强流脉冲荷电粒子束辐照WC-Ni硬质合金表面改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以Ni代Co粘结相可提高WC基硬质合金的耐高温、耐腐蚀、防辐射等性能,但力学性能和耐磨性能有所降低,为进一步提高WC-Ni系硬质合金的耐磨性,延长硬质合金零部件在极端服役条件下的使役寿命,分别利用TEMP-6型强流脉冲离子束(HIPIB)装置和紧凑型强流脉冲电子束(HIPEB)装置上,开展了二类强流脉冲荷电粒子束辐照WC-13Ni硬质合金改性实验研究,揭示了辐照硬质合金表面形貌、表面粗糙度、相结构、表面硬度,以及摩擦学性能的变化规律,获得了具有减摩耐磨性能的改性表面,阐明了强流脉冲荷电粒子束辐照Ni粘结WC基硬质合金表面改性机制。
     采用能量密度1-6J/cm2,脉冲宽度70ns,辐照次数1~10次的HIPIB辐照WC-13Ni硬质合金,硬质合金表面发生熔融和Ni粘结相的选择性烧蚀,形成具有微区光滑致密化的“峰-谷”起伏特征的烧蚀重熔表面形貌,硬质合金表面粗糙化,表面粗糙度Ra随着能量密度和辐照次数显著增加,6J/cm2、10次辐照可使硬质合金R。由原始的0.13μm增加至1.62μm。辐照硬质合金表层发生六方相a-WC向立方相β-WC1-x转变,且转变量随能量密度和辐照次数增加。HIPIB辐照使WC-13Ni硬质合金表面发生硬化。单次或多次辐照硬质合金表面显微硬度均随能量密度的增加呈“先增加-后减小-再增加”的变化趋势,6J/cm2、10次辐照表面显微硬度由原始的11.84GPa提高至16.60GPa。HIPIB辐照硬质合金表层具有“长程硬化”效应,硬化层深度随能量密度和辐照次数增加,6J/cm2、10次辐照硬化层深度可达160μm。环-块式摩擦磨损实验表明,HIPIB辐照显著降低了硬质合金的表面摩擦系数和磨损率,6J/cm2、10次辐照硬质合金具有最佳的减摩耐磨性能,摩擦系数从原始的0.80减小到0.48,磨损率从原始1.2×10-6mm3/Nm减小到3.6×10-7mm3/Nm,较原始硬质合金降低约70%。
     采用能量密度3-34J/cm2,脉冲宽度180ns,辐照次数1~10次的HIPEB辐照WC-13Ni硬质合金,硬质合金表面发生熔化、烧蚀与喷发,快速冷凝后形成具有“火山坑”以及烧蚀孔等典型特征的起伏状重熔喷发表面形貌,硬质合金表面粗糙化。R。的变化规律与HIPIB辐照相似,较高能量密度、多次辐照的Ra增大,34J/cm2、10次辐照可使Ra由原始的0.21μm显著增加到1.26μm。辐照硬质合金表层发生六方相a-WC向立方相β-WC1-x和六方相a-W2C转变,且转变量随能量密度和辐照次数增加;在高能量密度条件下,辐照表面有石墨C形成。HIPEB辐照使WC-13Ni硬质合金表面产生不同程度的硬化与软化。3J/cm2、1次辐照表面显微硬度达到最大值,约13.70GPa,34J/cm2、5次辐照表面显微硬度降低至最小值,约10.49GPa。 HIPEB辐照表面硬化和软化的硬质合金试样均具有“长程硬化”效应,硬化层深度随能量密度和辐照次数增加,34J/cm2、10次辐照硬化层深度可达380μm。环-块式摩擦磨损实验表明,HIPEB辐照显著降低了硬质合金的表面摩擦系数和磨损率,34J/cm2、10次辐照硬质合金具有最佳的减摩耐磨性能,摩擦系数从原始的0.80减小到0.54,磨损率从原始1.2×10-6mm3/Nm减小到3.8×10-7mm3/Nm,较原始硬质合金降低约68%。
     HIPIB辐照的最大能量沉积在表层数百nm范围内,使硬质合金表面发生强烈的熔融与选择性烧蚀,形成“峰-谷型”起伏形貌;而HIPEB辐照的最大能量沉积于亚表层,约数μm处,造成亚表层优先熔化以及亚表层熔体的喷发,易形成火山坑形貌。二类强流脉冲荷电粒子束辐照的极速加热和冷却过程,可导致WC相中碳的反应烧损和急冷淬火,有助于β-WC1-x亚稳相形成;HIPEB脉冲作用时间较长且能量作用深度更大,相对缓慢的加热冷却过程和更长的高温反应导致较多的碳损失和部分β-WC1-x相分解促使α-W2C亚稳相和石墨C相的形成。辐照硬质合金的表面硬化归因于表面重熔致密化和Ni粘结相含量减少,而HIPEB辐照硬质合金表面α-W2C亚稳相形成对表面硬化也有贡献;β-WC1-x亚稳相的形成对HIPIB辐照硬质合金表面硬化有降低作用,而β-WC1-x亚稳相和表面烧蚀孔隙或裂纹缺陷的形成是HIPEB辐照硬质合金表面软化的原因。辐照应力波的冲击强化作用导致WC-Ni硬质合金表层位错、空位等晶体缺陷形成是硬质合金表层“长程硬化”的原因,硬化效果取决于应力波的宽度和强度,HIPEB辐照应力波宽度较大,硬化层较深,而HIPIB辐照可以在较低能量密度获得更为显著的硬化效果。原始WC-Ni硬质合金的磨损以Ni粘结相的塑性变形和WC晶粒脱落为主要特征的磨粒磨损,耐磨性依赖于硬质合金的硬度。二类强流脉冲荷电粒子束辐照硬质合金磨损机制相似,耐磨性提高不仅仅与表面硬度相关,也与辐照改性的组织特性相关。辐照引入表面熔化导致原始硬质合金中WC晶粒与Ni粘结相之间微孔缺陷愈合,在滑动摩擦磨损的初始阶段硬质合金表面熔层组织被逐渐磨削,局部区域发生片状粘着,磨损机制主要为微观切削和粘着磨损。稳定磨损阶段的磨损机制与原始硬质合金相似,但辐照冲击波在较长范围的深度硬化效应使硬质合金中WC晶粒与Ni粘结相之间的结合力增强,以及Ni粘结相自身强化有效抑制了滑动摩擦磨损过程中Ni粘结相的微观磨损和随后WC晶粒的脱落。
Replacement of Co by Ni is found to improve the corrosion reistance, heat stability and anti-radiation of WC based cemented carbide, but its mechanical properties and wear resistance are lower than that of WC-Co system cemented carbide. In order to improve the wear resistance and lifetime of the WC-Ni system cemented carbide and its components under the extreme condition, the experimental investigation of the WC-13Ni cemented carbide irradiated by high-intensity pulsed charged particle beams are performed in TEMP-6type high-intensity pulsed ion beam (HIPIB) apparatus and compact high-intensity pulsed electron beam (HIPEB) apparatus, respectively. The modification mechanism of nickel cemented tungsten carbide irradiated by high-intensity pulsed charged particle beams are illustrated in terms of the change on surface morphology, phase structure, surface roughness, surface microhardness, and tribological performance of modified surface, respectively.
