theory of optical waveguides",in Guided-Wave Optoelectronics,T.Tamir,ED.New York:Springer-Verlag,1990.
    [42]Shanglin Hou,Chunlian Hu,Xiaomin Ren,Xia Zhang,Yongqing Huang.Influence of uniaxial crystal material cladding on reflectivity and dispersion of uniform fiber Bragg grating.Optics Communications,Vol 271,Issues 1,pp.109-115,2007.
    [43]侯尚林等,对包层为各向异性材料的光纤Bragg光栅反射谱的物理解释,量子电子学报,已接收。
    [44]柳青,李新碗,叶爱伦等,长周期光纤光栅包层模场分布及其耦合系数。上海交通大学学报,2000;34(2):201-208
    [45]Stevenson J L,Dyott R B.Optical fiber waveguide with a single-crystal core[J].Electron Lett.,1974,10:449-450.
    [46]Cozens J.Propagation in cylindrical fibers with anisotropic crystal cores[J].Electron.Lett.,1974,12:413-415.
    [47]Wakaki M.,Komachi Y.,Machida H.,Fiber-optic polarizer using birefringent crystal as a-cladding[J].Applied optics.1996,35(15):2591-2594.
    [1]P.St.J.Russel,Photonic crystal fibers[J],Science,299,2003,pp.358-362
    [2]C.Jonathan.Knight,Photonic crystal fibres[J],Nature,424,2003,pp.847-851.
    [3]J.C.Knight,J.Broeng,T.A.Birks,et al,Photonic band gap guidance in optical fibers[J],Science,282(5393),1998,pp.1476-1478.
    [4]T.A.Birks,J.C.Knight,and P.St.J.Russell,Endlessly single-mode photonic crystal fiber[J],Opt.Lett.,22(13),1997,pp.961-963.
    [5]J.C.Knight,T.A.Birks,P.St.J.Russell,et al,Properties of photonic crystal fiber and the effective index model[J],J.Opt.Soc.Am.A,15(3),1998,pp.748-752.
    [6]E.Silvestre,P.St.J.Russell,T.A.Birks,et al,Analysis and design of an endlessly single-mode finned dielectric waveguide[J],J.Opt.Soc.Am.A,15,1998,pp.3067-3075.
    [7]李曙光,刘晓东,侯蓝田,光子晶体光纤的导波模式与色散特性[J],物理学报,52(11),2003,pp.2811-2817.
    [8]王智,任国斌,娄淑琴等,光子晶体光纤模式特征的研究[J],光学学报,24(3),2004,pp.324-329.
    [9]任国斌,王智,娄淑琴等,应用有效折射率方法研究光子晶体光纤[J],光学学报,31(6),2004,pp.723-727.
    [10]栗岩锋,王清月,胡明列,光子晶体光纤的矢量有效折射率分析方法[J],中国激光,31(11),2004,pp.1332-1336.
    [11]Yan-feng Li,Ching-yue Wang,Ming-lie Hu,A fully vectorial effective index method for photonic crystal fibers:application to dispersion calculation[J],Opt.Comm.,238,2004,pp.29-33.
    [12]张德生,董孝义,张伟刚等,用阶跃有效折射率模型研究光子晶体光纤色散特性[J],物理学报,54(3),2005,pp.1235-1240.
    [13]R.K.Sinha and Anshu D.Varshney,Dispersion properties of photonic crystal fiber:comparison by scalar and fully vectorial effective index methods,[J]Opt.and Quantum Electron.,37,2005,pp.711-722.
    [14]K.M.Ho,C.T.Chen,I.Kurland,Existence of a photonic gap in periodic structure[J],Phys.Rev.Lett.,65,1990,pp.3152-3155.
    [15]S.E.Barkou,J.Broeng,and A.Bjarklev,Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect[J],Opt.Lett.,24(1), 1999,pp.46-48.
    [16]A.Ferrando,E.Silvestre,J.J.Miret,et al,Full-vector analysis of a realistic photonic crystal fiber[J],Opt.Lett.,24(5),1999,pp.276-278.
    [17]J.Broeng,S.E.Barkou,T.Sondergaard,et al,Analysis of air-guiding photonic bandgap fibers[J],Opt.Lett.,25(2),2000,pp.96-98.
    [18]A.Ferrando,E.Silvestre,J.J.Miret,et al,Vector description of higher-order modes in photonic crystal fibers[J],J.Opt.Soc.Am.A,17(7),2000,pp.1333-1340.
