滇西哀牢山造山带金成矿作用地球化学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哀牢山造山带是三江特提斯构造域的重要组成部分,经历了完整的多旋回演化历程,发生了巨量规模的金属工业聚集,形成了我国最重要的喜马拉雅期造山型金矿带,是研究复合造山带中碰撞造山型金矿成因机制理想选区。论文通过对金矿带内四个典型金矿矿床地质和成矿作用地球化学研究,获得如下主要成果。
     (1)野外及岩相学观察表明,金矿化对围岩并没有选择性;矿体主要受北西向次级构造控制;矿化样式主要为破碎带蚀变岩型与石英硫化物脉型;围岩蚀变具多期多种类型、范围窄、分带不明显;矿物组合相对简单,黄铁矿与石英是主要的载金矿物。
     (2)EMPA和LA-ICP-MS研究表明,浅部地层为墨江与长安金矿提供了大量成矿物质,而老王寨与大坪金矿成矿物质则主要来自于深部;成矿期载金黄铁矿主体为变质热液成因,高Ni含量指示有幔源物质的混入;老王寨与长安载金黄铁矿Au与As含量呈正相关,电感耦合等离子质谱输出信号图谱平坦,说明Au主要以[Au, As]2-、[Au(As,S3)]2-等络合物在热液中运移,并以类质同象的形式替代[S2]2-进入黄铁矿晶格;而在墨江与大坪金矿,金主要以裂隙金形式存在。
     (3)流体包裹体研究表明,成矿流体具中低温、中低盐度、富含CO2的特征,为H2O-NaCl-CO2-ΣS体系的还原性流体;从大坪→老王寨→墨江→长安,主成矿期流体均一温度与CO2含量逐渐降低;老王寨金矿成矿流体温度、压力的快速降低,使得流体中CO2过饱和,引起相分离作用;流体沸腾和硫化作用是金的主要沉淀机制。
     (4)C-H-O-S-Pb同位素与黄铁矿LA-ICP-MS分析表明,区域成矿流体主要为深源流体,以中-下地壳变质流体为主,伴有幔源流体的加入,成矿深度较浅的矿床存在大气降水的混入;成矿物质具有多来源特征,主要来源于中下地壳,并存在幔源物质的混入,浅部地层也提供部分成矿物质。
     (5)区域地质与各金矿床成矿作用的异同表明,从大坪→老王寨→墨江→长安,成矿深度依次降低,成矿系统中地壳浅部物质所占比率逐步升高,并依此建立了哀牢山金矿带造山型金矿成矿模型。
The Ailaoshan orogenic belt is an important part of the Sanjiang Tethys. It hasundergone multiple cycles of evolution with innumerable metallic deposits,comprising the most important Himalayan orogenic gold belt. It is also an idealdistrict of investigating the origin of orogenic gold deposits. Based on field geologyand geochemical research of the ore-forming processes of the four typical golddeposits in the Ailaoshan gold belt, the main achievements are summarized below:
     (1) Based on field geology and petrographical observations, the disseminatedmineralization and quartz-vein mineralization occur commonly in all wall rocks. Theore bodies are controlled by the NW-trending subsidiary structures. The wall-rockalterations occurred at multiple stages with a variety of types, narrow in space with noobvious zoning. Pyrite and quartz are the main gold-hosting minerals.
     (2) Based on the EMPA and LA-ICP-MS results, the shallow strata provideabundant ore-forming materials for Mojiang and Changan gold deposits, whereas theore-forming materials of the Laowangzhai and Daping deposits are mainly sourcedfrom the deep. The gold-bearing pyrite in the mineralization stage formed frommetamorphic fluids. The high Ni content indicates partial contribution from themantle. The gold and arsenic contents of pyrite from Laowangzhai and Changandeposits show positive correlations and smooth LA-ICP-MS profile, indicating thegold migrates mainly as complexes of [Au, As]2-、[Au(As,S3)]2-in the ore-formingfluids, and as the isomorphism replacing [S2]2-in the lattice. However, gold aremainly in the form of crack gold in Mojiang and Daping gold deposits.
