AZ91D镁基体上冷喷涂Al及Al-Mg_(17)Al_(12)复合涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁及镁合金是目前已经得到应用的密度最小的金属结构材料,在航空航天、交通运输、电子通讯和国防军工等领域已有多年的应用。但是镁的化学性质非常活泼,不仅能和很多气体发生反应,而且和其它工程用金属材料相比具有较低的电极电位,同时使用时将首先被腐蚀。提高镁合金表面耐腐蚀性能的方法很多,其中使用涂层把镁合金和外部介质隔绝开来无疑是比较经济,也是比较容易实现的方法。
     考虑到镁合金的特殊性质,本文选用Al作为涂层的主要材料,有以下两个原因,首先,Al表面暴露在空气中能够形成致密的氧化物薄膜,可以有效阻止Al的进一步腐蚀,具有自修复功能;另外,在经常用到的金属材料中,Al和Mg的电极电位相差较小,它们之间一般不会形成严重的电偶腐蚀或者点蚀。在镁基体上制备Al涂层的方法很多,如电镀和化学镀、等离子喷涂、激光熔覆、热喷涂、气相沉积等等,但这些传统的制备方法都存在一些弊端,如耗能太高、沉积效率太低、或者制备过程存在严重污染等。同时值得注意的是Al化学性质比较活泼,采用高温热源(如热喷涂和激光熔覆等)容易导致Al粒子的氧化或者其内部晶粒的长大,从而恶化涂层的整体性能。在这种情况下,使用冷喷涂技术沉积Al涂层,制备的涂层不仅可以保留原材料粉末粒子的显微形貌,而且能够有效减少甚至避免由于高温而导致的各种缺陷。
     本文在AZ91D镁合金基体上采用冷喷涂技术沉积了纯Al涂层、Al复合涂层和Al梯度涂层,并且以此为研究对象考察了热处理对纯Al涂层/Mg基体界面扩散形成的金属间化合物的影响,以及强化相粉末粒子在原材料粉末中的含量对复合涂层性能的影响等等,重点探讨了涂层组织和性能之间的关系。本文综合运用了多种材料研究方法,包括光学金相分析、X射线衍射分析、ICP成分分析、扫描和透射电子显微分析、显微硬度分析、涂层孔隙率和结合强度分析等等,系统地开展了原材料粉末制备、喷涂过程使用参数、涂层后续热处理等对涂层力学性能和耐腐蚀性能的影响,旨在为提高镁合金表面耐蚀性提供一种新的思路和必要的实验依据。
     由于使用的纯Al粉末粒子的平均粒子直径较大(58.5μm),并且具有较宽的粒径分布。为了提高涂层的整体性能,根据得到涂层的厚度和孔隙率含量为依据,对涂层制备工艺中的主要参数进行了优化,表明在使用He作为工作气体和载气,同时使用耐高温塑料喷枪的情况下,工作气体的温度为300°C,压力为0.98MPa,喷枪出口到基体表面的距离为10mm,其相对移动速度为2mm/s时,通过1个道次的沉积,即可在镁基体上沉积得到约400μm的涂层,并且其孔隙率含量低于0.5vol.%。对涂层进行的后续热处理表明,由于镁基体与铝涂层之间的原子互扩散导致在界面附近生成了两种金属间化合物,使得涂层与基体的结合方式由物理的机械咬合转变为冶金结合。但是扩散生成的金属间化合物硬度很高,塑性很差,在剪切应力的作用下,很容易发生脆性断裂,反而恶化了涂层的结合强度。虽然得到的Al涂层比较致密,具有较好的耐腐蚀性能,但是涂层内部的结合强度较低。
     为了提高纯Al涂层的结合强度,在原材料纯Al粉末中加入了球形金属间化合物粉末Mg_(17)Al_(12),并使用不锈钢喷枪对混合粉末进行了沉积,得到了Al基复合涂层,同时研究了原材料粉末中不同含量(50vol.%和75vol.%)的Mg_(17)Al_(12)对涂层性能的影响。结果表明,强化相粉末的加入不仅能够显著提高金属Al粉末的沉积效率,有效改善涂层与基体的结合强度,而且不会恶化涂层的耐腐蚀能力。涂层比较致密,同时在基体上没有发现Mg_(17)Al_(12)粒子,结合其它研究结果,可以看出球形强化相粒子的作用为去除基体和粒子表面的氧化物和污染物、提高基体表面的粗糙度以增大涂层与基体的接触面积、改善金属Al粉末的沉积效率、夯实已经发生粘接的粉末粒子以及清洗不锈钢喷枪内壁。
     用冷喷涂逐层沉积的方法在镁基体表面沉积了两种Al-Mg_(17)Al_(12)梯度涂层,并观察了涂层的显微形貌,结果显示涂层和基体在界面处结合较好,没有明显的缺陷;成分不同的层与层之间的界面也无法分辨,表明梯度涂层整体具有较好的结合强度,没有出现明显的分层现象。其主要原因是Mg_(17)Al_(12)粒子在涂层中的含量很低。涂层的显微组织也从侧面反映出使用冷喷涂技术逐层沉积制备梯度材料的可行性。
Magnesium (Mg) and its alloys are considered as the lowest densitystructural metallic materials in the world. They have been used in aerospace,transportation, electronic communication devices, home appliances andmilitary components for many years. However, as everyone knows, Mg is akind of material with very active chemical properties. It can react with manykinds of gases, elements, solutions and compounds, even at room temperature.Compared to other industrial metallic materials, Mg alloys usually have arelative lower electrode potential which means they will be preferentiallyattacked in the corrosion medium and acted as a sacrificial anode. A fewmethods have been reported could be employed to improve the surfaceproperties for Mg alloys, but using a coating to protect Mg and its alloys isundoubtedly a simple and economic solution.
     Considering the poor corrosion resistance of Mg, aluminum (Al) wasused as the principle component in the coating. Two reasons can be used toillustrate why Al was selected in this study. The first is that when exposed inthe air, Al can react with oxygen and generate a dense oxide film which willprevent the further oxidation, and then has a self-repair function. The secondis that no remarkable electrode potential difference was found between Al andMg, therefore, galvanic corrosion or pitting will not supposed to take placebetween these two metals. Various of techniques, such as electroplating,chemical plating, plasma spraying, laser cladding, thermal spray and vapordeposition, have been used for depositing Al on Mg for improving the surface properties. But these traditional coating fabrication methods usually havesome disadvantages, such as high power consumption, low depositionefficiency or environment unfriendliness. It is worthy to note that Al powderis also very active, so the deposition process (like thermal spray or lasercladding) which has high temperature heat resource should be avoid, becausethey will lead to the formation of oxide on the Al surface or the grain growth,which will undermine the comprehensive performances of the coating. Underthese circumstances, cold spray technique was employed to deposite coatingsin this study. The coatings produced using cold spray not only can retain theinitial microstructure of the feedstock, but also decrease or eliminate thedefects which attributed to the high processing temperature.
     Pure Al coatings, Al composite coatings and Al gradient coatings weredeposited on AZ91D magnesium substrate using cold spray. The effects of thepost heat treatment on the properties of the diffusion-induced intermetallicswhich formed at the coating/substrate interface were investigated. Theinfluences of the volume fraction of the reinforcement particles in thefeedstock on the performances of the composite coatings and the relationshipbetween the coating microstructure and properties were also discussed.Several modern material testing methods were employed in this study,including optical microscopy, X-ray diffraction, ICP chemical compositionanalysis, scanning electro microscopy, transmission electro microscopy,microhardness test, porosity content and bonding strength test of the coating,et. al. The effects of the feedstock preparation, spraying parameters and postheat treatments on the mechanical performances and anticorrosionperformances of the coatings were systematically investigated and discussed,for the purpose of providing a new solution and some useful experimentalresults for improving the anticorrosion properties of Mg surface.