     The WC-13Ni cemented carbides were irradiated by HIPIB at energy densities of1-6J/cm2and shot number of1~10with a pulse width of70ns. The surface remelting and selective ablation of nickel binder phase resulted in the formation of a "hill-valley" surface morphology with smoothed and densified in microscale on the irradiated surfaces. The surface roughness Ra increased with increasing energy density and shot number, and Ra for irradiated sample at6J/cm with10shots significantly increased from0.13μm for original sample to1.62μm. It is found that the phase transformation from hexagonal a-WC to cubic β-WC1-x underwent in the irradiated surface layer, and the amount of β-WC1-x phase increaed with increasing energy density and shot number. Surface hardening in different degrees is observed on the HIPIB irradiated samples compared with the original samples. Surface microhardness of the irradiated samples at a fixed shot number presented a similar hardening tendency with increasing the energy densities, i.e."increase-decrease-increase", and surface microhardness of irradiated sample at6J/cm2with10shots significantly increased from11.84GPa for original sample to16.60GPa. The HIPIB irradiation led to the "long range hardening" on the surface layer of WC-13Ni samples, and the depth of hardened layer increased with increasing energy density and shot number, where the depth of hardened layer reached to160μm for the irradiated sample at6J/cm2with10shots. The block-on-ring wear test demonstrated that the friction coefficient and specific wear rate of HIPIB irradiated samples obviously decreased. The HIPIB irradiated samples at6J/cm2with10shots exhibited the superior tribological performance, the friction coefficient decreased from0.80for the original sample to0.48. Correspondingly, the specific wear rate decreased from1.2×10-6mm3/Nm to3.6×10-7mm3/Nm, which is approximately reduced by70%compared with that of the original sample.
     The WC-13Ni cemented carbides were irradiated by HIPEB at energy densities of3~34J/cm2and shot number of1-10with a pulse width of180ns. The surface remelting, ablation and ejection, as followed by fast re-solidification resulted in a typical ablated-ejected surface topography with some craters and blow holes formed on the irradiated surfaces. Similar to the HIPIB irradiation, the higher energy density and multiple shots,Ra increased more remarkably, and Ra significantly increased from0.21μm for original sample to1.26μm for irradiated sample at34J/cm2with10shots. It is found that the phase transformation from hexagonal a-WC to cubic β-WC1-x and hexagonal a-W2C underwent in the irradiated surface layer, and the amount of β-WC1-x, phase increased with increasing energy density and shot number. Moreover, the graphite C phase can also be observed on the surface of irradiated sample at the higher energy density of34J/cm2. Surface hardening and softening in different degrees was observed on the HIPEB irradiated samples compared with the original samples. The surface microhardness of irradiated samples reach to a maximal value of13.70GPa at3J/cm2with1shot, and reach to a minimal value of10.49GPa at34J/cm2with5shots. The "long range hardening" phenomenon is observed on all the HIPEB irradiated WC-13Ni samples with surface hardening and softening, and the depth of the hardened layer increased with increasing energy density and shot number, where the depth of hardened layer reached to380μm for the irradiated sample at34J/cm2with10shots. The block-on-ring wear test demonstrated that the friction coefficient and specific wear rate of HIPEB irradiated samples obviously decreased. The HIPEB irradiated samples at34J/cm2with10shots exhibited the superior tribological performance, the friction coefficient decreased from0.80for the original sample to0.54. Correspondingly, the specific wear rate decreased from1.2X10-6mm3/Nm to3.8×10-7mm3/Nm, which is approximately reduced by68%compared with that of the original sample.