    [19]S.G.Johnson and J.D.Joannopoulos,Block-iterative frequency-domain methods for Maxwell′s equations in a planewave basis[J],Opt.Express,8,2001,pp.173-190.
    [20]D.Mogilevtsev,T.A.Birks,and P.S.J.Russell,Group-velocity dispersion in photonic crystal fibers[J],Opt.Lett.,23(21),1998,pp.1662-1664.
    [21]T.M.Monro,D.J.Richardson,N.G.R.Broderick,et al,Holey optical fibers:An efficient modal model[J],J.Lightw.Technol.,17(6),1999,pp.1093-1102.
    [22]D.Mogilevtsev,T.A.Birks,and P.S.J.Russell,Localized function method for modeling defect modes in 2-D photonic crystals[J],J.Lightw.Technol.,17(11),1999,pp.2078-2081.
    [23]T.M.Monro,D.J.Richardson,N.G.R.Broderick,et al,Modeling large air fraction holey optical fibers[J],J.Lightw.Technol.,18(1),2000,pp.50-56.
    [24]任国斌,王智,娄淑琴等,改进的正交函数算法研究光子晶体光纤[J],光电子·激光,15(7),2004,pp.806-813.
    [25]任国斌,王智,娄淑琴等,光子晶体光纤的正交函数模型[J],光学学报,24(8),2004.PP.1130-1136.
    [26]M.D.Feit,and J.A.Fleck,Computation of mode properties in optical fiber waveguides by a propagating beam method[J],Appl.Opt.,19,1980,pp.1154-1164.
    [27]C.E.Kerbage,B.J.Eggleton,P.S.Westbrook,et al,Experimental and scalar beam propagation analysis of an air-silica microstructure fiber[J],Opt.Express,7(3),2000,pp.113-122.
    [28]B.J.Eggleton,P.S.Westbrook,C.A.White,et al,Cladding-mode resonances in air-silica microstructure optical fibers[J],J.Lightw.Technol.,18(8),2000,pp.1084-1100.
    [29]F.Fogli,L.Saccomandi and P.Bassi,Full vectorial BPM modeling of Index-Guiding Photonic Crystal Fibers and Couplers[J],Opt.Express,10(1),2002,pp.54-59.
    [30]Y.Z.He,F.G.Shi,Finite-difference imaginary-distance beam propagation method for modeling of the fundamental mode of photonic crystal fibers[J],Opt.Comm.,225,2003,pp.151-156.
    [31]G.E.Town and J.T.Lizer,Tapered holey fibers for spot-size and numerical-aperture conversion[J],Opt.Lett.,26(14),2001,pp.1042-1044.
    [32]J.T.Lizier and G.E.Town,Splice losses in holey optical fibers[J],IEEE Photon.Technol.Lett.,13(8),2001,pp.794-796.
    [33]M.Qiu,Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method[J],Microw.Opt.Technol.Lett.,30(5),2001,pp.327-330.
    [34]朱燕杰,董小鹏,杨晓理,时域有限差分法在光波导分析中的应用及改进[J],光学学报,23(5),2003,pp.565-571.
    [35]池灏,双折射光子晶体光纤传输特性分析[J],光学学报,24(11),2003,pp.1552-1556.
    [36]刘珂,杨冬晓,FDTD方法在光子晶体光纤中的应用[J],光学仪器,27(4)2005,pp.22-25.
    [37]武劲青,薛文瑞,周国生,方形渐变空气孔微结构光纤的色散特性分析[J],光学学报,25(2),2005,pp.174-178.
    [38]Wei Jiang,Linfang Shen,Daru Chen,et al,An Extended FDTD method with inclusion of material dispersion for the full-vectorial analysis of photonic crystal fibers[J],J.Lightwave Technol.,24(11),2006,pp.4417-4423.
    [39]F.Brechet,J.Marcou,D.Pagnoux,P.Roy,Complete analysis of the characteristics of propagation into photonic crystal fibers,by the finite element method[J],Opt.Fiber Technol.,6(2),2000,pp.181-191.
    [40]M.Koshiba and K.Saitoh,Numerical verification of degeneracy in hexagonal photonic crystal fibers,IEEE Photon.Technol.Lett.,13(12),2001,pp.1313-1315.