     The pure Al powders used as feedstock have an average particle size of58.5μm and present a broad size distribution with a diameter ranging from6to170μm. For improving the comprehensive performances of the as-sprayedcoatings, the main parameters in the cold spray process were optimized according to the thickness and porosity content of the corresponding coatings.The results show that pure Al coatings can be deposited on Mg substratessuccessfully by a single pass with a thickness of approximately400μm and aporosity level less than0.5vol.%. Noted that helium was used as bothpropellent and powder carrier gas, thermoplastic nozzle was used as sprayinggun with a gas temperature and pressure of300°C and0.98MPa, respectively.The standoff distance was kept at10mm and the relative traverse velocitybetween the nozzle and the substrate was kept at2mm/s. Heat treated thecoated samples will result in the formation of two intermetallics near theinterface, and then the coating bonding mechanism will turn intometallurgical bonding, instead of physical mechanical bonding. Thediffusion-induced intermetallics have similar characteristics to ceramicswhich present a higher hardness and relative lower plasticity. They will beeasily cracked under shear load and then undermine the coating bondingstrength. The as-sprayed Al coatings which produced using these optimizedparameters have similar anticorrosion properties to the bulk Al, but they havean inferior cohesion strength.
     In order to improve the bonding strength of the as-sprayed Al coatings,spherical Mg_(17)Al_(12)powders were used as reinforcement particles in the Alfeedstock. Al-Mg_(17)Al_(12)composite coatings were attained using a stainlesssteel nozzle and a powder mixture. The effects of the powder mixturecompositions on the coating performances were investigated. The resultsshow that with an addition of Mg_(17)Al_(12)particles into the original Al powders,the deposition efficiency of the Al particles was significantly increased andthe adhesion strength between the substrate and the coating was alsoimproved, without any remarkable degradation of the anticorrosion properties.The composite coatings are very dense and no reinforcement particles werefound at the interface. Compared to the results proposed by other researchers,it can be concluded that the main functions of the spherical reinforcementparticles are to remove the surface oxidations and contaminations of thesubstrate and particle, increase the substrate roughness and then increase the contact area, improve the deposition efficiency of the Al powders, tamp thepre-deposited coatings and clean the inner surface of the stainless steel nozzle.
     Two Al-Mg_(17)Al_(12)gradient coatings were deposited layer-by-layer on Mgsubstrates using cold spray. By carefully examination of the coatingmicrostructure, it was found that the gradient coatings have a good bondingwith the substrate and no defects were found at the interface. Moreover, theinterface between different layers was undetectable and no delaminationswere took place which was attributed to the lower Mg_(17)Al_(12)content in thecoating as well as Al was the dominant ingredient. It implied that the gradientcoatings have an improved bonding strength. All the results demonstrated thatcold spray can be used as an alternative method for fabricating gradientcoatings.
引文
[1]陈振华,严红革,陈吉华.镁合金.北京:化学工业出版社.2004:1-3.
    [2] Schumann S., Friedrich H. Current and Future Use of Magnesium in the Automobile Industry.Materials Science Forum,2003,419-422:51-56.
    [3]张金山,许春香,韩富银.镁工业是能实现可持续发展的优势产业.铸造设备研究.2002,(3):46-48.
    [4]陈彬.高强度Mg-Y-Zn镁合金的研究[博士论文].上海:上海交通大学.2007.
    [5] Kulekci M.K. Magnesium and Its Alloys Applications in Automotive Industry. The InternationalJournal of Advanced Manufacturing Technology.2008,39(9-10):851-865.
    [6]波尔特诺伊,列别杰夫.镁合金手册.北京:冶金工业出版社.1959.
    [7]翟春泉,曾小勤,丁文江,王渠东,吕宜振,徐小平.镁合金的开发与应用.机械工程材料.2001,25(1):6-10.
    [8]王渠东,丁文江.轿车用阻燃镁合金研制.材料导报,2000,14:53-56.
    [9] Brown R. Magnesium Automotive Meeting. Light Metal Age.1992,50(5,6):18-20.
    [10] Magers D. Global Review of Magnesium Parts in Automobiles. Light Metal Age.1997,55(7,8):60-62.
    [11] Buch F.V., Schumann S., Aghion E. Development of low-cost, temperature and creep-resistantmagnesium die-casting alloy,in: Kainer K.U.(ED), Magnesium alloys and their applications,WILEY-VCH Verlagmbh, Wernheim,2000:23-28.
    [12]曹荣昌,柯伟,徐永波,韩恩厚,朱自勇. Mg合金的最新进展及应用前景.金属学报.2001,37(7):673-685.
    [13]张佩武,夏伟,刘英,张卫文,陈维平.变形镁合金成形工艺研究及其应用.材料导报.2005,19(7):82-85.
    [14]王渠东,丁文江.镁合金及其成形技术的国内外动态与发展.世界科技研究与发展.2004,26(3):39-46.
    [15] Froes F.H., Eliezer D., Aghion E. The Science Technology and Applications of Magnesium. JOMJournal of the Minerals, Metals and Materials Society.1998,50(9):30-34.
    [16]黎文献.镁及镁合金.长沙:中南大学出版社.2005:1-6.
    [17]张文毓.耐蚀镁合金研究与应用.轻金属.2007,(8):40-43.
    [18] Friedtich H., Schumann S. Research for a “New Age of Magnesium” in the Automotive Industry.Journal of Materials Processing Technology.2001,117(3):276-281.
    [19] Schumann S. The Paths and Strategies for Increased Magnesium Application in Vehicles. MaterialsScience Forum.2005,488-489:1-8.
    [20]赖华清,徐翔.镁合金在汽车中的应用.天津汽车.2003,(4):20-22.
    [21]胡斌,彭立明,曾小勤,卢晨,丁文江.镁合金在汽车领域中的应用(一)-镁合金在汽车领域的应用背景和发展现状.铸造工程.2007,(4):34-39.
    [22]钟皓,刘培英,周铁涛.镁及镁合金在航空航天中的应用前景.航空工程与维修.2002,(4):41-42.
    [23]许小中,刘强,程军.镁合金在工业及国防中的应用.华北工学院学报.2002,(3):190-192.
    [24]王渠东,吕宜振,曾小勤,丁文江,卢晨.镁合金在电子器材壳体中的应用.材料导报.2000,(6):22-24.
    [25]刘长瑞,王伯建,胡裕邦.镁合金材料在电子行业的开发应用前景.铝镁通讯.2010,(2):53-55.
    [26]徐贵东,沈丽如,李炯.镁及镁合金的腐蚀与涂层保护.核动力工程.2005,28(2):68-72.
    [27]郭冠伟,苏铁健,谭成文,杨素媛.镁合金腐蚀与防护研究现状及进展.材料表面处理技术.2007,(9):69-72.
    [28]刘志远,邵忠财.镁合金表面处理的研究现状与展望.电镀与涂饰.2007,26(11):27-30.
    [29]张玉海.镁合金表面处理技术的研究进展.材料保护.2008,41(3):55-57.
    [30] Perrault G.G. Potentiostatic Study of the Magnesium Electrode in Aqueous Solution. Journal ofElectroanalytical Chemistry and Interfacial Electrochemistry.1970,27(1):47-58.
    [31] Gulbrandsen E., Tafto J., Olsen A. The Passive Behaviour of Mg in Alkaline Fluoride Solutions.Electrochemical and Electron Microscopical Investigations. Corrosion Science.1993,34(9):1423-1440.
    [32] Song G., Atrens A., Stjohn D., Nairn J., Li Y. The Electrochemical Corrosion of Pure Magnesiumin1N NaCl. Corrosion Science.1997,39(5):855-875.
    [33]朱日彰.金属腐蚀学.北京:冶金工业出版社.1993:14-25.
    [34]孙建刚,刘渝萍,陈昌国.镁合金表面化学转化处理的研究进展.材料导报.2007,21(Z2):324-327.
    [35]王峰,王前进,赵宝银.镁合金电镀铝前处理工艺的探讨.有色金属加工.2008,37(1):54-55.
    [36]赵凯华,孙荣禄,雷贻文.镁合金表面激光熔覆研究现状.金属热处理.2008,33(4):14-18.
    [37]陈菊芳,张永康,许仁军.镁合金激光表面处理的研究进展.激光技术.2008,32(3):293-296.
    [38]郭艳,王桂香,龚凡,董国君.镁合金阳极氧化.电镀与环保.2007,27(6):1-4.
    [39]张津,麻彦龙,黄福祥,肖锋.镁合金表面铝涂层研究新进展.表面技术.2007,36(5):64-67.
    [40]刘胜新,陈永,刘晓芳,汪喜和,关绍康. AZ31镁合金环保型镀锌工艺的研究.材料保护.2008,41(2):32-34.
    [41] Aredsian M. ASM specialty handbook Magnesium and Magnesium alloy. ASM press.1999:132-145.
