苯并噁嗪树脂的合成、改性及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯并噁嗪是以胺类、酚类和醛类化合物为原料合成的一类含氮杂环化合物。该树脂在热处理或有催化剂作用下可交联聚合,形成类似酚醛树脂的含氮网络结构。由于苯并噁嗪具有稳定的芳环结构,并且在固化过程中不释放小分子,故而聚苯并噁嗪作为一种新型的热固性树脂,具有优异的电绝缘性、高的热氧稳定性、良好的阻燃性、稳定的绝缘性、优异的力学性能。特别值得关注的是苯并噁嗪树脂在固化过程中制品孔隙率低,近似零收缩,并且具有杰出的分子设计的灵活性,再加上苯并噁嗪树脂在开环聚合前主要以三聚、四聚等低分子量化合物为主,软化温度一般低于60℃,可以很好的溶解于丁酮等低沸点溶剂,给加工处理带来便利。因此聚苯并噁嗪树脂作为重要的工程聚合材料在航空航天、微电子等高技术领域具有广阔的应用前景。
     本文首先以苯胺、多聚甲醛、二苯甲烷二胺为原料,采用溶液法制备了该苯并噁嗪单体。利用FTIR,1H-NMR,13C-NMR表征了该单体结构。采用DSC、红外系统跟踪了各个固化阶段的预聚物及其固化物的反应。首次采用等温法和非等温法研究和比较了二苯甲烷二胺型苯并噁嗪单体的固化动力学,结果证实该单体的固化反应机理符合自催化反应模型。用Kissinger方程、Ozawa方程和差减微分分析法计算了固化反应的动力学参数。用DSC和TG对聚苯并噁嗪的耐热性进行了测定。
     苯并噁嗪树脂作为高性能树脂使用还存在着一些不足,例如固化物相当脆、开环聚合的温度较高等,其耐热性、阻燃性及力学性能都有待于进一步提高,针对提高树脂性能、降低开环温度,本文分别采用环氧树脂、环氧-酚醛、聚芳醚腈和纳米SiO_2改性苯并噁嗪树脂,相应制备了四种改性复合材料,结果显示:
     苯并噁嗪/环氧复合树脂体系在没有催化剂情况下可以实现自催化。该体系比纯苯并噁嗪树脂具有更好的耐热性。当环氧比重达到40%时,共聚体系起始分解温度达到334.26℃,比纯苯并噁嗪高近乎50℃,且保持了较好的阻燃性。
     苯并噁嗪/环氧/酚醛复合树脂体系中,酚醛树脂明显降低体系固化温度,提高了体系的耐热性。当苯并噁嗪:环氧:酚醛树脂=1:1:1时,体系的固化反应的峰顶温度为184.22℃,与纯苯并噁嗪相比降幅达50℃。起始分解温度达到315.57℃,比纯苯并噁嗪高了近30℃。
     首次利用聚芳醚腈自身的高韧性对苯并噁嗪树脂进行改性。研究结果表明只需10%的聚芳醚腈,固化的苯并噁嗪/聚芳醚腈就能形成薄膜,明显提高体系的韧性,并且固化物为深酒红色透明的薄膜,在可见光范围内是没有相分离的,用DSC和SEM观察到微相分离,形成半互穿网络结构。由于加入的聚芳醚腈形成连续相,聚苯并噁嗪为分散相,因此相对纯聚苯并噁嗪而言,苯并噁嗪/聚芳醚腈薄膜力学性能明显提高,同时热稳定性也较纯聚苯并噁嗪树脂有明显提高。聚芳醚腈含量为15%时,体系弹性模量最大,且玻璃化温度和初始分解温度都远高于纯苯并噁嗪树脂。
     制备了纳米SiO_2苯并噁嗪复合材料。实验发现加入纳米二氧化硅后,二元体系的弯曲模量提高了很多,当SiO_2含量为1%时,弯曲模量比纯苯并噁嗪样条样提高59.3%,达到5332.34Mpa。同时树脂的初始分解温度和800℃时的残炭率普遍提高。
     苯并噁嗪树脂具有灵活的分子设计,为进一步提高苯并噁嗪的性能,我们从改变树脂合成的胺源上入手,在苯并噁嗪分子中引入邻苯二甲腈基团,分别制备了双酚A型双邻苯二甲腈苯并噁嗪BZ-A和联苯型双邻苯二甲腈苯并噁嗪BZ-B两种树脂单体。采用FTIR,1H-NMR,13C-NMR表征了两种单体的分子结构。结合DSC研究数据得到BZ-A和BZ-B均为双重固化机理。首先是200℃附近的苯并噁嗪环的开环,其次是260℃附近腈基的交联成环反应。同时熱失重结果显示:与纯二苯甲烷二胺型苯并噁嗪相比,两种结构的苯并噁嗪固化物都具有更好的耐热性。BZ-A聚合物在氮气氛围中的失重5%温度为437.50oC。BZ-B表现出了更高的热稳定性,在氮气中其失重5%对应的温度为478℃。
     为拓展双邻苯二甲腈苯并噁嗪的使用范围,我们选用耐热性较好的联苯型苯并噁嗪BZ-B进行胶粘剂实验。以铝合金为粘接片,尝试了BZ-B对不同表面处理后的铝合金的粘接性能,发现室温力学性能表面为氧化物的试片远大于表面是铝合金的试片。采用SEM对拉伸断裂面形貌进行分析,结果表明粘接试样的破坏属于内聚破坏。
Benzoxazine, which is synthesized from derivatives of amine, phenolicderivatives and derivatives of aldehyde, is a kind of nitrogen heterocyclic compounds.This kind of resin can be polymerized by heat treatment or catalyst and form nitrogennetwork structure, which resembles phenolic resin. Benzoxazine has good thermalproperties, stabilities, excellent insulation and mechanical properties due to its