    [41]Cucinotta A.,Selleri S.,Vincetti,L.,et al,Perturbation analysis of dispersion properties in photonic crystal fibers through the finite element method[J],IEEE Photon.Technol.Lett.,20(8),2002,pp.1433-1442.
    [42]A.Cucinotta,S.Selleri,L.Vincetti,et al,Holey fiber analysis through the finite-element method[J],IEEE Photon.Technol.Lett.,14(11),2002, pp.1530-1532.
    [43]K.Saitoh and M.Koshiba,Full-vectorial imaginary-distance beam propagation method based on a finite element scheme:application to photonic crystal fibers[J],IEEE J.Quantum Electron.,38(7),2002,pp.927-933.
    [44]S.Guenneau,A.Nicholet,F.Zolla,et al,Modeling of photonic crystal optical fibers with finite elements[J],IEEE Trans.Magn.,38(2),2002,pp.1261-1264.
    [45]M.Koshiba,Full-vector analysis of photonic crystal fibers using the finite element method[J],IEEE Trans.Electron.,85-C(4),2002,pp.881-888.
    [46]T.Fujisawa and M.Koshiba,Finite element characterization of chromatic dispersion in nonlinear holey fibers[J],Opt.Express,11(13),2003,pp.1481-1489.
    [47]M.Koshiba and K.Saitoh,Finite-element analysis of birefringence and dispersion properties in actual and idealized holey-fiber structures[J],Appl.Opt.,42(31),2003,pp.6267-6275.
    [48]胡明列,王清月,栗岩锋,微结构光纤的有限元分析计算法[J],中国激光,31(11),2004,pp.1337-1342.
    [49]Saitoh K.,Koshiba M.,Numerical modeling of photonic crystal fibers[J],J.Lightwave Technol.,23(11),2005,pp.3580-3590.
    [50]M.J.Steel,T.P.White,C.M.de Sterke,et al,Symmetry and degeneracy in microstructured optical fibers[J],Opt.Lett.,26(8),2001,pp.488-490.
    [51]T.P.White,R.C.McPhedran,C.M.de Sterke,et al,Confinement losses in microstructured optical fibers[J],Opt.Lett.,26(21),2001,pp.1660-1662.
    [52]T.P.White,R.C.McPhedran,L.C.Botten,et al,Calculations of air-guided modes in photonic crystal fibers using the multipole method[J],Opt.Express,9(13),2001,pp.721-732.
    [53]T.P.White,B.T.Kuhlmey,R.C.McPhedran,et al,Multipole method for microstructured optical fibers[J],I.Formulation.J.Opt.Soc.Am.B,19(10),2002,pp.2322-2330.
    [54]B.T.Kuhlmey,T.P.White,G.Renversez,et al,Multipole method for microstructured optical fibers[J].Ⅱ.Implementation and results,J.Opt.Soc.Am.B,19(10),2002,pp.2331-2340.
    [55]陆洋,张冶金,杨四刚等,多极化方法研究微结构光纤特性[J],半导体光电26(3),2005,pp.239-243.
    [56]Birks T A,Mogilevtsev D,Knight J C et al..The analogy between photonic crystal fibres and step index fibres,OFC'98,FG4,pp.114-116.
    [57]T.M.Monro,D.J.Richardson,N.G..R.Broderick,P.J.Bennett,Holey optical fibers:an efficient modal[J],Lightwave Technol.,17(6),1999,pp.1093-1102.
    [58]Michele Midrio,Mukesh P.Singh,and Carlo G.Someda,The Space Filling Mode of Holey Fibers:An Analytical Vectorial Solution[J],J.Lightwave Technol.,18(7),2000,pp.1031-1037.
    [59]Saitoh K and Koshiba M,Opt.Exp.,2004,13:267.
    [60]徐永钊.光子晶体光纤及相关通信光电子技术的理论与实验研究,博士学位论文,2007,第三章。
    [61]赵兴涛,侯蓝田,刘兆伦等。改进的全欠量有效折射率方法分析微结构光纤的色散特性[J],物理学报,2007,56(4):2275-2280.
    [62]Park K N,Lee K S,Improved effective index method for analysis of photonic crystal fibers[J],Opt.Lett.30(9),958-960(2005)
    [63]Hou Shang-Lin,Ren Xiao-Min,Zhang Xia,Huang Yong-Qing.Investigation on characteristics of fiber Bragg gratings formed in photonic crystal fibers,Asia-Pacific Optical Communications(SPIE),2007,Wuhan.Proc.Of SPIE Vol.6781:67813W.