    [42] Brunelli K., Dabala M., Calliari I., Magrini M. Effect of HCl Pre-Treatment on CorrosionResistance of Cerium-Based Conversion Coatings on Magnesium and Magnesium Alloys. CorrosionScience.2005,47(4):989-1000.
    [43]郭洪飞,安茂忠,刘荣娟.镁及其合金表面化学转化处理技术.轻合金加工技术.2003,31(8):35-38.
    [44]蔡启舟,王立世,魏伯康.镁合金防蚀处理的研究现状及动向.特种铸造及有色合金.2003,(3):33-36.
    [45]孙雅茹,吴狄,刘正.铸镁合金AZ91表面化学氧化膜的研究.表面技术.2004,33(3):43-44.
    [46]卢锦堂,宋进兵,陈锦虹,许乔瑜,孔纲.无铬钝化的研究进展.材料保护.1999,32(3):24-26.
    [47]周婉秋,单大勇,曾荣昌,韩恩厚,柯伟.镁合金的腐蚀行为与表面防护方法.材料保护.2002,35(7):1-3.
    [48]廖宁,肖泽辉.激光熔覆技术在镁合金表面处理中的应用.中国铸造装备与技术.2007,(4):2-4.
    [49]廖宁,肖泽辉.镁合金激光表面处理技术的应用.表面技术.2008,37(3):68-70.
    [50] Ignat S., Sallamand P., Grevey D., Lambertin M. Magnesium Alloys Laser (Nd:YAG) Cladding andAlloying With Side Injection of Aluminum Powder. Applied Surface Science.2004,225(1-4):124-134.
    [51] Dube D., Fiset M., Couture A., Nakatsugawa I. Characterization and Performance of Laser MeltedAZ91D and AM60. Materials Science and Engineering A.2001,299(1-2):38-45.
    [52] Galun R., Wdisheit A. Mordike Processing of the Third International Magnesium Conference.London: Institute of Mater,1997.
    [53] Kutschera U., Galun R. Wear Behaviour of Laser Surface Treated Magnesium Alloys. The Minerals,Metals and Materials Society: Verlag Wiley,2000,330-335.
    [54] Normand B., Fervel V., Coddet C., Nikitine V. Tribological Properties of Plasma SprayedAluminum Titanium Coatings, Role and Control of the Microstructure. Surface and CoatingsTechnology.2000,123(2-3):278-287.
    [55] Guo H.F., An M.Z., Xu S., Huo H.B. Formation of Oxygen Bubbles and Its Influence on CurrentEfficiency in Micro-Arc Oxidation Process of AZ91D Magnesium Alloy. Thin Solid Films.2005,485(1-2):53-58.
    [56]邓春明,刘敏,任建平,邓畅光. AZ31镁基高速火焰喷涂WC涂层的研究.轻金属.2008,(2):48-52.
    [57]张津,孙智富. AZ91D镁合金表面热喷涂铝涂层研究.中国机械工程.2002,13(23):2057-2058.
    [58]韦春贝,张春霞,田修波,杨士勤.镁合金表面耐蚀改性技术.轻合金加工技术.2004,32(6):6-11.
    [59]余刚,刘跃龙,李瑛,叶立元,郭小华,赵亮. Mg合金的腐蚀与防护.中国有色金属学报.2002,12(6):1087-1098.
    [60]王维青,潘复生,左汝林.镁合金腐蚀及防护研究新进展.兵器材料科学与工程.2006,29(2):73-77.
    [61] liu J.R., Guo Y.N., Huang W.D. Study on the Corrosion Resistance of Phytic Acid ConversionCoating for Magnesium Alloys. Surface and Coatings Technology.2006,201(3-4):1536-1541.
    [62] Shi Z.M., Song G.L., Atrens A. The Corrosion Performance of Anodized Magnesium Alloys.Corrosion Science.2006,48(11):3531-3546.
    [63] Umebara H., Takaya M., Terauch S. Permanganate Conversion Coating for Magnesium Alloys.Material Science Forum.2003,(419-422):883-888.
    [64] Umehara H., Takaya M., Kojima Y. An Investigation of the Structure and Corrosion Resistance of aPermanganate Conversion Coating on AZ91D Magnesium alloys. Materials Transactions-JIM.2001,42(8):1691-1699.
    [65] Yan J.C., Xu Z.W., Wu G.H., Yang S.Q. Interface Structure and Mechanical Performance of TLPBonded Joints of A12O3p/6061A1Composites Using Cu/Ni Composite Interlayers. ScriptaMaterialia.2004,51(2):147-150.
    [66]雷玉成,袁为进,朱飞,包旭东.等离子弧焊接SiCp/Al基复合材料焊缝“原位”合金化分析.焊接学报.2005,26(12):13-16.
    [67] Ellis M.B.D. Joining of Aluminum Based Metal Matrix Composites. International MaterialReviews.1996,41(2):41-58.
    [68] Lee H.Y., Jung S.H., Lee S.Y., You Y.H., Ko K.H. Correlation Between Al2O3Particles andInterface of Al-Al2O3Coatings by Cold Spray. Applied Surface Science.2005,252(5):1891-1898.
    [69] Grujicic M., Zhao C.L., DeRosset W.S., Helfritch D. Adiabatic Shear Instability Based Mechanismfor Particles/Substrate Bonding in the Cold Gas Dynamic Spray Process. Materials and Design.2004,25(8):681-688.
    [70] Assadi H., Gartner F., Stoltenhoff T., Kreye H. Bonding Mechanism in Cold Gas Spraying. ActaMaterialia.2003,51(15):4379-4394.
    [71] Grujicic M., Saylor J.R., Beasley D.E., DeRosset W.S., Helfritch D. Computational Analysis of theInterfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold Gas DynamicSpray Process. Applied Surface Science.2003,219(3-4):211-227.
    [72]吴杰,金花子,吴敏杰,李铁藩,熊天英.冷气动力喷涂技术研究进展.材料导报.2003,17(1):59-61.
    [73] Dykhuizen R.C., Smith M.F. Gas Dynamic Principles of Cold Spray. Journal of Thermal SprayTechnology.1998,7(2):205-212.
    [74] Grujicic M., Zhao C.L., Tong C., DeRosset W.S., Helfritch D. Analysis of the Impact Velocity ofPowder Particles in the Cold Gas Dynamic Spray Process. Materials Science and Engineering A.2004,368(1-2):222-230.
    [75] Morgan R., Fox P., Pattison J., Sutcliffe C., O’Neill W. Analysis of Cold Gas Dynamically SprayedAluminium Deposits. Materials Letters.2004,58(7-8):1317-1320.
    [76] Barradas S., Molins R., Jeandin M., Arrigoni M., Boustie M., Bolis C., Berthe L., Ducos M.Application of Laser Shock Adhesion Testing to the Study of the Interlamellar Strength andCoating-Substrate Adhesion in Cold-Sprayed Copper Coating of Aluminum. Surface and CoatingsTechnology.2005,197(1):18-27.
    [77]熊天英.国内外冷喷涂领域的最新进展.机械工人.2003,(9):10-12.
    [78] Yang G.J., Li C.J., Han F., Li W.Y., Ohmori A. Low Temperature Deposition and Characterizationof TiO2Photocatalytic Film Through Cold Spray. Applied Surface Science.2008,254(13):3979-3982.
    [79] Van Steenkist T.H., Smith J.R., Teets R.E. Aluminum Coatings Via Kinetic Spray With RelativelyLarge Powder Particles. Surface and Coatings Technology.2002,154(2-3):237-252.
    [80] Raletz F., Vardelle M., Ezo'o G. Critical Particle Velocity Under Cold Spray Conditions. Surfaceand Coatings Technology.2006,201(5):1942-1947.
    [81] Schmidt T., Assadi H., Gartner F., Richter H., Stoltenhoff T., Kreye H., Klassen T. From ParticleAcceleration to Impact and Bonding in Cold Spraying. Journal of Thermal Spray Technology.2009,18(5-6):794-808.
    [82]卜恒勇,卢晨.冷喷涂临界速度及其影响因素.材料保护.2011,44(4):46-49.
    [83] Li C.J., Li W.Y., Wang Y.Y., Yang G.J., Fukanuma H. A Theoretical Model for Prediction ofDeposition Efficiency in Cold Spraying. Thin Solid Films.2005,489(1-2):79-85.