stablearomatic ring structure. Benzoxazine has attracted much attention owing to itsoutstanding characteristic of near-zero shringage. At the same time, benzoxazinemainly consists of trimers and tetramers and is easy to dissolve in some low boilingpoint solvents such as butanone, and so on. The softening temperature of benzoxazineis lower than60℃. So the machining process of benzoxazine is very simple. Thosecharacteristics of benzoxazine lay the foundation of application in many high scienceand technology areas such as aeronautics and aerospace, microelectronic, etc.
     Firstly, a kind of benzoxazine was synthesized via a solution method by phenol,formaldenhyde and4,4’-diaminodiphenyl methane. The structure of the monomer issupported by FTIR,1H-NMR,13C-NMR. At the same time, the curing behavior ofprepolymers and polymers was researched by FTIR, DSC. The isothermal andnon-isothermal DSC methods were used to study the curing behavior of diamine-basedbenzoxazine monomer,and kinetics parameters was calculated by Ozawa’s andKissinger’s methods. The result implies that its curing behavior could be explained bythe autocatalytic curing mechanism. The thermal stabilites of benzoxazine wasinverstigated by TGA and DSC.
     In order to improve the flame retardant, heat tolerance and mechanical properties,benzoxazine was modified by epoxy resin, epoxy/phenolic resin, poly(arylene ethernitriles) and nano-SiO_2, respectively. So, four types of matrix composites wereprepared. The brief contents are shown as follows:
     Benzoxazine/epoxy composites can realize autocatalystic reaction. They aresuperior in heat tolerance as compared to neat benzoxazine resin. The degradation starting temperature of the copolymerization system was334.26℃when the content ofepoxy resin were40%, which was5℃0higher than that of neat benzoxazine resin.Meanwhile, the composites have better flame retardant.
     In benzoxazine/epoxy/phenolic composites, phenolic significantly can decreasethe curing temperature and improve the flame retardant of the ternary system. The peaktemperature of curing reaction was184.22℃when the proportion of benzoxazine,epoxy and phenolic for1:1:1, which was50℃, lower than that of benzoxazine. Thedegradation starting temperature was315.57℃, which was30℃higher than that ofbenzoxazine.