    [64]Hou Shanglin,Li Suoping,Wang Daobin,Lei Jingli,Full-vector improved effective index method for analysis of fiber Bragg gratings formed in photonic crystal fibers,2008 International Conference on Microwave and Millimeter Wave Technology Proceedings(ICMMT2008),Vol.2:822-824,Nanjing.IEEE Catalog Number:CFPO8779-PRT,1SBN 978-1-4244-1879-4,Library of Congress Number:2007908622.(EI)
    [1] P. St. J. Russel, Photonic crystal fibers [J], Science, 299, 2003,pp.358~362.
    
    [2] K. O. Hill and G. Meltz. Fiber Bragg Grating Technology Fundamentals and Overview [J]. Journal of Lightwave technology, 1997, 15:1263-1276.
    [3] Wang, Yiping, Jin, Wei, Ju, Jian and et al. Long period gratings in air-core photonic bandgap fibers, Optics Express, 2008, 16(4): 2784-2790.
    [4] Eggleton B J, Westbrook P S, Windeler R S et.al, Grating resonances in air-silica microstructured optical fibers, Optics Letters, 1999, 24(21):1460-1462.
    [5] Steinvurzel, P; Moore, E D; Magi, E C; Kuhlmey, B T; Eggleton, B J. Long period grating resonances in photonic bandgap fiber, Optics Express, 2006, 14 (7):3007-3014.
    [6] J. H. Lim, K. S. Lee, J. C. Kim, and B. H. Lee, Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure, Opt. Lett. 2004,29,331-333.
    [7] Zonghu He, Yinian Zhu, and Henry Du, Effect of macro-bending on resonant wavelength and intensity of long-period gratings in photonic crystal fiber, Optics Express, 2007, 15(4): 1804-1810.
    [8] Park K N, Erdogan T, Lee K S, Cladding mode coupling in long-period gratings formed in photonic crystal fibers, Opt. Commun. 2006, 266: 541-545.
    [9] Chun-Liu Zhao, Limin Xiao, Jian Ju, M. S. Demokan, and Wei Jin, Strain and Temperature Characteristics of a Long-Period Grating Written in a Photonic Crystal Fiber and Its Application as a Temperature-Insensitive Strain Sensor, Journal of Lightwave Technology, 2008,Vol. 26, Issue 2, pp. 220-227
    [10] Jang, Hyun Soo; Park, Kwang No; Lee, Kyung Shik, Characterization of tunable photonic crystal fiber directional couplers, Applied Optics 2007, 46 (18): 3688-3693
    
    [11] Fotiadi, Andrei A; Brambilla, Gilberto; Ernst, Thomas and et al. TPA-induced long-period gratings in a photonic crystal fiber: inscription and temperature sensing properties, JOSA B, 2007, 24(7): 1475-1481.
    [12] Kuzyk, Mark C; Kuzyk, Mark G, Tunable optical fiber polarization elements based on long-period gratings inscribed in birefringent microstructured fibers, JOSAB, 2008,25(1): 103-110.
    [13] P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey, and B. J. Eggleton, Long period grating resonances in photonic bandgap fiber,Opt Express 2006,14,3007-3014.
    [14]Kakarantzas G,Birks T A,Russell P S J.structural long-period gratings in photonic crystal fibers[J].Optics Letters,2002,27(12):1013-1015
    [15]Yinian Zhu,Ping Shum,Hin-Joo Chond et al.Strong resonance and a highly compact long period grating in a large-mode- area photonic crystal fiber[J].Optics Express,2003,11(16):1900-1905
    [16]Humbert,Georges;Malki,Abdelrafik;Février,Sébastien and et al,Characterizations at high temperatures of long-period gratings written in germanium-free air silica microstructure fiber,Optics Letters,Vol.29 Issue 1,pp.38-40(2004)
    [17]Yinian Zhu,Ping Shum,Hui-Wen Bay and et al.Strain-insensitive and high-temperature long-period gratings inscribed in photonic crystal fiber,Optics Letters,2005,30(4):367-369.
    [18]Lim J H,Lee K S,Kim J C et al..Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure[J].Optics Letters,2004,29(4):331-333.
    [19]Albert J,Fokine M,Margulis W.Grating formation in pure silica-core fibers[J].Optics Letters,2002,27(10):809-811.
    [20]Groothoff N,Canning J,Buckley E et al..Bragg gratings in air silica structured fibers[J].Optics Letters,2003,28(4).233-235.