    [84] Ajdelsztajn L., Jodoin B., Kim G.E., Schoenung J.M. Cold Spray Deposition of NanocrystallineAluminum Alloys. Metallurgical And Materials Transactions A.2005,36A(3):657-666.
    [85]王晓放,李芳,赵爱娃,吴杰.喷嘴出口截面形状对冷喷涂涂层性能影响的数值分析.机械工程材料.2006,30(12):84-86.
    [86]李隆键,崔文智,陈清华,毕金成.微/纳米粒子在缩放喷管中的加速特性.计算力学学报.2005,22(4):453-456.
    [87] Fukanuma H., Ohno N., Suna B., Huang R.Z. In-Flight Particle Velocity Measurements WithDPV-2000in Cold Spray. Surface and Coatings Technology.2006,201(5):1935-1941.
    [88]赵军,艾兴,张建华.功能梯度材料的发展及展望.材料导报.1997,11(4):57-60.
    [89]郑子樵,梁叔全.梯度功能材料的研究与展望.功能材料.1992,10(1):1-5,16.
    [90]新野正之,平井敏雄,渡边龙三.倾斜机能材料宇宙机用超耐热材料.日本复合材料学会志.1987,13(6):257-264.
    [91] Erdogan F. Fracture Mechanics of Functionally Graded Materials. Composites Engineering.1995,5(7):753-770.
    [92] Rajan T.P.D., Pillai R.M., Pai B.C. Functionally Graded Al-Al3Ni in Situ Intermetallic Composites:Fabrication and Microstructural Characterization. Journal of Alloys and Compounds.2008,453(1-2):L4-L7.
    [93] Inoue A., Yamagata H., Masumoto T. Production and Properties of Functionally Gradient FilmsVarying From Amorphous Al (Ti, N) to Hexagonal Al (Ti) N phase. Material Transaction-JIM.1993,34(6):548-555.
    [94]马壮,王富耻,吕广庶,王全胜.等离子喷涂功能梯度涂层抗热震性研究.材料工程.2003,(Z1):181-183,186.
    [95]王鹏飞,沈卫平,张强,张珂,蒋志明,陈鹏万.自蔓延预热爆炸固结Mo/Cu功能梯度材料的研究.稀有金属材料与工程.2007,36(4):652-655.
    [96]张国兵,郭全贵,刘朗,史景利,翟更太,宋进仁. B4C/C功能梯度材料制备及其性能研究.材料工程.2007,(12):58-62.
    [97]曹文斌,武安华,李江涛,葛昌纯. SiC/C功能梯度材料的制备.北京科技大学学报.2001,23(1):32-34.
    [98]张国兵,郭全贵,赵娟,刘朗,史景利,翟更太.热压烧结SiC/C功能梯度材料微观结构及热震性能研究.材料科学与工程学报.2007,25(1):9-13.
    [99]虞青俊,李玉龙,邓琼,汤忠斌,徐维. SiCP/Al功能梯度装甲板抗侵彻性能的试验与数值模拟.复合材料学报.2007,24(5):6-12.
    [100] Chen G., Feng Z., Liang Y. Formation Mechanism of Laser-Clad Gradient Thermal BarrierCoatings. Transaction of the Nonferrous Metal Society of China.2001,10(1):92-93.
    [101] Abboud J.H., West D.R.F., Rawlings R.D. Functionally Gradient Titanium-Aluminide CompositesProduced by Laser Cladding. Journal of Material Science.1994,29(13):3393-3398.
    [102]李健,陈体军,郝远,袁承人.离心铸造法制备Al3Ti/Al原位自生功能梯度复合材料.热加工工艺.2007,36(5):31-34.
    [103]赵志江,孙旭东,修稚萌,潘新,李晓东,霍地.离心成型法制备Al2O3/Ni功能梯度材料及性能表征.中国腐蚀与防护学报.2007,27(6):363-366.
    [104]宋长江,许振明,刘向阳,梁高飞,李建国.电磁分离技术制备过共晶Al-Si合金自生功能梯度材料.上海交通大学学报.2005,39(7):1089-1093.
    [105] Okano K., Takagi Y. Application of SiC-Si Functionally Gradient Material to ThermoelectricEnergy Conversion Device. Electrical Engineering in Japan.1996,117(6):9-17.
    [106]庞建超,高福宝,曹晓明.功能梯度材料的发展与制备方法研究.金属制品.2005,31(4):4-9.
    [107]周满元.功能梯度材料快速成型中的数据表达与处理研究[博士论文].上海:上海交通大学.2004.
    [108] Jodoin B., Ajdelsztajn L., Sansoucy E., Zuniga A., Richer P., Lavernia E.J. Effect of Particle Size,Morphology, and Hardness on Cold Gas Dynamic Sprayed Aluminum Alloy Coatings. Surface andCoatings Technology.2006,201(6):3422-3429.
    [109] Yandouzi M., Richer P., Jodoin B. SiC Particulate Reinforced Al-12Si Alloy Composite CoatingsProduced by the Pulsed Gas Dynamic Spray Process: Microstructure and Properties. Surface andCoatings Technology.2009,203(20-21):3260-3270.
    [110] Lee H., Shin H., Lee S., Ko K. Effect of Gas Pressure on Al Coatings by Ccold Gas DynamicSpray. Materials Letters.2008,62(10-11):1579-1581.
    [111] Richer P., Jodoin B., Ajdelsztajn L., Lavernia E.J. Substrate Roughness and Thickness Effects onCold Spray Nanocrystalline Al-Mg Coatings. Journal of Thermal Spray Technology.2006,15(2):246-254.
    [112] Van Steenkiste T.H., Smith J.R., Teetse R.E. Aluminum Coatings Via Kinetic Spray with ElativelyLarge Powder Particles. Surface and Coatings Technology.2002,154(2-3):237-252.
    [113] Li W.Y., Zhang C., Guo X.P., Zhang G., Liao H.L, Coddet C. Deposition Characteristics of Al–12Si Alloy Coating Fabricated by Cold Spraying with Relatively Large Powder Particles. AppliedSurface Science.2007,253(17):7124-7130.
    [114] Legoux J.G., Irissou E., Moreau C. Effect of Substrate Temperature on the Formation Mechanismof Cold-Sprayed Aluminum, Zinc and Tin Coatings. Journal of Thermal Spray Technology.2007,16(5-6):619-626.
    [115] Choi W.B., Li L., Luzin V., Neiser R., Herold T.G., Prask H.J., Sampath S., Gouldstone A.Integrated Characterization of Cold Sprayed Aluminum Coatings. Acta Materialia.2007,55(3):857-866.
    [116] Hall A.C., Cook D.J., Neiser R.A., Roemer T.J., Hirschfeld D.A. The Effect of a SimpleAnnealing Heat Treatment on the Mechanical Properties of Cold-Sprayed Aluminum. Journal ofThermal Spray Technology.2006,15(2):233-238.
    [117] Champagne V.K. The Repair of Magnesium Rotorcraft Components by Cold Spray. Journal ofFailure Analysis and Prevention.2008,8(2):164-175.
    [118] Ogawa K., Ito K., Ichimura K., IchikawaY., Ohno S., Onda N. Characterization of Low-PressureCold-Sprayed Aluminum Coatings. Journal of Thermal Spray Technology.2008,17(5-6):728-735.
    [119] Balani K., Laha T., Agarwal A., Karthikeyan J., Munroe N. Effect of Carrier Gases onMicrostructural and Electrochemical Behavior of Cold-Sprayed1100Aluminum Coating. Surfaceand Coatings Technology.2005,195(2-3):272-279.
    [120] Ajdelsztajn L., Zuniga A., Jodoin B., Lavernia E.J. Cold Gas Dynamic Spraying of a HighTemperature Al Alloy. Surface and Coatings Technology.2006,201(6):2109-2116.
    [121] Spencer K., Zhang M.X. Heat Treatment of Cold Spray Coatings to Form Protective IntermetallicLayers. Scripta Materialia.2009,61(1):44-47.
    [122] Deforce B., Eden T.J., Pickering H.W. Cold-Sprayed Aluminum Coatings for Magnesium AircraftComponents. Materials Performance.2009,48(2):40-44.
    [123] Sansoucy E., Kim G.E., Moran A.L., Jodoin B. Mechanical Characteristics of Al-Co-Ce CoatingsProduced by the Cold Spray Process. Journal of Thermal Spray Technology.2007,16(5-6):651-660.
