双邻苯二甲腈树脂改性及功能复合材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚双邻苯二甲腈树脂是一类性能十分优异的热固性树脂,它由双邻苯二甲腈单体在一定的温度条件下通过腈基的加成聚合反应而形成。腈基基团受热很容易加成聚合形成以芳杂环为主的体型网络结构,正是这些耐温性优异的芳杂环赋予了双邻苯二甲腈树脂优异的热稳定性,加上其突出的化学稳定性、阻燃性、防潮性以及良好的加工性,使得双邻苯二甲腈树脂的整体性能远远超过现阶段其它的热固性树脂,例如:环氧、苯并噁嗪树脂、双马来酰亚胺、热固性聚酰亚胺等。美国海军实验室更是提出基于双邻苯二甲腈树脂的复合材料非常有潜力发展成为制备超高速导弹的高性能材料。然而双邻苯二甲腈树脂仍然存在以下问题:①由于双邻苯二甲腈树脂本身内在网络的脆性,导致其断裂行为与未经改性的环氧树脂类似,即双邻苯二甲腈树脂也属于脆性材料,这使得其应用受到一定的限制;②双邻苯二甲腈单体熔融温度高,加工温度窗口窄,固化温度过高,固化速率太低,固化所需时间太长;③根据现有的报道,基于双邻苯二甲腈树脂的复合材料其加工温度大都控制在500°C以内,而对于500°C以上的温度下所形成的材料的研究与报道相对较少,即双邻苯二甲腈树脂复合材料的多样性研究有待加强;④双邻苯二甲腈的功能化研究有待加强,应用领域有待拓宽。
     基于以上问题,本论文主要从双邻苯二甲腈树脂的改性以及功能化应用角度出发,分别通过引入热塑性塑料增韧以及无机纳米填料增强的方法对双邻苯二甲腈树脂进行改性。此外还以双邻苯二甲腈为基体,利用不同金属粒子催化剂,在600~900°C范围内高温裂解制备碳纳米管以及具有微波吸收功能的吸波材料,实现了材料的功能化,同时将双邻苯二甲腈树脂从常规耐高温热固性树脂的应用领域拓展到了电磁以及吸波材料领域。具体研究内容如下:
     (1)针对双邻苯二甲腈质脆的问题,本文以聚芳醚腈为增韧体,对联苯型双邻苯二甲腈树脂进行增韧改性,引入柔性链段以改善酞菁内部脆性网络结构。采用DSC、红外系统跟踪了改性体系的预聚物以及不同固化反应阶段固化物的反应。并以旋转流变、热失重、动态热机械分析等手段详细研究了两相组份的相容性、加工流动性以及机械性能和耐热性等。研究表明聚芳醚腈能够在对双邻苯二甲腈树脂起到增强、增韧作用的同时不造成其耐热性及模量的降低。
     (2)在上述基础上制备了以聚芳醚腈/双邻苯二甲腈改性树脂为基体的玻纤复合材料。并对复合材料的力学性能、耐热性以及耐湿热性等性能进行了详细的表征。结果表明,聚芳醚腈含量为10wt%的双邻苯二甲腈玻纤复合材料表现出优异的力学性能和耐酸碱腐蚀性能及低吸水率。同时本文基于双邻苯二甲腈自身“高熔点”、“低熔融粘度”的特点提出的“粉末层铺法”制备预浸料有别于传统湿法和干法,避免了有毒溶剂的使用,降低生产成本,对工业化生产意义重大。
     (3)本文采用熔融共混法制备了膨胀石墨纳米微片/双邻苯二甲腈纳米复合材料,并详细研究了膨胀石墨纳米微片对双邻苯二甲腈树脂的加工性,热稳定性,力学性能以及电性能的影响。结果表明该高性能的复合材料有望在军工、航空航天等高新技术领域以及高温环境中得以应用。
     (4)本文以双邻苯二甲腈为起始碳源,加入金属离子催化剂,通过溶液预聚、升温固化、高温裂解的途径获得高纯度且管径、长度均匀的多壁碳纳米管。利用SEM,TEM,XRD研究了所得碳纳米管的形貌与结构,并对其导电性、电磁性能进行了详细的研究与表征,这一成果开辟了双邻苯二甲腈有别于传统热固性树脂的应用领域;而且该制备方法简单、高效、成本低廉,具有良好的产业化前景。
     (5)本文以双邻苯二甲腈为基体加入二茂铁甲醛作为催化剂,通过了一系列的高温裂解程序:500oC,700oC以及900oC制备了具有一定微波吸收性能的酞菁铁碳化物吸收剂。研究表明经700oC处理过后的材料更适合做为吸波材料,因此本文重点对经700oC处理后的酞菁铁碳化物的微波吸收性能进行研究。结果表明该酞菁铁碳化物的实验测试结果与微波吸收Cole-Cole半圆理论非常吻合,说明对微波起吸收作用的主要归功于介质极化弛豫损耗。随后我们将其球磨作为填料填充到双邻苯二甲腈基体中制备复合材料,使其成为具有一定的电磁吸波性能的吸波体,同时大大提高了材料的力学强度;该复合材料表现出的多频段、强吸收以及优异的力学性能展示了双邻苯二甲腈可作为高性能新型吸波材料的潜质,开辟了其有望作为新型吸波材料的道路。
Bisphthalonitrile polymers are an important class of high-performance polymers.These polymers are derived by heating the phthalonitrile derivatives for an extendedperiod of time at elevated temperatures by addition curing reaction of cyano groupsfrom phthalonitrile derivatives. Because of their outstanding thermal/thermal-oxidativestability, water and chemical resistance and good processability, bisphthalonitrilepolymers were recognized as a better class of excellent candidate matrices for advancedcomposites than other traditional high temperature/performance resin-based advancedcomposites, such as epoxy, cyanate resin, polyimide, BMI and so on. However, theperformances of bisphthalonitrile polymers are limited by the following disadvantages:(1) The mechanical properties of bisphthalonitrile polymers are adversely affect by theirintrinsic brittleness of