    [21]Katsumi Morishita,Yoshihiro Miyake.Fabrication and resonance wavelengths of long-period gratings written in a pure-silica crystal fiber by the glass structure change.J.Lightwave Technol.,2004,22:625-630.
    [22]Diez A,Birks T A,Reeves W H et al..Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves.Opt.Lett.,2000,26(20),1499-1501.
    [23]Rego G,Okhotnikov O,Dianov E et al..High-temperature stability of long-period fiber gratings produced using an electric arc.J.Lightwave Technol.,2001,19,1574-1579.
    [24]Zhao,Chun-Liu;Xiao,Limin;Ju,Jian et al,Strain and Temperature Characteristics of a Long-Period Grating Written in a Photonic Crystal Fiber and Its Application as a Temperature-Insensitive Strain Sensor,Journal of Lightwave Technology,2008 26(2):220-227.
    [25]Lim J H,Jang H S,Lee K S et al..Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings[J].Optics Letters,2004,29(4):346-348
    [26]Rindorf L,Jensen J B,Dufva M and et al,Photonic crystal fiber long-period gratings for biochemical sensing,Optics Express,2006,14(18):8224-8231.
    [27]Hou Shang-Lin,Ren Xiao-Min,Zhang Xia,Huang Yong-Qing.Investigation on characteristics of fiber Bragg gratings formed in photonic crystal fibers,Asia-Pacific Optical Communications(SPIE),2007,Wuhan.Proc.Of SPIE Vol.6781:67813W-1-67813W-8.
    [28]Hou Shanglin,Li Suoping,Wang Daobin,Lei Jingli,Full-vector improved effective index method for analysis of fiber Bragg gratings formed in photonic crystal fibers,2008 International Conference on Microwave and Millimeter Wave Technology Proceedings(ICMMT2008),Vol.2:822-824,Nanjing.IEEE Catalog Number:CFP08779-PRT,ISBN 978-1-4244-1879-4,Library of Congress Number:2007908622.
    [1]K S.Lee,and J Y Cho,Polarization-mode coupling in birefringent fiber gratings,J.Opt.Soc.Am.A,2002,19(8):1621-1631.
    [2]Joon Yong Cho,Kyung Shik Lee,A birefringence compensation method for mechanically induced long-period fiber gratings,Optics Communications,2002,213(4-6),281-284.
    [3]M D Nielsen,G Vienne and J R Folkenerg,Investigation of microdeformationinduced attenuation spectra in a photonic crystal fiber Optics Letter 2003,28(4):236-238.
    [4]Jong H Lim,Kyung S Lee and Byeong H Lee,Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure,Optics Letter,2004,29(4):331-333.
    [5]黄海宇 侯尚林 黄永清 任晓敏.基于可调PCF-LPG结构的压力传感器中国科技论文在线,2007年07月19日发表。
    [1]顾婉仪,李国瑞,光纤通信系统[M],北京:北京邮电大学出版社,1999.
    [2]邵钟浩,具有非均匀零色散波长光纤中的四波混频,物理学报,2001 50(1).
    [3]赵文玉,赵继军,纪越峰等,高速光通信系统中的色散问题及其补偿研究,电信科学,2002年第6期
    [4]Anders Bjarklev et al..Optimal design of single-cladded dispersioncompensating optical fibers,Optics Letters,Vol.19,Issue 7,pp.457
    [5]Akasaka Y et al..Novel S-band amplification and wavelength conversion technigue using dual nonlinear phenomena,1996,OFC,American.201
    [6]V.A.Semenov et al..Broadband dispersion-compensating fiber for high-bit-rate transmission network use,Applied Optics,1995,34(24):5331
    [7]龚岩栋等,负色散斜率的色散补偿光纤的研制[J].,光学学报,1998,18(3):330-333
    [8]Gruner-Nielsen,B.Edvold,Status and future promises for dispersion compensating fibers,Opt.Fiber Teclmol.2000,6:164-180
    [9]龚岩栎等,一种新型的基于LP01模的双模色散补偿光纤,中国激光,25,609-612(1998).
    [10]沈旷轶,宁提纲,基于光子晶体光纤的色散补偿和色散平坦技术,光子技术,第2期(总第12期)
    [11]Jinchae Kim,Un-Chul Paek,Dug Young Kim.Analysis of the dispersion properties of holey optical fibers using normalized dispersion[A]OFC2001[C].WDD86,2001.