     The benzoxazine was modified by poly(arylene ether nitriles) due to its hightoughness. The experimental results indicated that a certain amount of poly(aryleneether nitriles) can improve the tenacity and heat tolerance of the composite. The elasticmodulus of the composite had the maximum and the degradation starting temperaturewas higher than that of neat benzoxazine when its content was15%.
     Nano-SiO_2/benzoxazine composites were prepared. The experimental resultsindicated that the bend modulus of the binary system was improved by addition ofNano-SiO_2. The bend modulus was5332.34Mpa when the content of SiO_2was1%,which had increase by59.3%as compared to neat benzoxazine resin. Meanwhile, thedegradation starting temperature and the char yield at800℃were both improved.
     To improve further the heat tolerance of benzoxazine, bisphenol A (BZ-A) andbiphenyl-based (BZ-B) benzoxazine monomers were synthesized by introducingbisphthalonitrile groups to the benzoxazine molecular chain. The structures of themonomers are supported by FTIR,1H-NMR,13C-NMR. At the same time, the data ofDSC showed that the reaction mechanism of these two monomers had two stages. Thefirst stage was the ring-opening reaction of oxazine ring at200℃. The second stagewas the cyclization of cyanogen groups around260℃. The decomposition resultsshowed that these two compounds had better heat tolerance than that of neatbenzoxazine. The temperature at5%weight loss in nitrogen was437.50oC for BZ-Apolymer. BZ-B showed higher heat tolerance as compared with BZ-A and thetemperature at5%weight loss in nitrogen was478℃.
     In order to increase the use scope of bisphthalonitrile-based benzoxazine, weconducted adhesion experiments with BZ-B due to its better heat tolerance. The aluminum alloy was used as adhesion test piece. The adhesive property of BZ-B to testpieces with different surface treated were studied. The study result indicated that, forroom temperature lap shear strength, the sample whose surface of test piece was oxidewas higher than that had aluminum alloy surface. Additionally, SEM was used toobserve the fractured surface and it was shown that the fractured was due to thecohesive failure of the adhesive.
引文
[1]何东晓.先进复合材料在航空航天的应用综述.高科技纤维与应用,2006,31(2):9-11,19
    [2]詹世革,孟庆国,方岱宁.航空航天纺织结构复合材料力学性能研究进展与展望.中国基础科学,2008,10(2):5-10
    [3]杜善义.先进复合材料与航空航天.复合材料学报,2007,24(1):1-12
    [4]赵云峰.先进纤维增强树脂基复合材料在航空航天工业中的应用.军民两用技术与产品,2010,(1):4-6
    [5]薛斌,张兴林.酚醛树脂的现代应用及发展趋势.热固性树脂,2007,22(4):47-50
    [6]朱永茂,殷荣忠,刘勇,等.2004-2005年国外酚醛树脂及塑料工业进展.热固性树脂,2006,(3):10-15
    [7]朱永茂,刘勇,殷荣忠.酚醛树脂及其复合材料发展动向.玻璃纤维,2005,(3):35-43
    [8]吴广磊,寇开昌,晁敏,等.苯并噁嗪树脂的合成及其改性的研究进展.工程塑料应用,2011,(9):50-56
    [9] Rimdusit S, Ishida H. Development of new class of electronic packaging materials based onternary systems of benzoxazine, epoxy, and phenolic resins. Polymer,2000,4(1):7941-7949
    [10] Espinosa MA, Cadiz V, Galia M. Novel phosphorilated flame retardant thermosets:epoxy-benzoxazine-novolac systems. Polymer,2004,(45):6103-6109