     (3) Based on the fluid inclusion study, the ore-forming fluids have lowtemperature, low salinity, and CO2-rich characteristics and belong to reducing fluidsof H2O-NaCl-CO2-ΣS system. From Daping, through Laowangzhai, Mojiang toChangan, the main mineralization homogenization temperature of fluid and CO2content decreased. The remarkable decrease of temperature and pressure of theLaowangzhai deposit results in supersaturation of CO2and phase separation. Fluidboiling and vulcanizing are the main precipitation mechanism of gold.
     (4) The C-H-O-S-Pb isotopes and LA-ICP-MS analyses of pyrite show that theore-forming fluid are mainly made up of deep metamorphic fluid from themedium-lower crust and mantle fluid. Atmospheric water is evolved in the shallowdeposits. The ore-forming materials are multiple sourced, mainly from themedium-lower crust with mixing of the mantle material. The wall rocks also providesome of the ore-forming material.
     (5) The similarities and differences between regional geology and themineralization of these gold deposits indicate that from Daping through Laowangzhai,Mojiang to Changan deposit, the metallogenic depth becomes shallower in sequence,the proportion of shallow crust material in the metallogenic system graduallyincreased. Based on these, this study established the model of orogenic goldmetallogenesis in the Ailaoshan gold belt.
引文
Abraitis P.K., Pattrick R.A.D., Vaughan D.J. Variations in the compositional, textural andelectrical properties of natural pyrite: a review. International Journal of Mineral Processing.2004,74(1-4):41-59.
    Alderton D H M, Pearce J A, Potts P J. Rare earth element mobility during granite alteration:evidence from southwest England. Earth and Planetary Science Letters.1980,49(1):149-165.
    Barnes H.L. Geochemistry of hydrothermal ore deposits. New York: John Wiley and Sons,1997
    Bateman.Economic mineral deposits,2nd ed. New York, John Wiley and Sons,1950,916.
    Bi XW, Hu RZ and He MY.Age determination of Ailaoshan gold metallogenic belt by ESRmethod and its geological significance.Chinese Science Bulletin.1996,41(18):1546-1549.
    Bierlein F P, Christie A B, Smith P K. A comparison of orogenic gold mineralisation in centralVictoria (AUS), western South Island (NZ) and Nova Scotia (CAN): implications forvariations in the endowment of Palaeozoic metamorphic terrains. Ore Geology Reviews,2004,25(1):125-168.
    Blanchard M., Alfredsson M., Brodholt J., et al. Arsenic incorporation into FeS2pyrite and itsinfluence on dissolution: A DFT study. Geochimica et Cosmochimica Acta.2007,71(3):624-630.
    Bohlke EB. Vertebral formulas for type specimens of eels (pisces, anguilliformes).Proceedingsofthe Academy of Natural Sciences of Philadelphia.1982,34:31-49.
    B hlke JK, Coveney Jr RM, Rye RO, et al. Stable isotope investigation of gold quartz veins at theOriental mine. Alleghany district, California: US Geological Survey Open-File Report.1988,88-279.
    Bowers TS, Helgeson HC. Calculation of the thermodynamic and geochemical consequences ofnonideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems:metamorphic equilibria at high pressures and temperatures. American Mineralogist.1983,68:1059-1075.
    Boyle. The geochemistry of gold and its deposits. Geological Survery of Canada Bullertin1979,280-584
    Bozzo AT, Chen JR. Barduhn of chlorine and carbon dioxide. AJ. The properties of hydrates In:Delyannis A, Delyannis E, eds.Fourth International Symposium on Fresh Water the Sea.1973,3:437-451.
    Bralia A., Sabatini G., Troja F. A revaluation of the Co/Ni ratio in pyrite as geochemical tool inore genesis problems; evidences from southern Tuscany pyritic deposits. MineraliumDeposita.1979,14(3):353-374.
    Brown A C, BartholoméP. Inhomogeneities in cobaltiferous pyrite from the Chibuluma Cu-Codeposit, Zambia. Mineralium Deposita.1972,7(1):100-105.
    Buddington AF. High temperature mineral association sat shallow to moderate depths. EconomicGeology.1935,30,205–222.
    Burnard P G, Hu R, Turner G, et al. Mantle, crustal and atmospheric noble gases in Ailaoshangold deposits, Yunnan Province, China. GeochimicaetCosmochimicaActa,1999,63(10):1595-1604.