    [12]Albert Ferrando,Enrique Silvestre,Pedro Andr′es.Designing the properties of dispersion-flattened photonic crystal fibers[J].Optics Express,2001,9(13):687 -697.
    [13]任国斌,娄淑琴,王智,简水生,等效折射率模型研究光子晶体光纤的色散特性,光学学报,第24卷第3期,2004年3月
    [14]Bjarklev A,Broeng J,Barkou Libori S E,et al.Photonic crystal fiber modelling and applications[A].OFC2001[C].TuC1,2001.
    [15]李曙光,刘晓东,侯蓝阳,光子晶体光纤的导波模式与色散特性,物理学报,2003,53(11):2811-2817.
    [16]李曙光,刘晓东,侯蓝田,一种晶体光纤基模色散特性的矢量法分析,物理学报,第53卷第6期,2004年6月
    [17]李曙光,刘晓东,侯蓝田,光子晶体光纤色散补偿特性的数值研究,物理 学报,第53卷第6期,2004年6月
    [18]Birks T A,Mogilevtsev D,Knight J C,et al,Dispersion compensation using single-material fibers[J].IEEE Photon.Technol.Lett.,1999,11(6):674-676
    [19]GEROME F,AUGUGSTE J L,BlONDY JM.Design of Dispersion compensating Fibers Based on a dual-concentric-core Photonic Crystal Fiber [J].OPTICS LETTERS,2004,29(23):2725-2727.
    [20]GEROME F,AUGUSTE J L,BLONDY J M.Very High Negative Chromatic Dispersion in a Dual Concentric Core Photonic Crystal Fiber[J].in Optical Fiber Communication Conference,2004,2:22-27.
    [21]NI Yi,ZHANG Lei,AN Liang,et al.Dual-Core Photonic Crystal Fiber for Dispersion Compension[J].IEEE Photon Technol Lett,2004,16(6):1516-1518.
    [22]杨广强,张霞,任晓敏等,利用光子晶体光纤实现10 Gb/s光传输系统的色散补偿,中国激光,第32卷,第9期,2005年9月
    [23]Saitoh K,Koshiba M.Chromatic dispersion control in photonic crystal fibers:application to ultra-flattened dispersion[J].Opt.Exp.,2003,11(8):843-852.
    [24]Koichi Iiyama,Zennosuke Yamashita,Saburo Takamiya.Design of dispersion flattened photonic crystal fiber with a large core and a concentric missing ring.
    [25]Kunimasa Saitoh and Masanori Koshiba.Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window[J].Opt.Exp.,2004,12(10):2027-2032.
    [26]Wu T L,Chao C H.A novel ultraflattened dispersion photonic crystal fiber[J].Photo.Technol.Lett.,2005,17(1):67-69.
    [27]Matsui T,Zhou J,Nakajima K,et al.Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss[J].J.Lightwave Technol.,2005,23(12):4178-4183.
    [28]D.Ouzounov,D.Homoelle,W.Zipfel et al..Dispersion measurements of microstructured fibers using femtosecond laser pulses[J].Opt.Comm.,2001,192(326):219-223
    [29]Agrawal G P,Nonlinear Fiber Optics,1995,(San Diego:Academic Press)Chap.1
    [30]M.Koshiba and K.Saitoh,Structural dependence of effective area and mode field diameter for holey fibers,Opt.Express 11,1746-1756(2003)
    [31]X Zhang,X M Ren,Y Z Xu,Broadband dispersion compensation using microstructure fibers,Chinese Optics Letters,2007.01
    [32]Zinan Wang,Xiaomin Ren,Xia Zhang,et al..A novel design for broadband dispersion compensation microstructure fiber,CHINESE OPTICS LETTERS Vol.4,No.11,2006.10.
    [33]Zinan Wang et al.Design of a microstructure fibre for slope-matched dispersion compensation.2007 J.Opt.A:Pure Appl.Opt.9 435-440
    [34]李春雷,盛秋琴,光子晶体光纤非线性系数与其结构参量及光波长的关系,光子学报,2006,35(5)。
    [35]ITU-T Recommendation G.652 2005 Characteristics of a Single-Mode Optical Fibre and Cable(Geneva:International Telecommunication Union)
    [36]武劲青,薛文瑞,周国生,方形渐变空气孔微结构光纤的色散特性分析,光学学报,2005,25(2):174-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700