     The maximum energy of HIPIB irradiation deposited in the several hundreds nm range of the surface layer of WC-13Ni samples, and led to more stronger surface melting and ablation to form a "hill-valley" surface morphology. However, the maximum energy of HIPEB irradiation deposited in the subsurface layer of WC-13Ni samples, about several μm, and led to the subsurface layer melting and melt eruption to form the craters. High-intensity pulsed charged particle beams irradiation with rapid heating and cooling led to carbon loss of WC in short pulse and rapid quenching, and contributed to the formation of metastable β-WC1-x phase. Moreover, HIPEB irradiation have longer pulse action time and larger energy deposited range than HIPIB irradiation led to slower heating and cooling rate and longer high-temperature reaction, and contributed to much more carbon loss of WC and decomposition of some β-WC1-x phases to form metastable a-W2C phase and graphite C phase. Surface hardening of the irradiated samples is resulted from the decreasing of the nickel binder phase content and densification in the surface layer, and the formation of a-W2C phase on the surface layer of HIPEB irradiated samples also increased hardening effect. The formation of metastable β-WC1-x phase only reduced the surface hardening degree of HIPIB irradiated samples, but the reason of surface softening of HIPIB irradiated samples is the formation of β-WC1-x phase and some defects, such as cracks and blow holes and so on. The reason of the "long range hardening" on the surface layer of the irradiated samples is the formation of crystal defects, such as dislocation, vacancy and so on, which is resulted from the impact action of the stress wave by high intensity pulsed charged particle beams irradiation. Hardening effect depends on the width and intensity of stress wave. HIPEB irradiation have deeper hardening layer than HIPIB irradiation because it have longer width of stress wave, but an more significant hardening effect is achieved for HIPIB irradiated samples at lower energy density. The wear mechanism of original WC-Ni cemented carbide during the wear process is abrasive wear with the main characteristics of plastic deformation of Ni binder phase and fall-out of WC grains, and wear resistance depends on the hardness of cemented carbide. The irradiated samples by both high-intensity pulsed charged particle beams have similar wear mechanism, and the improved wear resistance of irradiated samples is not only related to surface hardness, but also associated with the features of modified structure. Irradiation led to surface healing of original defects of micro-pores between WC grains and binder phase by surface remelting. At the initial stage of sliding wear process, the melted layer was gradually worn out and some regions smeared flack-shape debris, and the main mechanisms of the irradiated samples are micro-abrasion and adhesive wear. In the steady-state stage of sliding wear, the wear mechanism of the irradiated samples is similar to that of original sample, but the micro-abrasion of Ni binder phase and subsequent pull-out of WC grains can be effectively restricted in the irradiated samples during the sliding wear process, as result of bonding force between WC grains and Ni binder phase, and strengthening of binder phase itself by the hardened effect in the long range from shock waves of beams irradiation.
引文
[l]吴月天.机械密封用耐磨、耐蚀硬质合金材料-YCN3合金研制[J].硬质合金,1996,13(2):95-98.
    [2]王成彪,刘家浚,韦淡平,陈华辉.摩擦学材料及表面工程[M].北京:国防工业出版社,2012,2:254-263.
    [3]陶国林,蒋显全,黄靖.硬质合金刀具材料发展现状与趋势[J].金属功能材料,2011,18(3):79-83.
    [4]张立.国内外硬质合金研究和发展动态[J].有色金属工业,2001,(10):25-27.
    [5]储开宇.21世纪刀具材料的发展与应用[J].制造技术与机床,2010,(7):63-67.
    [6]张文毓.硬质合金涂层刀具研究进展[J].稀有金属与硬质合金,2008,36(1):59-63
    [7]胡忠荣.矿用硬质合金牌号选择与使用的关系[J].凿岩机械气动工具,2012,(3):1-5.
    [8]Human A M, Northrop I T, Luyckx S B, James M N. A Comparison Between Cemented Carbides Containing Cobalt-and Nickel-Based Binders [J]. Journal of Hard Materials.1991,2 (3-4):245-256.
    [9]温庆丰,刘莹,黄伟峰,索双富,刘向锋,王玉明.机械密封端面材料WC-Ni硬质合金的研究进展[J].粉末冶金材料科学与工程2011,16(1):1-6.
    [10]王宝友,崔丽华.涂层刀具的涂层材料、涂层方法及发展方向[J].机械,2002,29(4):63-65.
    [11]叶伟昌,谷勇霞.涂层刀具的发展与应用[J].机械制造,1997,5:4-6.
    [12]赵海波.国内外切削刀具涂层技术发展综述[J].工具技术,2002,36(2):3-7.
    [13]叶伟昌,严卫平,叶毅.涂层硬质合金刀具的发展与应用[J].硬质合金,1998,15(1):54-57.
    [14]康勃,马瑞新,吴中亮,王目孔,林炜.现代刀具涂层制备技术的研究现状[J].表面技术,2008,37(2):71-74.
    [15]Evans A G. Perspective on the development of high-toughness ceramics [J]. Journal of America Ceramic Society,1990, 73(2):187-206.
    [16]谢宏,肖逸锋,贺跃辉,丰平.硬质合金涂层刀具研究的新进展[J].中国钨金,2006,21(2):34-44.
    [17]任志华,彭红瑞.等离子体化学气相沉积TiN涂层刀具的应用研究[J].青岛化工学院学报.1995,16(4):345-349.