the network structure;(2) High melting temperature, narrowprocessing window, high curing temperature, low curing rate and long curing time;(3)According to the existing report, the processing temperature of bisphthalonitrileresin-based composites were controlled at500°C or less, while there is less study on itsmaterials formed above500°C;(4) The functionalization of bisphthalonitrile resin hasnot been abundant enough and its application range need to be expanded.
     On this basis, the dissertation focuses on the modification and functionalization ofbisphthalonitrile resin. In this work bisphthalonitrile resin was modified by a variety ofmethods, the mechanical property of bisphthalonitrile has been improved. Moreovercarbon nanotubes with different morphology and microwave absorbing materials wereobtained by pyrolyse bisphthalonitrile resin with different metal iron catalysts in therange of600~900°C. A technical approach for functionalization of bisphthalonitrileresin was developed; meanwhile its application field was expanded. Specific researchcontents are as follows:
     (1) Polyarylene ether nitrile (PEN) was selected as the guest polymer in4,4’-Bis(3,4-dicyanophenoxy) biphenyl (BPh) matrix to improve the intrinsic brittleness of itsnetwork structure. The melting and curing behavior of prepolymers and polymers was studied by DSC, AR and FTIR. The thermal properties of the PEN/BPh compositeswere tested by TGA. Their phase separation behaviors, mechanical property, therelationship between structure and performance were also studied. The results indicatedthat PEN could increase the curing rate and the toughness of BPh resin withoutsacrificing the excellent thermal stability and modulus.
     (2) Based on the research above, PEN/BPh-glass fiber composites were preparedand their mechanical properties, flammability, water and chemical resistance werestudied. The results indicated that the PEN/BPh-glass fiber composites with10wt%ofPEN exhibit good mechanical properties and low flammability, water and chemicalresistance. Moreover, the preparation method we used is powder-layering method that isnovel, convenient, simple, no toxic solvent used and different from the traditionaldipping process of prepreg.
     (3) xGnP/BPh nanocomposites were prepared through a simple and efficientprocess. The effects of the xGnP (exfoliated graphite nanoplatelets) on the complexviscosity, storage modulus of the xGnP/BPh pre-polymer system and the mechanical,electrical and thermal properties of the final xGnP/BPh nanocomposites were studied.The as-prepared xGnP/BPh nanocomposites with high performance are expected tohave potential applications in military industry, aerospace, and other fields where hightemperature is necessary.