    [124] Wang H.T., Li C.J., Yang G.J., Li C.X. Cold Spraying of Fe/Al Powder Mixture: CoatingCharacteristics and Influence of Heat Treatment on the Phase Structure. Applied Surface Science.2008,255(5):2538-2544.
    [125] Li W.Y., Liao H.L., Douchy G., Coddet C. Optimal Design of a Cold Spray Nozzle by NumericalAnalysis of Particle Velocity and Experimental Validation with316L Stainless Steel Powder.Materials and Design.2007,28(7):2129-2137.
    [126] Novoselova T., Celotto S., Morgan R., Fox P., O’Neill W. Formation of TiAl Intermetallics byHeat Treatment of Cold-Sprayed Precursor Deposits. Journal of Alloys and Compounds.2007,436(1-2):69-77.
    [127] Novoselova T., Fox P., Morgan R., O’Neill W. Experimental Study of Titanium/AluminumDeposits Produced by Cold Gas Dynamic Spray. Surface and Coatings Technology.2006,200(8):2775-2783.
    [128] Lee H.Y., Jung S.H., Lee S.Y., Ko K.H. Fabrication of Cold Sprayed Al-Intermetallic CompoundsCoatings by Post Annealing. Materials Science and Engineering A.2006,433(1-2):139-143.
    [129] Ning X.J., Jang J.H., Kim H.J., Li C.J., Lee C. Cold Spraying of Al-Sn Binary Alloy: CoatingCharacteristics and Particle Bonding Features. Surface and Coatings Technology.2008,202(9):1681-1687.
    [130] Lee H.Y., Jung S.H., Lee S.Y., Ko K.H. Alloying of Cold-Sprayed Al-Ni Composite Coatings byPost-Annealing. Applied Surface Science.2007,253(7):3496-3502.
    [131] Lee H., Lee S., Ko K. Annealing Effects on the Intermetallic Compound Formation of ColdSprayed Ni, Al Coatings. Journal of Materials Processing Technology.2009,209(2):937-943.
    [132] Van Steenkiste T.H., Elmoursi A., Gorkiewicz D., Gillispie B. Fracture Study of AluminumComposite Coatings Produced by the Kinetic Spray Method. Surface and Coatings Technology.2005,194(1):103-110.
    [133] Spencer K., Fabijanic D.M., Zhang M.X. The Use of Al-Al2O3Cold Spray Coatings to Improvethe Surface Properties of Magnesium Alloys. Surface and Coatings Technology.2009,204(3):336-344.
    [134] Sova A., Papyrin A., Smurov I. Influence of Ceramic Powder Size on Process of Cermet CoatingFormation by Cold Spray. Journal of Thermal Spray Technology.2009,18(4):633-641.
    [135] Irissou E., Legoux J.G., Arsenault B., Moreau C. Investigation of Al-Al2O3Cold Spray CoatingFormation and Properties. Journal of Thermal Spray Technology.2007,16(5-6):661-668.
    [136] Tao Y., Xiong T., Sun C., Jin H., Du H., Li T. Effect of α-Al2O3on the Properties of Cold SprayAl/α-Al2O3Composite Coatings on AZ91D Magnesium Alloy. Applied Surface Science.2009,256(1):261-266.
    [137] Wang Q., Spencer K., Birbilis N., Zhang M.X. The Influence of Ceramic Particles on BondStrength of Cold Spray Composite Coatings on AZ91Alloy Substrate. Surface and CoatingsTechnology.2010,205(1):50-56.
    [138] Bakshi S.R., Singh V., Balani K., Mccartne Y.G., Seal S., Agarwal A. Carbon NanotubeReinforced Aluminum Composite Coating Via Cold Spraying. Surface and Coatings Technology.2008,202(21):5162-5169.
    [139] Sansoucy E., Marcoux P., Ajdelsztajn L., Jodoin B. Properties of SiC-Reinforced Aluminum AlloyCoatings Produced by the Cold Spray Deposition Process. Surface and Coatings Technology.2008,202(16):3988-3996.
    [140] Gray J.E., Luan B. Protective Coatings on Magnesium and Its Alloys-A Critical Review. Journalof Alloys and Compounds.2002,336(1-2):88-113.
    [1] Cadney S., Brochu M., Richer P., Jodoin B. Cold Gas Dynamic Spraying as a Method forFreeforming and Joining Materials. Surface and coatings technology.2008,202(12):2801-2806.
    [2] Ajdelsztajn L., Zuniga A., Jodoin B., Lavernia E.J. Cold Gas Dynamic Spraying of a HighTemperature Al Alloy. Surface and Coatings Technology.2006,201(6):2109-2116.
    [3] Sansoucy E. Development of Aluminum-Based Coatings Produced by Cold Gas Dynamic Spraying
    [Dissertation]. Ottawa: University of Ottawa.2008.
    [4] Gartner F., Stoltenhoff T., Schmidt T., Kreye H. The Cold Spray Process and Its Potential forIndustrial Applications. Journal of Thermal Spray Technology.2006,15(2):223-232.
    [5] Dykhuizen R.C, Smith M.F. Gas Dynamic Principles of Cold Spray. Journal of Thermal SprayTechnology.1998,7(2):205-212.
    [6] Jodoin B., Raletz F., Vardelle M. Cold Spray Modeling and Validation Using an Optical DiagnosticMethod. Surface and Coatings Technology.2006,200(14-15):4424-4432.
    [7] Assadi H., Gartner F., Stoltenhoff T., Kreye H. Bonding Mechanism in Cold Gas Spraying. ActaMaterialia.2003,51(15):4379-4394.
    [8] Ogawa K., Ito K., Ichimura K., Ichikawa Y., Ohno S., Onda N. Characterization of Low-PressureCold-Sprayed Aluminum Coatings. Journal of Thermal Spray Technology.2008,17(5-6):728-735.
    [9] Ajdelsztajn L., Jodoin B., Kim G.E., Schoenung J.M. Cold Spray Deposition of NanocrystallineAluminum Alloys. Metallurgical And Materials Transactions A.2005,36A(3):657-666.
    [10] Klinkov S.V., Kosarev V.F., Sova A.A., Smurov I. Deposition of Multicomponent Coatings by ColdSpray. Surface and Coatings Technology.2008,202(24):5858-5862.
    [11] Sova A., Papyrin A., Smurov I. Influence of Ceramic Powder Size on Process of Cermet CoatingFormation by Cold Spray. Journal of Thermal Spray Technology.2009,18(4):633-641.
    [12] Champagne V.K. The Repair of Magnesium Rotorcraft Components by Cold Spray. Journal ofFailure Analysis and Prevention.2008,8(2):164-175.
    [13] Balani K., Laha T., Agarwal A., Karthikeyan J., Munroe N. Effect of Carrier Gases onMicrostructural and Electrochemical Behavior of Cold-Sprayed1100Aluminum Coating. Surfaceand Coatings Technology.2005,195(2-3):272-279.
    [14] Papyrin A.N. Cold Spray Technology. Elsevier Science,2006.
    [15]刘永辉.电化学测试技术.北京:北京航空学院,1981.
    [16]常建卫. Mg-Nd-Zn-Zr稀土镁合金腐蚀行为的研究[博士论文].上海:上海交通大学,2007.
    [17] Hysitron TI950TriboIndenter manual guide. www.hysitron.com.
    [18] EN15340, European Standard Method-Determination of Shear Load Resistance of ThermallySprayed Coatings,(2007) A91-229.
    [19] Yandouzi M., Richer P., Jodoin B. SiC Particulate Reinforced Al-12Si Alloy Composite CoatingsProduced by the Pulsed Gas Dynamic Spray Process: Microstructure and Properties. Surface andCoatings Technology.2009,203(20-21):3260-3270.
    [20] Clemex Vision5.0User Guide,2007.
    [21]周玉.材料分析方法.北京:机械工业出版社,2011.
    [22]郑开云. Mg-Gd-Nd-Zr系高强耐热镁合金组织与性能研究[博士论文].上海:上海交通大学,2008.
    [23]戎咏华.分析电子显微分析.北京:高等教育出版社,2006.
    [24]进藤大辅,及川哲夫(刘安生译).材料评价的分析电子显微方法.北京:冶金工业出版社,2001.
    [1] Alkhimov A.P., Klinkov S.V., Kosarev V.F., Papyrin A.N. Gas-Dynamic Spraying Study of a PlaneSupersonic Two-phase Jet. Journal of Applied Mechanics and Technical Physics.1997,38(2):324-330.