    Burnard P G,Hu R,Turner G,et al. Mantle,crustal and atmospheric noble gases in Ailaoshan golddeposits,Yunnan Province,China. Geochimica et Cosmochimica Acta.1999,63(10):1595-1604.
    Butler I B,B ttcher M E,Rickard D,et al. Sulfur isotope partitioning during experimentalformation of pyrite via the polysulfide and hydrogen sulfide pathways: implications for theinterpretation of sedimentary and hydrothermal pyrite isotope records. Earth and PlanetaryScience Letters.2004,228(3):495-509.
    Carter A and Clift PD. Was the Indosinian orogeny a Triassic mountainbuilding or athermotectonic reactivation event? Comptes Rendus Geosciences.2008,340:83-93.
    Cawood PA. Terra AustralisOrogen: Rodinia breakup and development of thePacificandIapetusmargins of Gondwanaduring the Neoproterozoic and Paleozoic. Earth ScienceReview.2005,69:249-279.
    Chen YJ, Yeh C. Deposition of highly dispersed gold on alumina support. Journal of Catalysis.2001,200(1):59-68.
    Clayton J, Tretiak DN. Amine-citrate buffers for pH control in starch gel electrophoresis. Journalof the Fisheries Board of Canada.1972,29(8):1169-1172.
    Colvine. An empirical model for the formation of Archera gold deposits-products offinalcratonization of the Superior province, Canada. Economic Geology Monograph,1989,6:37-53
    Cook N.J, Mineralogy of the sulphide deposits at Sulitjelma, northern Norway. Ore GeologyReviews.1996,11(5):303-338.
    Cook N.J., Chryssoulis S.L. Concentrations of invisible gold in the common sulfides. CanadianMineralogist.1990,28(1):1-16.
    Cox SF. Faulting processes at high fluid pressures: An example of fault valve behavior from theWattle Gully Fault, Victoria, Australia. Journal of Geophysical Research: Solid Earth(1978–2012).1995,100(B7):12841-12859.
    Craig H. Isotopic variations in meteoric waters. Science.1961,133(3465):1702-1703.
    Craw D, Chamberlain CP. Meteoric incursion and oxygen fronts in the Dalradian metamorphicbelt, southwest Scotland: a new hypothesis for regional gold mobility. Mineralium Deposita.1996,31(5):365-373.
    Danyushevsky L, Robinson P, Gilbert S, et al. Routine quantitative multi-element analysis ofsulphide minerals by laser ablation ICP-MS: Standard development and consideration ofmatrix effects. Geochemistry: Exploration, Environment, Analysis,2011,11(1):51-60.
    Deditius A P, Utsunomiya S, Ewing R C, et al. Nanoscale “liquid” inclusions of As-Fe-S inarsenian pyrite. American Mineralogist.2009,94(2-3):391-394.
    Deditius A.P., Utsunomiya S., Renock D., et al. A proposed new type of arsenian pyrite;composition, nanostructure and geological significance. Geochimica et Cosmochimica Acta.2008,72(12):2919-2933.
    Diamond LW. Fluid inclusion evidence for P-V-T-X evolution of hydrothermal solutions inlate-Alpine gold-quartz veins at Brusson, Val d'Ayas, Northwest Italian Alps. AmericanJournal of Science.1990,290(8):912-958.
    Diamond LW. Review of the systematics of CO2–H2O fluid inclusions. Lithos.2001,55(1):69-99.
    Emmons, W.H. Gold deposits of the world: New York. MeGraw Hill,1937,562
    Fairmaid AM, Kendrick MA, Phillips D, et al. The origin and evolution of mineralizing fluids in asediment-hosted orogenic-gold deposit, Ballarat East, Southeastern Australia. EconomicGeology.2011,106(4):653-666.
    Fan WM, Wang YJ, Zhang AM, et al. Permianarc-back-arcbasindevelopmentalongtheAilaoshantectonic zone: Geochemical,isotopic and geochronological evidence fromthe Mojiang volcanic rocks, Southwest China. Lithos.2010,119:553-568.
    Fleet M.E., Mumin A.H. Gold-bearing arsenian pyrite and marcasite and arsenopyrite from CarlinTrend gold deposits and laboratory synthesis. American Mineralogist.1997,82(1-2):182~193.