    [18]刘泉,周健,余卫华,刘桂珍.WC-8.0%Co基底上微波等离子化学气相沉积金刚石膜[J].中国有色金属学报,2001,11(1):116-119.
    [19]胡传烯,宋幼慧.涂层技术原理及应用[M].北京:化学工业出版社,2000.
    [20]Chen Y C, Ai X, Huang C Z, Wang B Y. Preparation of a-alumina carbide tools by the sol-gel process [J]. Materials Science and Engineering A,2000,288(1):19-25.
    [21]方斌,黄传真,许崇海,刘增文.涂层刀具的研究现状[J].机械工程师,2005,(10):21-24.
    [22]付志强,蔡育平,袁镇海,林松盛.真空阴极电弧沉积(Ti,Al)N薄膜的应用研究[J].机械工程材料,2001,25(8):25-26.
    [23]Stanley B Jr. Carbide coatability [J]. Cutting Tool Engineering,1995, (3):44-47.
    [24]Sproul W. PVD Today [J].Cutting Tool Engineering,1994, (2):52.
    [25]余米香,范洪远,熊计.离子注入在硬质合金刀具中的应用[J].工具技术,2007,42(6):48-51.
    [26]Perry A J, Geist D E, Narasimhan K, Treglio J R. On the state of stress in the surface of ground cemented carbide before and after metal ion implantation [J]. Surface and Coatings Technology,1996,86-87:364-371.
    [27]Mitsuo A, Uchida S, Yamamoto S, Aizawa T. Improvement of cutting performance forcarbide tools via chlorine ion implantation [J]. Surface and Coatings Technology,2004,188-189:630-635.
    [28]Fu R K Y, Kwok S C H, Chen P, Yang P, Ngai R H C, Tian X B, Chu P K. Surface modification of cemented carbide using plasma nitriding and metal ion implantation [J]. Surface and Coatings Technology,2005,196:150-154.
    [29]Saklakoglu I E, Saklakoglu N, Ceyhun V, Short K T, Collins G. The life of WC-Co cutting tools treated by plasma immersion ion implantation [J]. International Journal of Machine Tools and Manufacture,2007,47:715-719.
    [30]苏颖,林文廉WC-Co硬质合金的MEWA源离子注入表面改性研究[J].北京师范大学学报,1997,33(1):79-82.
    [31]Lin W L, Sang J M, Ding X J, Xu J, Yuan X M. Microchemical and microstructural changes of Co cemented WC induced by ion implantation [J]. Nuclear Instruments and Methods in Physics Research B,2002,188:201-204.
    [32]王世兴,熊碧军,田修波,杨士勤.C+Cr离子注入对硬质合金的表面改性[J].材料热处理技术,2011,40(4):122-125.
    [33]王世兴,熊碧军,李聪,田修波,杨士勤.YG8硬质合金表面的C+V双离子注入研究[J].哈尔滨工业大学学报,2011,43(7):102-106.
    [34]吴起白,黄拿灿,胡社军,曾鹏,尹诗衡.WC-Co硬质合金离子束表面改性研究[J].金属热处理2000,(7):10-11.
    [35]陈宝清,王斐杰,刘井宏,史维东.硬质合金YG20模具离子注入材料表面改性研究[J].熟加工工艺1999,1:26-33.
    [36]黄拿灿,吴起白,胡社军.工模具钢的金属离子注入及强化机理[J].热加工工艺,2000,(2):8-10.
    [37]黄拿灿,胡社军,吴起白,曾鹏,谢光荣.离子注入工模具材料表面改性及其展望[J].材料热处理学报,2002,23(1):61-64.
    [38]张通和,吴瑜光.离子束表面工程技术与应用[M].北京:机械工业出版社,2005:5-6,39-42.
    [39]Proskurovsky D I, Rotshtein V P, Ozur G E, Markov A B, Nazarov D S, Shulov V A, Ivanov Yu F, Buchheit R G. Pulsed electron-beam technology for surface modification of metallic materials [J]. Journal of Vacuum Science and Technology A,1998,16(4):2480-2488.
    [40]Dimitru G, Luscher B, Krack M, Bruneau S, Hermann J, Gerbig Y. Laser processing of hardmetals:Physical basics and applications [J]. Internation Journal Refractory Metal and Hard Material,2005,23:278-286.
    [41]Piekoszewski J, Werner Z, Szymczyk W. Application of high intensity pulsed ion and plasma beams in modifcation of materials [J]. Vacuum,2001,63:475-481.
    [42]Uglov V V, Anishchik V M, Astashinski V M, Cherenda N N, Gimro L G, Kovyaza A V. Modification of WC hard alloy by compressive plasma flow [J].Surface and Coatings Technology,2005,200:245-249.
    [43]Uglov V V, Remnev G E, Kuleshov A K, Astashinski V M, Saltymakov M S. Formation of hardened layer in WC-TiC-Co alloy by treatment of high intensity pulse ion beam and compression plasma flows [J]. Surface and Coatings Technology,2010,204:1952-1956.
    [44]Ivanov Y F, Rotshein V P, Proskurovsky D I, Orlov P V, Polestchenko K N, Ozur G E, Goncharenko I M. Pulsed electron-beam treatment of WC-TiC-Co hard alloy cutting tools:wear resistance and microstructural evolution [J]. Surface and Coatings Technology,2000,125:251-256.