    [11]吴迎春,曾繁涤.一种含尿素的苯并恶嗪的合成及其玻璃布层压板的研制.工程塑料应用,2004,(9):34-40
    [12]黄进,马娜,朱蓉琪,等.苯并噁嗪无溶剂浸溃漆的研制.绝缘材料,2007,40(1):8-13
    [13]顾宜,裴顶峰.粒状多苯并噁嗪中间体及其制备方法.中国,发明专利,2002,申请号:ZL9511141311
    [14] Hyun Jin Kim, Zdenka Brunovska, Hatsuo Ishida.Molecular characterizeation of thepolymerization of acetylene-functional benzoxazine resins. Polymer,1999,4(6):1815-1822
    [15] Low H Y, Ishida H. Cationic ring-opening polymerization of benzoxazine. Polymer,1999,(40):4563-4570
    [16] Burke w J, Bishop J L, Glennie E L M, Bauer W N. A new aminoalkylation reaction.Condensation of phenols with duhydro-1,3-aroxazines.1965,(30):3423-3427
    [17] Riess G, Schwob J M, Guth G, Roche M, Laude B.In Advances in Polymer Synthesis.Polymer Science&Technology,1985,(31):27-49
    [18] Kasapoglu F, Cianga I, Yagci Y, Takeichi T. Photoinitiated cationic polymerization ofmonofunctional benzoxazine. Journal of Polymer Science PartA: Polymer Chemisty,2003,(41):3320-3328
    [19] Russell V M, Koenig J L, Low H Y, et al. Study of the characterization and curing ofbenzoxazines using C-13solid-state nuclear magnetic resonance. Journal of AppliedPolymer Science,1998,(70):1413-1425
    [20] Ishida H, Rodriguez Y. Curing kinetics of new benzoxazine-based phenolic resin bydifferential scanning calorimetry. Polymer,1995,(36):3151-3158
    [21] Ishida H, Krus C M. Synthesis and characterization of structurally uniform modeloligomers of polybenzoxazine. Macromolecules,1998,(31):2409-2418
    [22] Wang Y X, Ishida H. Synthesis and properties of new thermoplastic polymers fromsubstituted3,4-dihydro-2H-1,3-benzoxazines. Macromolecules,2000,(33):2839-2847
    [23] Dunkers J, Ishida H. Reaction of benzoxazine-based phenolic resins with strong and weakcarboxylic acids and phenols as catalysts. Journal of Polymer Science PartA: Polym Chem,1999,(37):1913-1921
    [24] Nair C P R. Advances in addition-cure phenolic resins. Progress Polymer Science,2004,(29):401-498
    [25] Kimura H, Matsumoto A, Hasegawa K Ohtsuka K Fukuda A. Epoxy resin curedbybisphenolA based benzoxazine. Journal of Applied Polymer Science,1998,68(10):1903-1910
    [26] Ishida H, Ohba S. Thermal analysis and mechanical characterization ofmaleimide-functionalized benzoxazine/epoxy copolymers. Journal of Applied PolymerScience,2006,101(3):1670-1677
    [27] Ishida H,Allen D J. Physics and Mechanical Characterization of Near-Zero ShrinkagePolybenzoxazines. Journal of Polymer Science Part B: Polymer Physics,1996,34(6):1019-1030
    [28] Pauson P L, Kealy T J. A new type of organic-iron compound Nature,1951,168:1039
    [29] Takeichi T, Guo Y, Agag T. Synthesis and Characterization of Poly (urethane-benzoxazine)Films as Novel Type of Polyurethane/Phenolic Resin Composites. Journal of AppliedPolymer Science,2000,(38):4165-4176
    [30]陈晔,崔燕军,王新灵,等.聚氨酯/苯并噁嗪互穿聚合物网络的合成及表征.上海交通大学学报,2002,36(5):719-729
    [31]张世杰,张炜,郭亚林.纳米碳粉改性苯并恶嗪树脂性能研究.宇航材料工艺,2008,(6):31-35
    [32] Takeichi T, T. Agag. High Performance Polybenzoxazines as Novel Thermosets. Polymer,2002,(43):45-53