    Flower MFJ, Hoàng N, Lo CH, et al. Potassic magma genesis and the AilaoShan-Red River fault.Journal of Geodynamics.2012,69:84-105.
    Foster JL. The significance of the date of snow disappearance on the arctic tundra as apossibleindicator of climate change.Arctic and Llpine Research,1989,21(1):60-70
    Funahara S, Nishiwaki N, Miki M, et al. Paleomagnetic study of Cretaceous rocks from theYangtze block, central Yunnan, China: implications for the India-Asia collision. Earth andplanetary science letters,1992,113(1):77-91.
    Funahara S, Nishiwaki N, Murata F, et al. Clockwise rotation of the Red River fault inferred frompaleomagnetic study of Cretaceous rocks in the Shan-Thai-Malay block of western Yunnan,China. Earth and Planetary Science Letters,1993,117(1):29-42.
    Garven G. The role of regional fluid flow in the genesis of the Pine Point deposit, western Canadasedimentary basin. Economic Geology.1985,80(2):307-324.
    Gebre-Mariam M, Hagemann SG, Groves DI.A classification scheme for epigeneticArchaeanlode-gold deposits.Miner.Deposita.1995,30:408-410.
    Gilley L D, Harrison TM, Leloup PH, et al. Direct dating of left-lateral deformation along the RedRiver shear zone, China and Vietnam. Joural of Geophysical Research.2003,108(B2):Art.No.2127.
    Goldfarb GJ, Groves DI, GardollS.Orogenic gold and geologic time: A global synthesis.OreGeology Reviews.2001,18:12-75.
    Goldfarb R., Baker T., Dube B., et al. Distribution, character and genesis of gold deposits inmetamorphic terranes. In: Economic geology100th Anniversary volume. Littleton: Societyof Economic Geologists.2005,407-450.
    Goldfarb RJ, Ayuso R, Miller ML, et al. The late Cretaceous Donlin Creek gold deposit,Southwestern Alaska: Controls on epizonal ore formation. Economic Geology.2004,99(4):643-671.
    Goldfarb RJ, Phillips GN, Nokleberg WJ. Tectonic setting of synorogenic gold deposits of thePacific Rim. Ore Geology Reviews.1998,13(1-5):185-218.
    Graupner T, Kempe U, Spooner ET, et al. Microthermometric, laser Raman spectroscopic, andvolatile-ion chromatographic analysis of hydrothermal fluids in the Paleozoic MuruntauAu-bearing quartz vein ore field, Uzbekistan. Economic Geology.2001,96(1):1-23.
    Groves DI, Foster RP. Archaean lode gold deposits. Gold metallogeny and exploration. SpringerUS.1991,63-103.
    Groves D I. The crustal continuum model for late-Archaean lode gold deposits of theYilgarnBlock, Western Australia. Mineralium Deposit,1993,28:366-374.
    Groves DI, Goldfarb RJ, Gebre-Mariam M, et al.Orogenic gold deposits: a proposedclassificationin the context of their crustal distribution and relationship to other gold deposittypes. OreGeology Reviews.1998,13:7-27.
    Groves DI, Goldfarb RJ, Robert F, et al. Gold deposits in metamorphic belts: overview of currentunderstanding, outstanding problems, future research, and exploration significance.Economic Geology.2003,98(1):1-29.
    Groves David I, Bierlein Frank P.Geodynamic settings of mineral deposit systems. Journal ofTheGeological Society.2007,164:19-30.
    GuoF, FanWM, WangYJ, et al. Upper Paleozoic basalts in the Southern Yangtze block:Geochemical and Sr-Nd isotopicevidenceforasthenosphere-lithosphereinteractionandopeningof thePaleo-Tethyanocean. InternationalGeology Review.2004,46:332-346.
    Haeussler P J, Bradley D, Goldfarb R, et al. Link between ridge subduction and goldmineralization in southern Alaska. Geology,1995,23(11):995-998.
    Hagemann SG, Gebre-Mariam M, Groves DI. Surface-water influx in shallow-level Archeanlode-gold deposits in Western, Australia. Geology.1994,22(12):1067-1070.
    Hagemann SG, Lüders V. P-T-X conditions of hydrothermal fluids and precipitation mechanismof stibnite-gold mineralization at the Wiluna lode-gold deposits, Western Australia:conventional and infrared microthermometric constraints. Mineralium Deposita.2003,38(8):936-952.