    [45]Gnyusov S, Tarasov S, Ivanov Yu, Rothstein V. The effect of pulsed electron beam melting on microstructure, friction and wear of WC-Hadfield steel hard metal [J]. Wear,2004,257:97-103.
    [46]郝胜智,徐洋,贺冬云,董闯.强流脉冲电子束辐照YG8硬质合金的组织和性能[J].金属热处理2011,36(3):68-71.
    [47]Uglov V V, Kuleshvov A K, Soldatenko E A, Koval N N, Ivanov Yu F, Teresov A D. Structure, phase composition and mechanical properties of hard alloy treated by intense pulsed electron beams [J]. Surface and Coatings Technology, 2012,206:2972-2976.
    [48]宋仁国,陈光南,张坤.激光和电子束表面强化技术的发展及其应用[J].物理学和高新技术,2000,29(7):411-415.
    [49]Cappelli E, Orlando S, Pinzari F, Napoli A, Kaciulis S. WC-Co cutting tool surface modifications induced by pulsed laser treatment [J]. Applied Surface Science,1999,138-139:376-382.
    [50]Li T J, Lou Q H, Dong J X, Wei Y R, Liu J R. Escape of carbon element in surface ablation of cobalt cemented tungsten carbide with pulsed UV laser [J]. Applied Surface Science,2001,172:51-60.
    [51]Li T J, Lou Q H, Dong J X, Wei Y R, Liu J R. Phase transformation during surface ablation of cobalt cemented tungsten carbide with pulsed UV laser [J]. Applied Physics A Materials Science and Processing,2001,73:391-397.
    [52]Kano S, Inoue T. Surface softening and hardening of WC-Co using pulsed laser irradiation[J]. Surface and Coatings Technology,2006,201:223-229.
    [53]Karatas C, Yilbas B S, Aleem A, Ahsan M. Laser treatment of cemented carbide cutting tool [J]. Materials Processing Technology,2007,183:234-240.
    [54]杨胶溪,丁啸,雷丽,刘华东.一种脉冲激光去钴熔凝强化硬质合金的工艺:中国,CN101643824A[P].2010,2,10.
    [55]Arroyo J M, Diniz A E, Fernandes de Lima M S. Cemented carbide surface modifications using laser treatment and its effects on hard coating adhesion [J]. Surface and Coatings Technology,2010,204:2410-2416.
    [56]Hodgson R T, Baglin J E E, Pal R, Neri J M, Hammer D A. Ion beam annealing of semiconductors [J]. Applied Physics Letters,1980,37(2):187-189.
    [57]Usov Yu P, Didenko A N, Remnev G E, Kuznetsov B I, Khazanov A A, Logatchev E I, Lopatin V S. Proceedings of the 3rd all-Russian conference on application of electron and ion technology for industry. Tbilisi,1981:110-113.
    [58]Pogrebnjak A D, Remnev G E, Kurakin I B, Ligachev A E. Structural, physical and chemical changes induced in metals and alloys exposed to high power ion beams [J]. Nuclear Instruments and Methods in Physics Research B,1989, 36:286-305.
    [59]Stinnett R W, Buchheit R G, Neau E L, Crawford M T, Lamppa K P, Renk T J, Greenly J B, Boyd I, Thompson M O, Rej D J. Ion beam surface treatment:a new technique for thermally modifying surfaces using intense pulsed ion beams [J]. Digest of technical papers, Tenth IEEE International Pulsed Power Conference, edited by W. L. Baker and G. Cooperstein (July 3-6,1995, Albuquerque, NM, USA), IEEE Piscataway, NJ, USA, Part 1, vol.1,1995, pp.46-55.
    [60]Davis H A, Remnev G E, Stinnett R W, Yatsui K. Intense ion-beam treatment of materials [J]. MRS Bulletin,1996,21: 58-62.
    [61]雷明凯,刘臣,董志宏,韩晓光.强流脉冲离子辐照涡轮叶片表面的清洗加工[J].乒国机械工程,2007,18(5):604-607.
    [62]张健,张罡,毕鉴智,李玉海,姚俊.强流脉冲碳离子束强化T5K10具机理研究[J].腐蚀科学与防护技术,2005,17(3):165-168.
    [63]刘臣.强流脉冲离子束辐照的冲击加工与强化作用研究[D].大连:大连理工大学材料科学与工程学院,2009.
    [64]刘锡三.高功率脉冲技术[M].北京:国防工业出版社,2005,8:1-28.
    [65]Boscolo I, Leo M, Luches A, Provenzano L. Electron beam production by a Tesla transformer accelerator [J]. Review of Scientific Instruments,1977,48(7):747-751.
    [66]Boscolo 1, Brautti G, Leo M, Luches A, Perrone M R. ATRI-A Tesla-transformer type electron beam accelerator [J]. Journal of Vacuum Science and Technology,1975,12(6):1194-1196.
    [67]石磊,邱爱慈,王永昌,何小平,张嘉生,蒯斌,曾正中.高功率脉冲离子束的产生[J].强激光与粒子束,1999,11:776-780.
    [68]Werner Z, Piekoszewski J, Szymczyk W. Generation of high-intensity pulsed ion and plasma beams for material processing [J]. Vacuum,2001,63(4):701-708.
    [69]周南,乔登江.脉冲辐照动力学[M].北京:国防工业出版社,2002,8:8-10.