     (4) A simple and efficient method for in situ synthesis of multiwalled carbonnanotubes (CNTs) from the pyrolysis of a mixture formulated from Fe(CO)5powderand nano-iron powder respectively various high temperature bisphthalocyanine polymerunder nitro atmosphere was described. SEM, TEM, XRD were employed to figure thedetail structure information of the CNTs, meanwhile the conductive, dielectric andmagnetic properties were studied. This research opened up a new application area ofbisphthalocyanine resin which different with other traditional thermosetting resin.
     (5) BPh monomer and ferrocenecarboxaldehyde were employed to synthesize FePcvia a series of high temperature sintering:500oC,700oC and900oC. The products withbest electromagnetic properties were obtained after700oC sintering process. Thedissertation focuses on the microwave absorption properties of the FePc after700oCsintering process. Theoretical simulation for the microwave absorption using Cole-Cole semicircle theory agrees well with the experimental results: the microwave absorptionof these composites can be mainly attributed to the dielectric loss rather than magneticloss. Then we choose BPh resin as the vector of FePc absorbent to prepare FePc/BPhcomposites. After curing reaction, the FePc particles gave the composite with noveldielectric and microwave-absorbing properties and the mechanical properties of theresin were greatly improved. The high value of microwave reflection and mechanicalproperty suggests that the composite can be used as promising microwave-absorbingmaterials.
引文
[1]雷雅杰,左芳,赵睿,等.聚芳醚腈/双邻苯二甲腈树脂共混改性与性能研究[J].材料工程,2009, S2:169-172
    [2] T. G. Gutowski. Advanced Composites Manufacturing[J]. John Wiley&Sons, Inc.1997,6-8.
    [3]陈平,刘胜平.环氧树脂[M].北京:化学工业出版社,1999
    [4] M. D. Shau, T. S. Wang. Synthesis, structure, reactivity, and thermal properties of new cyclicphosphine oxide epoxy resins cured by diamines[J]. J Polym Sci Part A: Polym Chem1996,34(3):387-398
    [5] S. T. Lin, S. K. Huang, Preparation and structural determination of siloxane-modifiedsulfone-containing epoxy resins[J]. J Polym Sci Part A: Polym Chem1996,34(5):869-876
    [6] M. Anand, A. K. Srivastava. Synthesis and characterization of epoxy resins containingtransition metals[J]. Polymer,1993,34(13):2860-2869
    [7]黄志雄,彭永利,秦岩.热固性树脂复合材料及其应用[M].北京:化学工业出版,2007
    [8]赵鸿汉.环氧基纤维增强复合材料应用面面观[J].玻璃钢,2006,2:23-28
    [9]姜利祥,何世禹,杨士勤.碳(石墨)/环氧复合材料及其在航天器上应用研究进展[J].材料工程,2001,9:39-44
    [10] H. L. Wei, L. L. Stan, S. Raymond. Advanced composite structures using new resintechnology offer weight and cost saving[C].50th International SAMPE Symposium andExhibition, California,2005,1-10
    [11] J. N. Stanley. SIFT Analysis of IM7/5250-4composites[J]. San Diego.2004,129-141
    [12]王汝敏,蓝立文.先进复合材料用热固性树脂基体的发展[J].热固性树脂,2001,16:36-38
    [13] D. Wilson, H. D. Stenzenberger, P. M. Hergenrother. Polyimides chemistry andapplication[M]. New York: Blackie and Sons Ltd.1990
    [14] P. M. Hergenrother. The use, design, synthesis and properties of high performance/hightemperature polymer: an overview[J]. High Perform Polym,2003,15(1):3-45
    [15] H. R. Kricheldorf. Progress in polyimide chemistry I[M]. New York: Springer,1999
    [16]丁孟贤,何天白.聚酰亚胺新型材料[M].北京:科学技术出版社,1999
    [17]吴忠文.聚酰亚胺基础与应用[M].北京:科学技术出版社,2002
    [18] N. P. Peter, B. J. Veerappa, et al. Structure-property relationships in PMR-type polyimideresins:4. Investigation of materials derived from diamino(diaryl)methanes[J]. Polymer,1994,35(11):2378-2384
    [19] J. N. Hay, J. D. Boyle, S. F. Parker, et al. Polymerization of N-phenylnadimide: a model forthe crosslinking of PMR-15polyimide[J]. Polymer,1989,30(6):1032-1040
    [20] I. Soutar, B. Woodfine, P. N. Preston, et al. Structure-property relationships in PMR-typepolyimide resins:1. Novel anthraquinone-based PMR resins[J]. Polymer,1993,34(24):5048-5052.