    [33]顾宜,鲁在君,谢美丽,等.开环聚合酚醛树脂与纤维增强复合材料.中国,发明专利,1994,申请号: CN94111852.5
    [34] Rimdusit S, Ishida H. Development of new class of electronic packaging materials based onternary systems of benzoxazine. Epoxy and phenolic Resins,2000,(41):7941-7949
    [35] Keller T. M., Griffith J. R. Polymerization studies on aromatic bis (phthalonitrile)monomers. ACS Org Coat Plast Chem Prepr,1980,(43):804-807
    [36] Snow A. W., Griffith J. R. Syntheses and characterization of heteroatom-bridged metal-freephthalocyanine network polymers and model compounds.Macromolecules,1984,17(8):1614-1624
    [37] Keller T. M., Price T. K. Amino-cured bisphenol-linked phthalonitrile resins. JournalMacromolecular Science Chemisty,1982,(18):931-937
    [38] Keller T. M., Griffith J. R. Polymerization studies on aromaticbis (phthalonitrile) monomers.ACS Org Coat Plast Chem Prepr,1980,(43):804-807
    [39] Keller T.M, Dominguez D.D. Properties of phthalonitrile monomer blends andthermosetting phthalonitrile copolymers. Polymer,2007,(48):91-97
    [40] Siegl W.O. Metal ion activation of nitriles. Syntheses of1,3-bis (arylimino) isoindolines,Journal of Organic Chemisty,1977,42(11):1872-1878
    [41] Burchill P.J. On the formation and properties of a high-temperature resin from abisphthalonitrile. Journal of Polymer Science PartA: Polymer Chemisty,1994,(32):1-8
    [42] Sorathra U. Fire Screening Results of Polymers and Composite. Improved Fire-andSmoke-Resistant Materials for Commercial Aircraft Interiors: A Proceedings,1995:93-97
    [43] Wilkie C.A. Fire Properties of Future Material Candidates. Improved Fire-andSmoke-Resistant Materials for Commercial Aircraft Interiors: A Proceedings,1995:115-121
    [44] Sastri S. B., Armistead J. P., Keller T. M. Phthalonitrile-carbon fiber composites. PolymerComposites,1996,(17):816-832
    [45] High-Temperature Tensile Properties of Graphite Fiber-PhthalonitrileComposites. http://www.nrl.navy.mil/content.php?P=02REVIEW57
    [46] Keller T. M., Price T. K. Amino-cured bisphenol-linked phthalonitrile resins. JournalMacromolecular Science Chemisty,1982,(18):931-937
    [47] Keller T. M., Griffith J. R. Polymerization studies on aromatic bis (phthalonitrile)monomers. ACS Org Coat Plast Chem Prepr,1980,(43):804-807
    [48] Ning X, Ishida H. Novel approach to phenolic materials: synthesis and characterization ofphenolic resins via ring opening polymerization. Journal of Polymer Science, Chem Ed.1994,32(6):1121-1129
    [49] Agag T, Takeichi T. Novel benzoxazine monomers containing phenyl propargyl ether:polymerization of monomers and properties polybenzoxazines. Macromolecules,2001,34(21):7257-7263
    [50]张炳伟,徐日炜,丁雪佳,等.一种新型苯并噁嗪的合成与表征及其热性能的研究.热固性树脂,2004,19(2):1-4
    [51] Zdenka Brunovska, Richard Lyon, Hatsuo Ishida.Thermal properties of phthalonitrilefunctional polybenzoxazines. Thermochimica Acta,2000,(357-358):195-203
    [52] Hyun Jin Kim, Zdenka Brunovska, Hatsuo Ishida. Molecular characterization of thepolymerization of acetylene-functional benzoxazine resins.Polymer,1999,(40):1815-1822.