    [2] Dykhuizen R.C., Smith M.F., Gilmore D.L., Neiser R.A., Jiang X., Sampath S. Impact of HighVelocity and Cold Spray Particles. Journal of Thermal Spray Technology.1999,8(4):559-564.
    [3] Gilmore D.L., Dykhuizen R.C., Neiser R.A., Roemer T.J., Smith M.F. Particle Velocity andDeposition Efficiency in the Cold Spray Process. Journal of Thermal Spray Technology.1999,8(4):576-582.
    [4] Van Steenkiste T.H., Smith J.R., Teetse R.E. Aluminum Coatings Via Kinetic Spray With RelativelyLarge Powder particles. Surface and Coatings Technology.2002,154(2-3):237-252.
    [5] Bu H.Y., Yandouzi M., Lu C., Jodoin B. Effect of Heat Treatment on the Intermetallic Layer of ColdSprayed Aluminum Coatings on Magnesium Alloy. Surface and Coatings Technology.2011,205(19):4665-4671.
    [6] Vlcek J., Gimeno L., Huber H., Lugscheider E. A Systematic Approach to Material Eligibility for theCold-Spray Process. Journal of Thermal Spray Technology.2005,14(1):125-133.
    [7]卜恒勇,卢晨.冷喷涂临界速度及其影响因素.材料保护.2011,44(4):46-49.
    [8] Morgan R., Fox P., Pattison J., Sutcliffe C., O’Neill W. Analysis of Cold Gas Dynamically SprayedAluminum Deposits. Materials Letters.2004,58(7-8):1317-1320.
    [9] Choi W.B., Li L., Luzin V., Neiser R., Herold T.G., Prask H.J., Sampath S., Gouldstone A. IntegratedCharacterization of Cold Sprayed Aluminum Coatings. Acta Materialia.2007,55(3):857-866.
    [10] Legoux J.G., Irissou E., Moreau C. Effect of Substrate Temperature on the Formation Mechanismof Cold-Sprayed Aluminum, Zinc and Tin Coatings. Journal of Thermal Spray Technology.2007,16(5-6):619-626.
    [11] Champagne V.K. The Repair of Magnesium Rotorcraft Components by Cold Spray. Journal ofFailure Analysis and Prevention.2008,8(2):164-175.
    [12] Lee H., Shin H., Lee S., Ko K. Effect of Gas Pressure on Al Coatings by Cold Gas Dynamic Spray.Materials Letters.2008,62(10-11):1579-1581.
    [13] Hall A.C., Cook D.J., Neiser R.A., Roemer T.J., Hirschfeld D.A. The Effect of a Simple AnnealingHeat Treatment on the Mechanical Properties of Cold-Sprayed Aluminum. Journal of Thermal SprayTechnology.2006,15(2):233-238.
    [14] Ajdelsztajn L., Zuniga A., Jodoin B., Lavernia E.J. Cold Gas Dynamic Spraying of a HighTemperature Al Alloy. Surface and Coatings Technology.2006,201(6):2109-2116.
    [15] Jen T.C., Li L.J., Cui W.Z. Numerical Investigations on Cold Gas Dynamic Spray Process WithNano and Microsize Particles. International Journal of Heat and Mass Transfer.2005,48(21-22):4384-4396.
    [16] Gartner F., Stoltenhoff T., Schmidt T., Kreye H. The Cold Spray Process and Its Potential forIndustrial Applications. Journal of Thermal Spray Technology.2006,15(2):223-232.
    [17] Schmidt T., Assadi H., Gartner F., Richter H., Stoltenhoff T., Kreye H., Klassen T. From ParticleAcceleration to Impact and Bonding in Cold Spraying. Journal of Thermal Spray Technology.2009,18(5-6):794-808.
    [18] Assadi H., Gartner F., Stoltenhoff T., Kreye H. Bonding Mechanism in Cold Gas Spraying. ActaMaterialia.2003,51(15):4379-4394.
    [19] Grujicic M., Saylor J.R., Beasley D.E., Derosset W.S., Helfritch D. Computational Analysis of theInterfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-GasDynamic-Spray Process. Applied Surface Science.2003,219(3-4):211-227.
    [20] Grujicic M., Zhao C.L., DeRosset WS., Helfritch D. Adiabatic Shear Instability Based Mechanismfor Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process. Materials and Design.2004,25(8):681-688.
    [21] Papyrin A.N. Cold Spray Technology. Elsevier Science,2006.224-225.
    [22]张晗亮,李增峰,张健,黄瑜,崔永福.超细金属粉末的制备方法.稀有金属快报.2006,25(5):9-12.
    [23] Song G.L., Bowles A.L., StJohn D.H. Corrosion Resistance of Aged Die Cast Magnesium AlloyAZ91D. Materials Science and Engineering A.2004,366(1):74-86.
    [24] Yakubtsov I.A., Diak B.J., Sager C.A., Bhattacharya B., MacDonald W.D., Niewczas M. Effects ofHeat Treatment on Microstructure and Tensile Deformation of Mg AZ80Alloy at RoomTemperature. Materials Science and Engineering A.2008,496(1-2):247-255.
    [25] Stoltenhoff T., Kreye H., Richter H.J. An analysis of the Cold Spray Process and Its Coatings.Journal of Thermal Spray Technology.2002,11(4):542-550.
    [26] Ajdelsztajn L., Schoenung J.M., Jodoin B., Kim G.E. Cold Spray Deposition of NanocrystallineAluminum Alloys. Metallurgical and Materials Transactions A.2005,36A(3):657-666.
    [27] Dykhuizen R.C., Smith M.F. Gas Dynamic Principles of Cold Spray. Journal of Thermal SprayTechnology.1998,7(2):205-212.
    [28] James E.A.J. Gas dynamics. Prentice Hall, Englewood Cliffs, New Jersey1984:18.
    [29] Balani K., Laha T., Agarwal A., Karthikeyan J., Munroe N. Effect of Carrier Gases onMicrostructural and Electrochemical Behavior of Cold-Sprayed1100Aluminum Coating. Surfaceand Coatings Technology.2005,195(2-3):272-279.
    [30] Gray J.E., Luan B. Protective Coatings on Magnesium and Its Alloys-a Critical Review. Journal ofAlloys and Compounds.2002,336(1-2):88-113.
    [31] Ajdelsztajn L.,Zuniga A., Jodoin B., Lavernia E.J. Cold-Spray Processing of a NanocrystallineAl-Cu-Mg-Fe-Ni Alloy with Sc. Journal of Thermal Spray Technology.2006,15(2):184-190.
    [32] Ning X.J., Jang J.H., Kim H.J., Li C.J., Lee C. Cold Spraying of Al–Sn Binary Alloy: CoatingCharacteristics and Particle Bonding Features. Surface and Coatings Technology.2008,202(9):1681-1687.
    [33] Wang H.T., Li C.J., Yang G.J., Li C.X. Cold Spraying of Fe/Al Powder Mixture: CoatingCharacteristics and Influence of Heat Treatment on the Phase Structure. Applied Surface Science.2008,255(5):2538-2544.
    [34] Zhao Z.B., Gillispie A., Smith J.R. Coating Deposition by the Kinetic Spray Process. Surface andCoatings Technology.2006,200(16-17):4746-4754.
    [35] Ogawa K., Ito K., Ichimura K., Ichikawa Y, Ohno S., Onda N. Characterization of Low-PressureCold-Sprayed Aluminum Coatings. Journal of Thermal Spray Technology.2008,17(5-6):728-735.
    [36] Sansoucy E., Kim G.E., Moran A.L., Jodoin B. Mechanical Characteristics of Al-Co-Ce CoatingsProduced by the Cold Spray Process. Journal of Thermal Spray Technology.2007,16(5-6):651-660.
    [37] Deforce B., Eden T.J., Pickering H.W. Cold-Sprayed Aluminum Coatings for Magnesium AircraftComponents. Materials Performance.2009,48(2):40-44.
    [38] Novoselova T., Fox P., Morgan R., O’Neill W. Experimental Study of Titanium/AluminumDeposits Produced by Cold Gas Dynamic Spray. Surface and Coatings Technology.2006,200(8):2775-2783.
    [39] Klinkov S.V., Kosarev V.F., Sova A.A., Smurov I. Deposition of Multicomponent Coatings by ColdSpray. Surface and Coatings Technology.2008,202(24):5858-5862.