    [21] T. Takekoshi, J. M. Terry. High-temperature thermoset polyimides containing disubstitutedacetylene end groups[J]. Polymer,35(22):4874-4880
    [22] M. E. Rezac, B. Sch ber. Transport and thermal properties of poly(ether imide)/acetylene-terminated monomer blends[J]. Journal of Membrane Science,1999,156(2):211-222
    [23] A. O. Hanky, T. Lt. Clair. Acetylene-terminated polyimide adhesives[J]. International Journalof Adhesion and Adhesives,1983,3(4):181-187
    [24] P. M. Hergenrother, R. G. Bryant, B. J. Jensen, et al. Phenylethynylterminated imide oligomersand polymers therefrom[J]. J Polym Sci Part A: Polym Chem1994,32(16):3061–667
    [25] J. G. Smith, J. W. Connell, P. M. Hergenrother. Imide oligomers containing pendent andterminal phenylethynyl groups[J]. Polymer,1997,38(18):4657–65
    [26] J. W. Connell, J. G. Smith, P. M. Hergenrother. Oligomers and polymers containingphenylethynyl groups[J]. J Macromol Sci-Rev Macromol Chem Phys,2000,40(2&3):207-230
    [27] J. G. Smith, J. W. Connell, P. M. Hergenrother. The effect of phenylethynyl terminated imideoligomer molecular weight on the properties of composites[J]. J Comp Mater,2000,34(7):614-28
    [28] C. D. Simone, D. A. Scola. Modification of PETI-5K imide oligomers: effect on viscosity[J].High Perform Polym,2003,15(4):473-501
    [29] J. W. Connell, J. G. Smith, P. M. Hergenrother, et al. High temperature transfer molding resins:laminate properties of PETI-298and PETI-330[J]. High Perform Polym,2003,15(4):375-94
    [30] H. B. Liu, C. D. Simone, D. A Scola. Synthesis and characterization of phenylethynyl-end-capped cooligomides from fluorinated dianhydrides4,4-(hexafluoroisopropylidene) dipthalicanhydride and4,4-(2,2,2-trifluoro-1-phenylethylidene) dipthalic anhydride and para-andmeta-phenylene diamines and cooligomide blends with phenylethynyl-end-capped reactivediluents[J]. J Appl Polym Sci Part A: Polym Chem,2003,41(17):2630-2649
    [31] C. M. Thompson, P. M. Hergenrother. Aryl Ethynyl Terminated Imide Oligomers and TheirCured Polymers[J]. Macromolecules,2002,35(15):5835-5839
    [32] P. M. Hergenrother. The Use, Design, Synthesis, and Properties of High Performance/HighTemperature Polymers: An Overview[J]. High Perform.Polym.2003,15:3-45
    [33] A. A. Kumar, M. Alagar, R. M. Rao. Sythesis and characterization of siliconized poxy-l,3-bis(maleimido)benzene intercrossIinked matrix materials[J]. Polymer,2002,43(3):693-702
    [34] Vanaia A., Rao R.M. Sythesis and characterization of epoxy-novolac/bismaleimidenetworks[J]. European Polymer Journal,2002,38(1):187-193
    [35] C. S. Wu, Y. Liu, K. Y. Hsua. Maleimide-epoxy resins: preparation, thermal properties, andflame retardance[J]. Polymer,2003,44(3):565-573
    [36] J. L. Hopewell, G. A. George, D. J. T Hill. Analysis of the kinetics and mechanism of the cureof a bismaleimide-diamine thermoset[J]. Polymer,2000,41(23):8231-8239
    [37]陈祥宝.高性能树脂基体[M].北京:化学工业出版社,1998
    [38]梁国正.双马来酰亚胺[M].北京:化学工业出版社,1997
    [39]阮如祥.先进复合材料基体树脂双马来酰亚胺研制概况[J].合成树脂与塑料工业,1992,20:3-7.