    [53] Hatsuo Ishida, Sharon Ohba. Synthesis and characterization of maleimide and norbornenefunctionalized benzoxazines. Polymer,2005,(46):5588-5595
    [54]张亚妮,徐永东,高列义,等.基于酚醛树脂的碳复合材料在高温分解过程的微结构演变.复合材料学报,2005,23(1):37-41
    [55] Chanchire Jubsilp, Siriporn Damrongsakkul, Tautomu Takeichi. Thermochimica Acta,2006,(447):131-140
    [56] Yu Ding-Sheng, Shi Zi-Xing, Xu Ri-Wei, et al. Comparison of Dynamic Curing Behaviorof Polybenzoxazine and Polybenzoxazine/Montmorillonite Hybrid. Chemical Journal ofChinese Universities,2002,(23):2188-2191
    [57] H.Ishida and Y. Rodriguez. Catalyzing the curing reaction of a new benzoxazine-basedphenolic resin. Journal of Applied Polymer,1995,(36):3151-3158
    [58] Shi Zi-Xing. Morphology and conduction properties of graphite-filled immisciblePVDF/PPgMA blends. Ph.D of Beijing University Of Chemical Technology,2000,(41):1551-1557
    [59] Jianxiang Huang, Jian Zhang,Fang Wang. Reavtive&Functional.Polymers,2006,(66):1395-1403
    [60] H.Ishida, Y.Rodriguez. Curing kinetics of a new benzoxazine-based phenolic resin bydifferential scanning calorimetry. Polymer,1995,(36):3151-3158
    [61] Riess G, Schwob J M, Guth G, et al. Advances in polymersynthesis. Culbertson B M,McGrath J E.Eds. New York: Plenum,1985,27-32
    [62]姜利祥,何世禹,杨士勤.碳(石墨)/环氧复合材料及其在航天器上应用研究进展.材料工程,2001,(9):39-44
    [63] Wei H. L., Stan L. L., Raymond S. Advanced composite structures using new resintechnology offer weight and cost saving.50th International SAMPE Symposium andExhibition. California:2005,1-10
    [64]殷荣忠.酚醛树脂及其应用.北京:化学工业出版,1999,204-250
    [65]许庆衍.硼氮配位结构酚醛树脂的研究.玻璃铜/复合材料,1986,(1):26-31
    [66]高位剐.胺改性硼酐醛树脂的研究.塑料工业,1994,(2):51-55
    [67]黄怿.双酚F硼酚醛啪目的A厩及其无石棉摩阻复A材料琏璃钢.复合材料,1990,(1):14-19
    [68]陈祥宝.高性售树脂基体.化学工业出版杜,1999,(1):8-36
    [69]李长彪.新酚腰树脂复合材料的性能及其应用.玻璃钢/复合材料,1990,(2):5-11
    [70]钟家春,陈文瑾,刘孝波.邻苯二甲腈预聚物对聚芳醚腈的增塑行为与性能研究.塑料工业,2009,(9):22-25
    [71]杨建,钟家春,刘孝波.聚芳醚腈砜的合成与介电性能.塑料工业,2010,(38):4-6
    [72]雷雅杰,赵睿,杨小莉,等.聚芳醚腈改性双邻苯二甲腈树脂及其玻纤复合材料制备.塑料工业,2010,(38):22-24
    [73] Gu Y, Zhong C-F. Xie M-L. Preprints of Second EastAsian Polymer Conference. HongKong:1999,251-257
    [74]刘欣,顾宜.苯并E嗪热固化过程中体积变化的研究.高分子材料科学与程,2002,18(2):168-175
    [75]向海,顾宜.苯并噁嗪树脂的共混改性研究进展.材料导报,2004,18(3):51-56
    [76] Liu X, GU Y. Study on the volumetric expansion of benzoxazine curing with differentcatalysts. Journal of Applied Polymer Science,2002,84(6):1107-1113
    [77]裴顶峰,顾宜,李在兰,等.以双酚A为基础的双苯井睡唪中间体的开环固化反应动力学研究.高分子材料科学与工程,2007,13(3):41-45
    [78] Hatsuo, Ishida, Douglas, J.Allen. Mechanical characterization of copolymers basedon benzoxazine and epoxy. Science,1996
    [79] Rimdusit S, Ishida H. Ternary Systems of Benzoxazine, Epoxy, and Phenolic Resins. JPolym Sci Phys Ed,2000,(38):1687-1690
    [80]雷雅杰,陈文谨,赵睿,等.聚芳醚腈增韧改性苯并噁嗪树脂性能研究.热固性树脂,2010,25(2):11-17
    [81] Ishida H. Versatile Phenolic stands up to the heat. Modem Plastics international,1998,(6):87-90
    [82]闫联生.高性能酚醛树脂研究进展.玻璃钢/复合材料,2011,(6):47-54
    [83] Ishida H, Rodriguez Y. Curing kinetics of rlew benzoxazine-based phenolic resin bydifferential scanning calorimetry. Polymer,1995,(36):3151-3158