    [40] Novoselova T., Celotto S., Morgan R., Fox P., O’Neill W. Formation of TiAl Intermetallics by HeatTreatment of Cold-Sprayed Precursor Deposits. Journal of Alloys and Compounds.2007,436(1-2):69-77.
    [41] Jodoin B., Ajdelsztajn L., Sansoucy E., Zuniga A., Richer P., Lavernia E.J. Effect of Particle Size,Morphology, and Hardness on Cold Gas Dynamic Sprayed Aluminum Alloy Coatings. Surface andCoatings Technology.2006,201(6):3422-3429.
    [42] Richer P., Jodoin B., Ajdelsztajn L., Lavernia E.J. Substrate Roughness and Thickness Effects onCold Spray Nanocrystalline Al-Mg Coatings. Journal of Thermal Spray Technology.2006,15(2):246-254.
    [43] Koivuluoto H., Lagerbom J., Kylmalahti M., Vuoristo P. Microstructure and Mechanical Propertiesof Low-Pressure Cold-Sprayed (LPCS) Coatings. Journal of Thermal Spray Technology.2008,17(5-6):721-727.
    [44] Moy C.K.S., Cariney J., Ranzi G., Jahedi M., Ringer S.P. Investigating the Microstructure andComposition of Cold Gas-Dynamic Spray (CGDS) Ti Powder Deposited on Al6063Substrate.Surface and Coatings Technology.2010,204(23):3739-3749.
    [45] Ang A.S.M., Berndt C.C., Cheang P. Deposition Effects of WC Particle Size on Cold Spray WC-CoCoatings. Surface and Coatings Technology.2011,205(10):3260-3267.
    [46]周香林,张济山,巫湘坤.先进冷喷涂技术与应用.北京:机械工业出版社,2011,4:123-128,170-178.
    [1] Spencer K., Fabijanic D.M., Zhang M.X. The Use of Al-Al2O3Cold Spray Coatings to Improve theSurface Properties of Magnesium Alloys. Surface and Coatings Technology.2009,204(3):336-344.
    [2] Assadi H., Gartner F., Stoltenhoff T. Bonding Mechanism in Cold Gas Spraying. Acta Materialia.2003,51(15):4379-4394.
    [3]周香林,张济山,巫湘坤.先进冷喷涂技术与应用.北京:机械工业出版社,2011,4:123-128,170-178.
    [4] Wang H.T., Li C.J., Yang G.J., Li C.X. Cold Spraying of Fe/Al Powder Mixture: CoatingCharacteristics and Influence of Heat Treatment on the Phase Structure. Applied Surface Science.2008,255(5):2538-2544.
    [5] Ajdelsztajn L., Zuniga A., Jodoin B., Lavernia E.J. Cold-Spray Processing of a NanocrystallineAl-Cu-Mg-Fe-Ni Alloy with Sc. Journal of Thermal Spray Technology.2006,15(2):184-190.
    [6] Champagne V.K., Helfritch D., Leyman P., Grendahl S., Klotz B. Interface Material Mixing Formedby the Deposition of Copper on Aluminum by Means of the Cold Spray Process. Journal of ThermalSpray Technology.2005,14(3):330-334.
    [7] Sun J.F., Han Y., Cui K. Innovative Fabrication of Porous Titanium Coating on Titanium by ColdSpraying and Vacuum Sintering. Materials Letters.2008,62(21-22):3623-3625.
    [8] Jodoin B., Ajdelsztajn L., Sansoucy E., Zuniga A., Richer P., Lavernia E.J. Effect of Particle Size,Morphology, and Hardness on Cold Gas Dynamic Sprayed Aluminum Alloy Coatings. Surface andCoatings Technology.2006,201(6):3422-3429.
    [9] Novoselova T., Celotto S., Morgan R., Fox P., O’Neill W. Formation of TiAl Intermetallics by HeatTreatment of Cold-Sprayed Precursor Deposits. Journal of Alloys and Compounds.2007,436(1-2):69-77.
    [10] Novoselova T., Fox P., Morgan R., O’Neill W. Experimental Study of Titanium/AluminumDeposits Produced by Cold gas Dynamic Spray. Surface and Coatings Technology.2006,200(8):2775-2783.
    [11] Lee H.Y., Jung S.H., Lee S.Y., Ko K.H. Fabrication of Cold Sprayed Al-Intermetallic CompoundsCoatings by Post Annealing. Materials Science and Engineering A.2006,433(1-2):139-143.
    [12] Ning X.J., Jang J.H., Kim H.J., Li C.J., Lee C. Cold Spraying of Al–Sn Binary Alloy: CoatingCharacteristics and Particle Bonding Features. Surface and Coatings Technology.2008,202(9):1681-1687.
    [13] Lee H.Y., Jung S.H., Lee S.Y., Ko K.H. Alloying of Cold-Sprayed Al–Ni Composite Coatings byPost-Annealing. Applied Surface Science.2007,253(7):3496-3502.
    [14] Lee H., Lee S., Ko K. Annealing Effects on the Intermetallic Compound Formation of ColdSprayed Ni, Al coatings. Journal of Materials Processing Technology.2009,209(2):937-943.
    [15] Spencer K., Zhang M.X. Heat Treatment of Cold Spray Coatings to Form Protective IntermetallicLayers. Scripta Materialia.2009,61(1):44-47.
    [16] Zhang M.X., Huang H., Spencer K., Shi Y.N. Nanomechanics of Al-Mg Intermetallic Compounds.Surface and Coatings Technology.2010,204(14):2118-2122.
    [17] Stoltenhoff T., Kreye H., Richter H.J. An Analysis of the Cold Spray Process and Its Coatings.Journal of Thermal Spray Technology.2002,11(4):542-550.
    [18] Grujicic M., Zhao C.L., Derosset W.S. Adiabatic Shear Instability Based Mechanism forParticles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process. Materials and Design.2004,25(8):681-688.
    [19] Shigematsu I., Nakamura M., Saitou N., Shimojima K. Surface Treatment of AZ91D MagnesiumAlloy by Aluminum Diffusion Coating. Journal of Materials Science Letters.2000,19(6):473-475.
    [20] Liu P., Li Y.J., Wang J., Ma H.J., Guo G.L., Geng H.R.. Microstructure and Phase Constituents inthe Interface Zone of Al/Mg Diffusion Bonding. Metallurgical and Materials Transactions B.2006,37(4):649-654.
    [21]胡赓详,蔡珣,戎咏华.材料科学基础.上海:上海交通大学出版社,2010:131-166.
    [22] Murray J.L. The Al Mg (Aluminum Magnesium) system. Journal of Phase Equilibria.1982,3(1):60-74.
    [23] Funamizu Y., Watanabe K. Interdiffusion in the Al-Mg System. Transaction Japan Institution Metal.1972,13(4):278-283.
    [24] Yang H.Y., Guo X.W., Wu G.H., Wang S.H., Ding W.J. Continuous Intermetallic CompoundsCoatings on AZ91D Mg Alloy Fabricated by Diffusion Reaction of Al-Mg Couples. Surface andCoatings technology.2011,205(8-9):2907-2913.
    [25] Yamashita A., Horita Z., Langdon T.G. Improving the Mechanical Properties of Magnesium and aMagnesium Alloy Through Severe Plastic Deformation. Materials Science and Engineering A.2001,300(1-2):142-147.
    [26] Zhu T.P., Gao W. Formation of Intermetallic Compound Coating on Magnesium AZ91Cast Alloy.IOP Conference Series: Materials Science and Engineering.2009,4:1-6.
    [27] Lee J.C., Kang H.J, Chu W.S., Ahn S.H. Repair of Damaged Mold Surface by Cold-Spray Method.CIRP Annals-Manufacturing Technology.2007,56(1):577-580.
    [28] EN15340, European Standard Method-Determination of Shear Load Resistance of ThermallySprayed Coatings.2007: A91-229.
    [29] Gray J.E., Luan B. Protective Coatings on Magnesium and Its Alloys-a Critical Review. Journal ofAlloys and Compounds.2002,336(1-2):88-113.
    [30]冯淦,石连捷.低碳钢超声喷丸表面纳米化的研究.金属学报.2000,(3):300-301.
    [31] Song G.L., Amanda L.B., David H.S. Corrosion Resistance of Aged Die Cast Magnesium AlloyAZ91D. Materials Science and Engineering A.2004,366(1):74-86.