    [40] J. Boyd. Bismaleide Composite Application in the Aerospace Industry[C].44th InternationalSymposium and Exhibition, California,1999,82-96
    [41]张成森.改性双马来酰亚胺树脂胶及复合材料的制备与性能研究[D].武汉:武汉理工大学,2006,2-3
    [42] P. Sivasamy, M. Meenakshisundaram, r C. T. Vijayakuma. A study on the effect of para substitutionon the thermal degradation of poly N-arylmaleimides[J]. JAnalAppl Pyrolysis,2003,68-69:51-59
    [43] X. Ning, H Ishida. Phenolic materials via ring一Opening Polymerization:Synthesis andcharacterization of bisphenol-A based benzoxazines and their polymers[J]. J Polym SciPartA:Polym Chem,1994,32(6):1121-1129
    [44] H. Ishida, D. J. Allen. Physics and Mechanical Characterization of Near-Zero shrinkagePolybenzoxazines[J]. J Polym Sci PartB: PolymPhys,1996,34(6):1019-1030
    [45] F. W. Holly, A. C. Cope. Condensation products of aldehydes and ketones with o-aminobenzylalcohol and o-hydroxybenzylamine[J]. J Am Chem Soc,1994,66(1):1875-1879
    [46] X. Ning, H. Ishida. Phenolic materials via ring-opening polymerization of benzoxazines,Eeffet of molecular sutrcture on mechanical and dynamic properties[J]. J Polym Sci Part BPolym Phys,1994,32(5):921-927
    [47] S. Wirasate, S. Dhumrongvparorn, D.J. Allen, et al. Molecular origin of Unusual Physical andmechanical properties in novel phenolic materials based on beoxazine chemistry[J]. J ApplPolym Sci,1998,70(7):1299-1306
    [48] C. P. R. Nair.Advances in addition-cure phenolic resins[J]. Prog Polym Sci,2004,29(5):401-498
    [49] S. B. Shen, H Ishida. Development and characterization of high-performancepolybenzoxazine composites[J]. Polym Compos,1996,17(5):710-719
    [50] C. E Dent, R. P. Linstead. Phthalocyanines Part IV. Copper phthalocyanine[J]. J Chem Soc1934,0:1027–1031
    [51] T. R. Walton, R. Griffith, J. G. O’Rear. Phthalonitrile Resins [J]. Polym SCi Technol,1975,9B:665
    [52] A. W. Snow, J. R. Griffith. Syntheses and characterization of heteroatom-bridged metal-freephthalocyanine network polymers and model compounds[J]. Macromolecules,1984,17(8):1614-1624
    [53] N. P. Marullo, A. W. Snow. Polymerization of Bisphthalonitriles: Metal Free PhthalocyanineFormation[J]. ACS Symposium Series,1982,195:325-335
    [54] T. M. Keller, T. K. Price. Amino-cured bisphenol-linked phthalonitrile resins[J]. J MacromolSci Chem,1982,18(6):931-937
    [55] T. M. Keller, J. R. Griffith. Polymerization studies on aromatic bis(phthalonitrile)monomers[J].ACS Org Coat Plast Chem Prepr,1980,43:804-807
    [56] T. M. Keller, D. D. Dominguez. High temperature resorcinol-based phthalonitrile polymer[J].Polymer,2005,46(13):4614-4618
    [57] J. A. Hinkley. Network structure in bisphthalonitrile polymers[J]. J Appl Polym Sci1984,29(11):3339–3347
    [58] M. L. Warzel, T. M. Keller. Tensile and fracture properties of a phthalonitrile polymer[J].Polymer1993,34(3):663–666
    [59] S. B. Sastri, J. P. Armistead, T. M. Keller. Phthalonitrile-carbonfiber composites[J]. PolymCompos1998,17(6):816–822
    [60] D. D. Dominguez, T. M. Keller High temperature resorcinol-based phthalonitrile polymer[J].Polymer2005,46(13):4614–4618
    [61] D. D. Dominguez, T. M. Keller. Properties of phthalonitrile monomer blends andthermosetting phthalonitrile copolymers[J]. Polymer,2007,48(1):91–97