    [84] shida H, Allen D. Rheological characterization during cure of near-zero shrinkagepolybenzoxazines. ACS Division of Polymeric Materials Science and Engineering,1995,(73):496-497
    [85]张炳伟,徐日炜,丁雪佳,等.一种新型苯并噁嗪的合成与表征及其热性能的研究.热固性树脂,2004,(2):1-4
    [86] Ning X, Ishida H. Novel approach to phenolic materials: synthesis and characterization ofphenolic resins viaring opening polymerization. Journal of Polymer Science, Chem Ed,1994,32(6):1121-1129
    [87] Agag T, Takeichi T. Novel benzoxazine monomers containing phenyl propargyl ether:polymerization of monomers and properties polybenzoxazines. Macromolecules,2001,34(21):7257-7263
    [88] Zdenka Brunovska, Richard lyona, Hatsuo Ishidab. Thermal properties of phthalonitrilefunctional polybenzoxazines. Thermochimica Acta,2000,(195-203):357-358
    [89] Hyun Jin Kim, Zdenka Brunovska, Hatsuo Ishida. Molecular characterization of thepolymerization of acetylene-functional benzoxazine resins. Polymer,1999,(40):1815-1822
    [90]史子兴,王一中,余鼎声.聚苯并噁嗪单体固化行为的非等温DSC法研究.玻璃钢/复合材料,2000,(2):1-5
    [91] H.Ishida, Y. Rodriguez. Catalyzing the curing reaction of a new benzoxazine-basedphenolic resin. Polymer,1995,(36):3151-3158
    [92] Zixing Shi, Dingsheng Yu, Yizhong Wang, et al. Nonisothermal Cure Kinetics in theSynthesis of Polybenzoxazine-Clay Nanocomposites. Ph.D of Beijing University OfChemical Technology,2000,(20):194-200
    [93] Jianxiang Huang, Jian Zhang, Fang Wang. Reavtive&Functional. Polymers,2006,(66):1395-1403
    [94] H. Ishida, Y.Rodriguez. Curing kinetics of a new benzoxazine-based phenolic resin bydifferential scanning calorimetry. Polymer,1995,(36):3151-3158
    [95]向海,顾宜.苯并噁嗪树脂的共混改性研究进展.材料导报,2004,18(3):51-53
    [96] Shimbo M., Ochi M., Shingeta Y. Shrinkage and internal stress during curing of epoxideresins. Journal of Applied Polymer Science,1981,26(7):2265-2277
    [97] Brunovska Z., Lyon R., Ishida H., et al. Thermal properities of phthalonitrile functionalpolybenzoxazines. Thermochinica Acta,2000,(195-203):357-358
    [98] Dunkers J., Ishida H. Vibrational assignments of3-alkyl-2,4-dihydro-1,3-benzoxazines.Spectrochimia Acta,1995,(51):1061-1074
    [99] Ishida H, Ohba S. Synthesis and chatacterization of maleimide and norbornenefunctionalized benzoxazines. Polymer,2005,(46):5588-5595
    [100] Ning X, Ishida H, Phenolic materials via ring-opening polymerization: Synthesis andcharacterization of bisphenol-A based benzoxazines and their polymers.Journal of PolymerScience Part A: Polymer Chemisty,1994,(32):1121-1229
    [101] Jyongsikjang, Donglyeol Seo. Performance improvement of rubber-modifiedpolybenzoxazine. Journal of Applied Polymer Science,1998,(67):1-10
    [102] Hatsuo Ishida, Hong Yee Low. Synthesis of benzoxazine functional silane and adhesionproperties of glass-fiber-reinforced polybenzoxazine composites. Journal of AppliedPolymer Science,1998,(69):2559-2567
    [103] Keller T. M. Strong organic acid cured phthalonitrile resins for high temperatureapplications. Polym prep,1992,(33):422-429

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700