    [32] Zeng R.C., Zhang J., Huang W.J., Dietzel W. Review of Studies on Corrosion of MagnesiumAlloys. Transactions of Nonferrous Metals Society of China.2006,(16):763-771.
    [1] Choi W.B., Li L., Luzin V., Neiser R., Herold T.G., Prask H.J., Sampath S., Gouldstone A. IntegratedCharacterization of Cold Sprayed Aluminum Coatings. Acta Materialia.2007,55(3):857-866.
    [2] Dykhuizen R.C., Smith M.F. Gas Dynamic Principles of Cold Spray. Journal of Thermal SprayTechnology.1998,7(2):205-212.
    [3] Grujicic M., Zhao C.L., Tong C., DeRosset W.S., Helfritch D. Analysis of the Impact Velocity ofPowder Particles in the Cold-Gas Dynamic-Spray Process. Materials Science and Engineering A.2004,368(1-2):222-230.
    [4] Murray J.L. The Al-Mg (Aluminum-Magnesium) System. Journal of Phase Equilibria.1982,3(1):60-74.
    [5] Ajdelsztajn L., Zuniga A., Jodoin B., Lavernia E.J. Cold Gas Dynamic Spraying of a HighTemperature Al Alloy. Surface and Coatings Technology.2006,201(6):2109-2116.
    [6] Stoltenhoff T., Kreye H., Richter H.J. An Analysis of the Cold Spray Process and Its Coatings.Journal of Thermal Spray Technology.2002,11(4):542-550.
    [7] Jodoin B., Raletz F., Vardelle M. Cold Spray Modeling and Validation Using an Optical DiagnosticMethod. Surface and Coatings Technology.2006,200(14-15):4424-4432.
    [8] Assadi H., Gartner F., Stoltenhoff T. Bonding Mechanism in Cold Gas Spraying. Acta Materialia.2003,51(15):4379-4394.
    [9] Lee H.Y., Jung S.H., Lee S.Y., You Y.H., Ko K.H. Correlation Between Al2O3Particles and Interfaceof Al-Al2O3Coatings by Cold Spray. Applied Surface Science.2005,252(5):1891-1898.
    [10] Van Steenkiste T.H., Elmoursi A., Gorkiewicz D., Gillispie B. Fracture Study of AluminumComposite Coatings Produced by the Kinetic Spray Method. Surface and Coatings Technology.2005,194(1):103-110.
    [11] Irissou E., Legoux J.G.., Arsenault B., Moreau C. Investigation of Al-Al2O3Cold Spray CoatingFormation and Properties. Journal of Thermal Spray Technology.2007,16(5-6):661-668.
    [12] Sansoucy E., Marcoux P., Ajdelsztajn L., Jodoin B. Properties of SiC-Reinforced Aluminum AlloyCoatings Produced by the Cold Spray Deposition Process. Surface and Coatings Technology.2008,202(16):3988-3996.
    [13] Shkodkin A., Kashirin A., Klyuev O., Buzdygar T. Metal Particle Deposition Stimulation bySurface Abrasive Treatment in Gas Dynamic Spraying. Journal of Thermal Spray Technology.2006,15(3):382-386.
    [14] Koivuluoto H., Lagerbom J., Kylmalahti M., Vuoristo P. Microstructure and Mechanical Propertiesof Low-Pressure Cold-Sprayed (LPCS) Coatings. Journal of Thermal Spray Technology.2008,17(5-6):721-727.
    [15] Tao Y., Xiong T., Sun C., Jin H., Du H., Li T. Effect of α-Al2O3on the Properties of Cold SprayAl/α-Al2O3Composite Coatings on AZ91D Magnesium Alloy. Applied Surface Science.2009,256(1):261-266.
    [16] Wang Q., Spencer K., Birbilis N., Zhang M.X. The Influence of Ceramic Particles on BondStrength of Cold Spray Composite Coatings on AZ91Alloy Substrate. Surface and CoatingsTechnology.2010,205(1):50-56.
    [17] Yandouzi M., Richer P., Jodoin B. SiC Particulate Reinforced Al–12Si Alloy Composite CoatingsProduced by the Pulsed Gas Dynamic Spray Process: Microstructure and Properties. Surface andCoatings Technology.2009,203(20-21):3260-3270.
    [18]周香林,张济山,巫湘坤.先进冷喷涂技术与应用.北京:机械工业出版社,2011,4:123-128,170-178.
    [19] Spencer K., Fabijanic D.M., Zhang M.X. The Use of Al-Al2O3Cold Spray Coatings to Improve theSurface Properties of Magnesium Alloys. Surface and Coatings Technology.2009,204(3):336-344.
    [20] Li W.Y., Zhang C., Wang H.T., Guo X.P., Liao H.L., LiC.J., Coddet C. Significant Influences ofMetal Reactivity and Oxide Films at Particle Surfaces on Coating Microstructure in Cold Spraying.Applied Surface Science.2007,253(7):3557-3562.
    [21] Spencer K., Zhang M.X.. Heat Treatment of Cold Spray Coatings to Form Protective IntermetallicLayers. Scripta Materialia.2009,61(1):44-47.
    [22] Song G.L., Bowles A.L., StJohn D.H. Corrosion Resistance of Aged Die Cast Magnesium AlloyAZ91D. Materials Science and Engineering A.2004,366(1):74-86.
    [23] Grujicic M., Saylor J.R., Beasley D.E., DeRosset W.S., Helfritch D. Computational Analysis of theInterfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold Gas DynamicSpray Process. Applied Surface Science.2003,219(3-4):211-227.
    [24] Yang G.J., Li C.J., Han F., Li W.Y., Ohmori A. Low Temperature Deposition and Characterizationof TiO2Photocatalytic Film Through Cold Spray. Applied Surface Science.2008,254(13):3979-3982.
    [25] Zhao Z.B., Gillispie A., Smith J.R. Coating Deposition by the Kinetic Spray Process. Surface andCoatings Technology.2006,200(16-17):4746-4754.
    [26] Ning X.J., Jang J.H., Kim H.J., Li C.J., Lee C. Cold Spraying of Al–Sn Binary Alloy: CoatingCharacteristics and Particle Bonding Features. Surface and Coatings Technology.2008,202(9):1681-1687.
    [1]赵军,艾兴,张建华.功能梯度材料的发展与展望.材料导报.1997,11(4):57-60.
    [2]郑子樵,梁叔全.梯度功能材料的研究与展望.功能材料.1992,10(1):1-5.
    [3]马壮,王富耻,吕广庶,王全胜.等离子喷涂功能梯度涂层抗热震性研究.材料工程.2003,(增刊):181-186.
    [4]王鹏飞,沈卫平,张强,张珂,蒋志明,陈鹏万.自蔓延预热爆炸固结Mo/Cu功能梯度材料的研究.稀有金属材料与工程.2007,36(4):652-655.
    [5]张国兵,郭全贵,刘朗,史景利,翟更太,宋进仁. B4C/C功能梯度材料制备及其性能研究.材料工程.2007,(12):58-62.
    [6] Pei Y.T., Ocelik V., J De Hosson T.M. SiCp/Ti6Al4V functionally graded materials produced by lasermelt injection. Acta Materialia.2002,50(8):2035-2051.
    [7]赵志江,孙旭东,修稚萌,潘新,李晓东,霍地.离心成型法制备Al2O3/Ni功能梯度材料及性能表征.中国腐蚀与防护学报.2007,27(6):363-366.
    [8] Inoue A., Yamagata H., Masumoto T. Production and Properties of Functionally Gradient FilmsVarying from Amorphous Al(Ti,N) to Hexagonal Al(Ti)N Phase. Material Transaction-JIM.1993,34(6):548-555.
    [9]武安华,李江涛,葛昌纯,李敬锋,川崎亮. SiC/C功能梯度材料的制备与评价.无机材料学报.2001,11(6):1239-1242.
    [10] Sova A., Papyrin A., Smurov I. Influence of Ceramic Powder Size on Process of Cermet CoatingFormation by Cold Spray. Journal of Thermal Spray Technology.2009,18(4):633-641.
    [11] Klinkov S.V., Kosarev V F., SOVA A.A., Smurov I. Deposition of Multicomponent Coatings byCold Spray. Surface and Coatings Technology.2008,202(24):5858-5862.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700