    [62] M. Laskoski, T. M. Keller, S. B. Qadri. Direct conversion of highly aromatic phthalonitrilethermosetting resins into carbon nanotube containing solids[J]. Polymer2007,48(26):7484–7489
    [63] M. Laskoski, D. D. Dominguez, T. M. Keller. Synthesis and properties of aromatic etherphosphine oxide containing oligomeric phthalonitrile resins with improved oxidativestability[J]. Polymer2007,48(21):6234–6240
    [64] R. H. Du, W. T. Li, X. B. Liu. Synthesis and thermal properties of bisphthalonitrilescontaining aromatic ether nitrile linkages[J]. Polym Degrad Stab2009,94(12):2178–2183
    [65] X. L Yang, Y. J Lei, J. C. Zhong, et al. Preparation and thermal properties of novelphthalonitrile oligomer containing biphenyl ethernitrile/bisphthalonitrile blends[J]. J ApplPolym Sci,2011,119(2):882–887
    [66] G. P. Cao, W. J. Chen, J. J. Wei, et al. Synthesis and characterization of a novelbisphthalonitrile containing benzoxazine[J]. Express Polym Lett.,2007,1(8):512–518
    [67] F. Zuo, X. B. Liu. Synthesis and curing behavior of a novel benzoxazine-basedbisphthalonitrile monomer[J]. J Appl Polym Sci.2010,117(3):1469–1475
    [68] T. M. Keller, S. B. Sastri. Phthalonitrile cure reaction with aromatic diamines[J]. J Polym Sci:PartA Polym Chem,1998,36(11):1885-1890
    [69] S. B. Sastri, T. M Keller. Phthalonitrile polymers: Cure behavior and properties[J]. J PolymSci: PartA Polym Chem.,1999,37(13):2105-2111
    [70] T. M Keller, D. D. Dominguez. Properties of phthalonitrile monomer blends andthermosetting phthalonitrile copolymers[J]. Polymer,2007,48(1):91-97
    [71] W. O. Siegl. Metal ion activation of nitriles. Syntheses of1,3-bis(arylimino)isoindolines[J]. JOrg Chem,1977,42(11):1872-1878
    [72] P. J. Burchill. On the formation and properties of a high-temperature resin from abisphthalonitrile[J]. J Polym Sci: PartA Polym Chem,1994,32(1):1-8
    [73] T. M. Keller, J. R. Griffth. Sythesis and polmerizaton of fluorinated Phthalonitrilemonomers[J]. ACS Org Coat Plast Chem PrePr,1978,39:546-548
    [74] A. W. Snow, J. R. Griffith, N. P. Marullo. Syntheses and Characterization ofHeteroatom-Bridged Metal-Free Phthalocyanine Network Polymers and ModelCompounds[J]. Macromolecules,1984,17(8):1614-1624
    [75] M. J., Sumner M. Sankarapandian, J. E. McGrath, et al. Flame retardant novolac–bisphthalonitrile structural thermosets[J]. Polymer,2002,43(19):5069–5076
    [76] S. B. Sastri, J. P. Armistead, T. M. Keller. Phthalonitrile-carbon fiber composites[J]. PolymCpmpos,1996,17(6):816-832
    [77] S. B. Sastri, J. P. Armistead, T. M. Keller Phthalonitrile-glass fabric composites[J]. PolymCpmpos,1997,18(1):48-54
    [78] T. M. Keller, D. D. Dominguez. Low-melting Phthalonitrile Oligomers: Preparation,Polymerization and Polymer Properties[J]. High Perform Polym,2006,18(3):283-304
    [79] M. Laskoski, D. D. Dominguez, T. M. Keller. Synthesis and Properties of a Bisphenol ABased Phthalonitrile Resin[J]. Journal of Polymer Science: Part A: Polymer Chemistry,2005,43(18):4136–4143