    [70]周南,牛胜利,丁升,邱爱慈.强脉冲离子束辐照热-力学效应研究[J].强激光与粒子束,2000,12(2):249-253.
    [71]Zhao W J, Remnev G E, Yan S, Opekounov M S, Le X Y, Matvienko V M, Han B X, Xue J M, Wang Y G. Intense pulsed ion beam sources for industrial applications [J]. Review of Scientific Instruments,2000,71(2):1045-1048.
    [72]Pogrebnjak A D, Remnev G E, Kurakin I B, Ligachev A E. Structural, physical and chemical changes induced in metals and alloys exposed to high power ion beams [J]. Nuclear Instruments and Methods in Physics Research B,1989, 36:286-305.
    [73]Korotaev A D, Ovchinnikov S V, Pochivalov Yu I, Tyumentsev A N, Shchipakin D A, Tretjak M V, Isakov I F, Remnev G E. Structure-phase states of the metal surface and undersurface layers after the treatment by powerful ion beams [J]. Surface and Coatings Technology,1998,105:84-90.
    [74]Valyaev A N, Ladysev V S, Pogrebnjak A D, Valyaev A A, Plotnikov S V. Comparative analysis of radiation damages, mechanical and tribological properties of a-Fe exposed to intense-pulsed electron and ion beams [J]. Nuclear Instruments and Methods in Physics Research B,2000,161-163:1132-1136.
    [75]Han B X, Yan S, Le X Y, Remnev G E, Opekounov M S, Isakov I F, Grushin I I. The phase and microstructure changes in 45# steel irradiated by intense pulsed ion beams [J]. Surface and Coatings Technology,2000,128-129: 387-393.
    [76]Akamatsu H, Ikeda T, Azuma K, Fujiwara E, Yatsuzuka M. Surface treatment of steel by short pulsed injection of high-power ion beam [J]. Surface and Coatings Technology,2001,136:269-27.
    [77]Pogrebnjak A D, Ruzimov Sh M. Increased microhardness and positron annihilation in Al exposed to a high-power ion beam [J]. Physics Letters A,1987,120:259-261.
    [78]Pogrebnjak A D, Isakov I F, Opekunov M S, Ruzimov Sh M, Ligachev A E, Nesmelov A V, Kurakin I B. Increased wear resistance and positron annihilation in Cu exposed to high power ion beam [J]. Physics Letters A,1987,123(8): 410-412.
    [79]Isakov I F, Ligachev A E, Pogrebnjak A D, Remnev G E. Changed structure and improved operation characteristics of metals and alloys exposed to high power ion beams [J]. Nuclear Instruments and Methods in Physics Research B,1987, 28:37-40.
    [80]Pogrebnjak A D. Metastable states and structural phase changes in metals and alloys exposed to high power pulsed ion beams [J]. Physica Status Solidi A,1990,117:17-51.
    [81]Remnev G E, Shulov V A. Application of high-power ion beams for technology [J]. Laser and Particle Beams,1993, 11(4):707-731.
    [82]Pogrebnjak A D, Shablya V T, Siridenko N V, Valyaev A N, Plotnikov S V, Kylyshkanov M K. Study of deformation states in metals exposed to intense-pulsed-ion beams (IPIB) [J]. Surface and Coatings Technology,1999,111:46-50
    [83]Valyaev A N, Ladysev V S, Pogrebnjak A D, Valyaev A A, Plotnikov S V. Comparative analysis of radiation damages, mechanical and tribological properties of a-Fe exposed to intense-pulsed electron and ion beams [J]. Nuclear Instruments and Methods in Physics Research B,2000,161-163:1132-1136.
    [84]Valyaev A N, Ladysev V S, Mendygaliev D R, Pogrebnjak A D, Valyaev A A, Pogrebnjak N A. Defects in a-Fe induced by intense-pulsed ion beam (IPIB) [J]. Nuclear Instruments and Methods in Physics Research B,2000,171: 481-486.
    [85]Proskurovsky D I, Rotshtein V P, Ozur G E, Ivanov Yu F, Markov AB. Physical foundation for surface modification of materials with lower energy, high current electron beams [J]. Surface and Coatings Technology,2000,125:49-56.
    [86]董志宏.强流脉冲离子束特性优化及辐照力学效应研究[D].大连:大连理工大学材料科学与工程学院,2007.
    [87]Li P, Lei M K, Zhu X P. Dry sliding tribological behaviour of AZ31 magnesium alloy irradiated by high-intensity pulsed ion beam [J]. Applied Surface Science,2010,257:72-81.
    [88]Gao B, Hao S, Zou J, Grosdidier T, Jiang L, Zhou J, Dong C. High current pulsed electron beam treatment of AZ31 Mg alloy [J]. Journal of Vacuum Science and Technology A,2005,23(6):1548-1553.
    [89]Gao B, Hao S, Zou J, Wu W, Tu G, Dong C. Effectof high current pulsed electron beam treatment on surface microstructure and wear and corrosion resistance of an AZ91HP magnesium alloy [J]. Surface and Coatings Technology,2007,201:6297-6303.
    [90]Rej D J, Davis H A, Olson J C, Remnev G E, Zakoutaev A N, Ryzhkov V A, Struts V K, Isakov I F, Shulov V A, Nochevnaya N A, Stinnett R W, Neau E L, Yatsui K, Jiang W. Materials processing with intense pulsed ion beams [J]. Journel of Vacuum Science and Technology A,1997,15(3):1089-1097
    [91]胡永峰,朱雪梅,朱小鹏,雷明凯.强流脉冲离子束辐照合金Ti6A14V的耐蚀性[J].大连铁道学院学报,2002,23(3):84-87.