    [80] M. Laskoski, D. D. Dominguez, T. M. Keller. Synthesis and properties of aromatic etherphosphine oxide containing oligomeric phthalonitrile resins with improved oxidativestability[J]. Polymer,2007,48(21):6234-6240
    [81] T. M. Keller, J. R. Griffith. The Synthesis of a New Class of Polyphthalocyanine Resins[J].ACS Symposium Series,1980,132(3):25-34
    [82] U Sorathra. Fire Screening Results of Polymers and Composite[M]. New York: NationalAcademies Press,1995
    [83] C. A. Wilkie. Fire Properties of Future Material Candidates[M]. New York: NationalAcademies Press,1995
    [84] T. M. Keller. Strong organic acid cured phthalonitrile resins for high temperatureapplications[J]. Polym prep,1992,33(1):422-429
    [85] T. M. Keller. Fluorinated polyphthalocyanines[P]. United States Patent,4315093,1982
    [86] M. Laskoski, D. D. Dominguez, T. M. Keller. Processable Phthalonitrile Resins withHigh-Thermal and Oxidative Stability[J]. ACS Symposium Series,2005,922(29):378-388
    [87]郑劲东.舰船用新型耐高温阻燃结构材料-聚邻苯二甲睛复合材料[J].材料导报,2002,10(10):63-67
    [88] T. M. Keller, M. L. Warzel. Tensile and fracture properties of a phthalonitrile polymer[J].Polymer,1993,34(1):663-666
    [89] T. M. Keller. Phthalonitrile-based conductive polymer[J]. J.Polym.Sci Polym Chem Edn,1987,25(9):2569-2576
    [90] J. F. Giuliani, T. M. Keller. Phthalonitrile conductive polymer chemica vapor sensors[J]. SensMater,1989,1(2):211-212
    [91] T. M. Ke11er. High-performance, electrically conductive polymers[J]. CHEMTECH,1988,18:635-639
    [92]罗道文.聚芳醚腈/碳纳米管复合材料的制备与性能研究[D].成都:电子科技大学,2008.
    [93] A. Saxena, R. Sadhana, V. L. Rao, et al. Synthesis and properties of Polyarylene ether NitrileCopolymers[J]. Polymer Bulletin.2003,50(4):219-226
    [94] A. Saxena, V. L. Rao, K. N. Ninan. Synthesis and properties of polyether nitrile copolymerswith pendant methyl groups[J]. European Polymer Joumal,2003,39(1):7-61
    [95] R. Haggenmueller, H. H. Gommans, A. G. Rinzler, et al. Aligned single-wall carbon nanotubes incomposites by melt processing methods[J]. Chem Phys Lett,2000,330(3-4):219-225
    [96] F. D. Jiang, S. Z. Wu, Y. L. Wei, et al. The Study on the Microstructures and HighPerformances of Melt Blending Polyurethane/Multi-walled Carbon Nanotubes Composites[J].Polym Compos,2008,16(8):509-518
    [97] T Ramanathan, H Liu, L. C. Brinson. Functionalized SWNT/polymer nanocomposites fordramatic property improvement[J]. J Polym Sci Part B: Polym Phys,2005,43(17):2269-2279
    [98] Y. X. Pan, Z. Z. Yu, Y. C. Ou, et al. A new process of fabricating electrically conducting nylon6/graphite nanocomposites via intercalation polymerization[J]. J Polym Sci, Part B: PolymPhys,2000,38(12):1626-1633
    [99] L. M. Chen, R. Ozisik, L. S. Schadler. The influence of carbon nanotube aspect ratio on the foammorphology of MWNT/PMMA nanocomposite foams[J]. Polymer,2010,51(11):2368-2375
    [100] E. T. Thostenson, C. Li, T. W. Chou. Nanocomposites in context[J]. Compos Sci Technol,2005,65(3-4):491-516
    [101] W. Zheng, S. C. Wong, H. J. Sue. Transport behavior of PMMA/expanded graphitenanocomposites[J]. Polymer,2002,43(25):6767-6773
    [102] G. H. Chen, D. J. Wu, W. G. Weng, et al. Preparation of polystyrene-graphite conductingnanocomposites via intercalation polymerization[J]. Polym Int,2001,50(9):980-985
    [103] Z.M. Dang, J.K. Yuan, J.W. Zha, et al. Fundamentals, processes and applications ofhigh-permittivity polymer matrix composites[J]. Prog Mater Sci,2012,57(4):660–723
    [104] Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56–59
    [105] D. S. Bethune, C. H. Kiang, M. S. Vries, et al. Cobalt-catalyzed growth of carbonnanotubes with single-atomic-layer walls[J]. Nature,1993,363:605-607
    [106] C. Journet, W. K. Maser, P. Bernier, et al. Large-scale production of single-walled carbonnanotubes by the electric-arc technique[J]. Nature,1997,388:756-758
    [107] M. Jose-Yacaman, M. Miki-Yoshida, L. Rendon, et al. Catalytic growth of carbonmicrotubules with fullerene structure[J]. Appl Phys Lett,1993,62(2):202-204
    [108] A. Thess, R. Lee, P. Nikolaev, et al. Crystalline ropes of metallic carbon nanotubes[J].Science,1996,273:483-487
    [109] S. Ramo, J. R. Whinnery, T. V. Duzer. Fields and Waves in Communication Electronics[M].Hoboken, New Jork: Wiley,1984-1986
    [110] W. Y. Tong, A. B. Djurisic, H. Xie, et al. Metal Phthalocyanine Nanoribbons andNanowires[J]. J Phys Chem B,2006,110(35):17406-17413
    [111] C. P. Paul, W. K. Hsu, A. Barres, et al. High Permittivity from Defective Multiwalled CarbonNanotubes in the X-Band[J]. Adv Mater,2003,15(7-8):600-603
    [112] A. Burian, J. C. Dore, H. E. Fischer, et al. Structural studies of multiwall carbon nanotubes byneutron diffraction[J]. J Phys Rev B,1999,59(3):1665-1668
    [113]董树义.近代微波测量技术[M].北京:电子工业出版社,1995,123-135
    [114] P. M. Ajayan, C. Colliex, J. M. Lambert, et al. Growth of manganese filled carbon nanofibersin the vapor phase[J]. Phys Rev Lett,1994,72(11):1722-1725
    [115] C. Guerret-Picourt, Y. L. Bouar, A. Loiseau, et al. Relation between metal electronic structureand morphology of metal compounds inside carbon nanotubes[J]. Nature,1994,372:761-765
    [116] J. Y. Dai, J. M. Lauerhaas, A. A. Setlur, et la. Synthesis of carbon-encapsulated nanowiresusing polycyclic aromatic hydrocarbon precursors[J]. Chem Phys Lett,1996,258(5-6):547-553.
    [117] G Torre, C. G. Claessens, T. Torres. Phthalocyanines:old dyes, new materials. Putting color innanotechnology[J]. Chemical Communications,2007,11(20):2000-2015
    [118] X. L. Dong, X. F. Zhang, H. Huang, et al. Microwave absorption properties of thecarbon-coated nickel nanocapsules[J]. Appl Phy Lett,2008,89(5):053115-053118
    [119] R. B. Yang, C. Y. Tsay, D. S. Hung, et al. Complex permittivity and permeability of iron-basedcomposite absorbers measured by cavity perturbation method in X-band frequency range[J]. JAppl Phys,2009105(07): A5280-07A5283
    [120] A. N. Yusoff, M. H. Abdullah, S. H. Ahmad, et al. Electromagnetic and absorption propertiesof some microwave absorbers[J]. J Appl Phys,2002,92(2):976-978
    [121] T. J. Imholt, C. A. Dyke, B. Hasslacher, et al. Nanotubes in Microwave Fields: LightEmission, Intense Heat, Outgassing, and Reconstruction[J]. Chem. Mater,2003,15(21):3969-3970
    [122] E. Vázquez, M Prato. Carbon Nanotubes and Microwaves: Interactions, Responses, andApplications[J]. ACS Nano,2009,3(12):3819-3824

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700