    [92]Wang X, Han X G, Lei M K, Zhang J S. Effect of high-intensity pulsed ion beams irradiation on corrosion resistance of 316L stainless steel [J]. Material Science and Engineering A,2007,457:84-89.
    [93]Zhang K. M, Yang D Z, Zou J X, Grosdidier T, Dong C. Improved resistance of a NiTi alloy by high current pulsed electron beam treatment [J].Surface and Coatings Technology,2006,201:3096.
    [94]Grosdidier T, Zou J X, Stein N, Boulanger C, Hao S Z, Dong C. Texture modification, grain refinement and improved hardness/corrosion balance of a FeAl alloy by pulsed electron beam surface treatment in the "heating mode" [J]. Scripta Materialia,2008,58:1058-1061.
    [95]Rotshtein V P, Ivanov Y F, Proskurovsky D I, Karlik K V, Shulepov I A, Markov A B. Microstructure of the near-surface layers of austenitic stainless steels irradiated with a low-energy, high-current electron beam [J]. Surface and Coatings Technology,2004,180-181:382-386.
    [96]刘金亮.基于水介质螺旋Blumlein线的紧凑型长脉冲加速器研究[D].北京:清华大学电机工程与应用电子技术系,2008,6.
    [97]Liu J L, Zhang H B, Fan Y W, Hong Z Q, Feng J H. Study of low impedance intense electron-beam accelerator based on magnetic core Tesla transformer [J]. Laer and Particle Beams,2012,30(2):299-305.
    [98]易爱平,赵学庆,郭建明,罗志宏,甘雨刚,沈志康,王龙华,刘晶儒.天鹅绒阴极二极管的实验研究[J].强激光与粒子束,2001,13(5):369-372.
    [99]樊玉华,周恒,钟辉煌,舒挺,季涛,杨汉武,罗玲.碳纤维天鹅绒阴极与化纤天鹅绒阴极的比较[J].强激光与粒子束,2010,22(3):587-590.
    [100]Zhu X P, Lei M K, Dong Z H, Miao S M, Ma T C. Crater formation on the surface of titanium irradiated by a high-intensity pulsed ion beam [J]. Surface and coatings technology,2003,173:105-110.
    [101]Zhang H T, Wang T M, Han B X, Zhao W J, Han Y F. Surface modification of Ni3Al-based alloy IC6 with intense pulsed ion beams [J].Vacuum,2003,68:329-333.
    [102]Wang X, Lei M K, Zhang J S. Surface modification of 316L stainless steel with high-intensity pulsed ion beams [J].Surface and Coating Technology,2007,201:5884-5890.
    [103]Lei M K, Zhu X P, Liu C, Xin J P, Han X G, Li P, Dong Z H, Wang X, Miao S M. A novel shock processing by high-intensity pulsed ion beam [J]. Journal of Manufacturing Science and Engineering,2009,131:031013.
    [104]Li T J, Lou Q H, Dong J X, Wei Y R, Liu J R. Escape of carbon element in surface ablation of cobalt cemented tungsten carbide with pulsed UV laser [J]. Applied Surface Science,2001,172:51-60.
    [105]Korotaev A D, Ovchinnikov S V, Pochivalov Yu I, Tyumentsev A N, Shchipakin D A, Tretjak M V, Isakov I F, Remnev G E. Structure-phases of the metal surface and undersurface layers after the treatment by powerful ion beams [J]. Surface and Coatings Technology,1998,105:84-95.
    [106]Cullity B D. Elements of X-Ray Diffraction [M]. Addison-wesley, Massachusetts,1978.
    [107]Jia K, Fischer T E. Sliding wear of conventional and nanostructured cemented carbides [J]. Wear,1997,203-204: 310-318.
    [108]Pirso J, Viljus M, Letunovits S. Friction and dry sliding wear behaviour of cermets [J]. Wear,2004,257:815-824.
    [109]吴爱民.模具钢电子束表面改性及应用基础研究[D].大连:大连理工大学材料科学与工程学院,2002.
    [110]Zhang X D, Hao S Z, Grosdidier T, Zou J X, Gao B, Bolle B, Allain-Bonasso, Qin Y, Li X N, Dong C. Surface modification of light alloy by low-energy high-current pulsed electron beam [J]. Journal of Metallurgy,2012, Ariticle ID 762125:1-10.
    [111]Ziegler J F, Biersack J P, Ziegler M D. The stopping and range of ions in solids [M]. SRIM.org,2008.
    [112]Schiller S, Heisig U, Panzer S. Electron beam technology[M], John Wiley, Canada,1982.
    [113]Qin Y, Dong C, Wang X. Temperature profile and crater formation induced in high-current pulsed electron beam processing [J]. Journal of Vacuum Science and Technology A,2003,21:1934-1938.
    [114]Zhu X P, Suematsu H, Jiang W, Yatsui K, Lei M K.Pulsed-ion-beam nitriding and smoothing of titanium surface in a vacuum [J]. Applied Physics Letters,2005,87:093111.
    [115]Zhu X P, Lei M K, Ma T C. Surface morphology of titaium irradiated by high-intensity pulsed ion beam [J]. Nuclear Instruments and Methods in Physics Research B 2003,211:69-79.
    [116]Sara R V. Phase equilibria in the system tugsten-carbon [J]. Jounal of The American Ceramic Society,1965,48(5): 251-257.
    [117]Kublii V Z, Velikanova T Ya. Ordering in the carbide W2C and phase equilibria in the tungsten-carbon system in the region of its existence [J]. Powder Metallurgy and Metal Ceramics,2004,43:11-12.
    [118]Demetriou M D, Ghoniem N M, Lavine A S. Kinetic modeling of phase selection during non-equilibrium solidification of a tungsten-carbon system [J]. Acta Materialia.2002,50:1421-1432.
    [119]Demetriou M D, Ghoniem N M, Lavine A S. Computation of metastable phases in tungsten-carbon system[J]. Journal of phase equilibria,2002,23:305-309.
    [120]Akamatsu H, Yatsuzuka M. Simulation of surface temperature of metals irradiated by intense pulsed electron, ion and laser beams [J]. Suface and Coatings Technology,2003,169-170:219-222.
    [121]Gromilov S A, Kinelovskii S A, Kireenko I B. Surface of a titanium target after interation with shaped-charge jet particles [J]. Combustion, Explosion and Shock Waves,2003,39 (5):601-605.
    [122]Verdon C, Karimi A, Martin J -L. A study of high velocity oxy-fuel thermally thermally sprayed tungsten carbides based coatings. Part 1:Microstructures [J]. Materials Science and Engineering A,1998,246:11-24.
    [123]Kurlov A S, Gusev A 1. Neutron and x-ray diffraction study and symmetry analysis of phase transfomations in lower tungsten carbide W2C [J]. Physical Review B,2007,76:174115.
    [124]Vinayo M E, Kassabji F, Guyonnet J, Fauchais P. Plasma sprayed WC-Co coatings:Influence of spray conditions (atomospheric and low pressure plasma spraying) on the crystal structure, porosity, and hardness [J]. Journal of Vacuum Science and Technology A,1985,27(2):167-173.
    [125]Su Y D, Hu C Q, Wang C, Wen M, Zheng W T. Relatively low temperature synthesis of hexagonal tungsten carbide films by N doping and its effect on the preferred orientation, phase transition, and mechanical properties [J]. Journal of Vacuum Science and Technology A:Vacuum, Surfaces, and Films,2009,27 (2):167-173.
    [126]Gubisch M, Liu Y, Krischok S, Ecke G, Spiess L, Schaefer J A, Knedlik C. Tribological characteristics of WC1-x,W2C and WC tungsten carbide films [J]. Tribology and Interface Engineering Series,2005,48:409-417.
    [127]Babu S P, Basu B, Sundararajan G. Processing-structure-property correlation and decarburization phenomenon in detonation sprayed WC-12Co coatings [J]. Acta Materialia,2008,56:5012-5026.
    [128]Engqvist H, Botton G A, Ederyd S, Phaneuf M, Fondelius J, Axen N. Wear phenomena on WC-based face seal rings [J]. International Journal of Refractory Metals and Hard Materials,2000,18:39-46.
    [129]Larsen-Basse J. Binder extrusion in sliding wear of WC-Co alloys [J]. Wear,1985,105:247-256.
    [130]Sheikh-Ahmad J Y, Bailey J A. The wear characteristics of some cemented tungsten carbides in machining particleboard [J]. Wear,1999,225-229:256-266.
    [131]Bonny K, De Baets P, Vleugels J, Huang S, Lauwers B. Friction and wear characteristics of WC-Co cemented carbides in dry reciprocating sliding contact [J]. Wear,2010,268:1504-1517.
    [132]Saito H, Iwabuchi A, Shimizu T. Effects of Co content and WC grain size on wear of WC cemented carbide [J]. Wear, 2006,261:126-132.
    [133]Jia K, Fischer T E. Abrasion resistance of nanostructured and conventional cemented carbides [J]. Wear,1996,200: 206-214.
    [134]Pirso J, Letunovits S, Viljus M. Friction and wear behaviour of cemented carbides [J]. Wear,2004,257:257-265.
    [135]Bonny K, De Baets P, Vleugels J, Huang S, Lauwers B. Dry reciprocating sliding friction and wear response of WC-Ni cemented carbides [J]. Tribology Letter,2008,31:199-209.
    [136]O'Quigley D G F, Luyckx S, James M N.An empirical ranking of a wide range of WC-Co grades in terms of their abrasion resistance measured by the ASTM standard B611-85 Test [J]. International Journal of Refractory Metals and Hard Materials,1997,15:73-79.
    [137]赵威,何宁,李亮.在氮气介质中WC-Co/Ti6Al4V摩擦副的摩擦磨损性能研究[J].摩擦学报,2006,26(5):439-442.
    [138]朱流,郦剑,凌国平.超细WC-Co硬质合金及磨损性能研究[J].材料热处理学报,2006,27(3):112-115.
    [139]潘永智,艾兴,赵军,李光业,宋良煜.超细晶粒硬质合金的高速摩擦磨损特性研究[J].摩擦学学报,2008,28(1):78-82.
    [140]杜晓东,尤显卿,郑玉春.WC基钢结硬质合金磨损机理研究[J].硬质合金2001,18(1):21-25.
    [141]杜晓东,尤显卿,郑玉春,左其福.DGJW40钢结硬质合金的摩擦磨损研究[J].稀有金属与硬质合金,2000,141:14-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700