    Hawley J.E., Nichol I. Trace elements in pyrite, pyrrhotite and chalcopyrite of different ores.Economic Geology.1961,56(3):467-487.
    Hemley JJ, Hunt JP. Hydrothermal ore-forming processes in the light of studies inrock-bufferedsystems: I. Iron-copper-zinc-lead sulfide solubility relations. EconomicGeology and theBulletin of the Society of Economic Geologists.1992,87(1):23-43.
    HennigD, LehmannB, Frei D, et al. Early Permian sea floor to continentalarcmagmatismintheeasternPaleo-Tethys: U-PbageandNd-Sr isotope data from the southernLancangjiangzone,Yunnan,China. Lithos.2009,113:408-422.
    Holser W T. Evaluation of the application of rare-earth elements to paleoceanography.Palaeogeography,Palaeoclimatology,Palaeoecology.1997,132(1):309-323.
    Hou Z Q, Zaw K, Pan G T, et al. The SanjiangTethyanmetallogenesis in SW China: Tectonicsetting, metallogenic epoch and deposit type. Ore Geology Reviews.2007,31(1-4):48-87.
    Huang K, Opdyke N D. Paleomagnetic results from Cretaceous and Jurassic rocks of South andSouthwest Yunnan: evidence for large clockwise rotations in the Indochina andShan-Thai-Malay terranes. Earth and Planetary Science Letters,1993,117(3):507-524.
    Huston D.L., Sie S.H., Suter G.F., et al. Trace elements in sulfide minerals from easternAustralian volcanic-hosted massive sulfide deposits: Part I, Proton microprobe analyses ofpyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison withdelta34S values and implications for the source of sulfur in volcanogenic hydrothermalsystems. Economic Geology.1995,90(5):1167-1196.
    Jarvis K.E, Williams J.G. Laser ablation inductively coupled plasma massspectrometry(LA-ICP-MS): a rapid technique for the direct, quantitative determination ofmajor, trace andrare-earth elements in geological samples. Chemical Geology.1993,106(3-4):251-262.
    Jenner FE, Holden P, Mavrogenes J.A, et al.Determination of Selenium Concentrations inNISTSRM610,612,614and Geological Glass Reference Materials Using the ElectronProbe,LA-ICP-MS and SHRIMP II.Geostandards and Geoanalytical Research.2009,33(3):309-317.
    JianP, Liu D Y, Kroner A et al.. Devonian toPermian platetectoniccycleofthe Paleo-Tethysorogenin Southwest China Igeochemistry ofophiolitesarcback-arc assemblages and within-plateigneous rocks.Lithos.2009a,113(3/4):748-766.
    Jian P, Liu DY, Kroner A, et al. Devonian to Permian plate tectonic cycle of thePaleo-Tethysorogen in Southwest China: II: insights from zirconages ofophiolitesarcback-arc assemblages andwithin-plate igneous rocks and generation oftheEmeishan CFB province.Lithos.2009b,113(3/4):767-784.
    JianP, Liu DY and Sun XM. SHRIMP dating of the PermoCarboniferousJinshajiangophiolite,southwestern China: Geochronological constraints for the evolution ofPaleo-Tethys.Journal of Asian Earth Sciences.2008,32:371-384.
    Kerrich R, Cassidy KF. Temporal relationships of lode-gold mineralization toaccretion,magmatism, metamorphism and deformation, Archean to present: a review. OreGeologyReviews.1994,9:263-310.
    Kerrich R, Fyfe W S. The gold—carbonate association: Source of CO2, and CO2 fixation reactions in Archaean lode deposits. Chemical geology,1981,33(1):265-294.
    Kerrich R, Wyman D.Geodynamic setting of mesothermal gold deposits: an associationwithaccretionary tectonic regimes. Geology.1990,18:882-885.
    Kerrich R. Perspectives on genetic models for lode-golddeposits. Miner.Deposita.1993,28,362–365.
    Large R R, Danyushevsky L, Hollit C, et al. Gold and trace element zonation in pyrite using alaser imaging technique: implications for the timing of gold in orogenic and Carlin-stylesediment-hosted deposits. Economic Geology,2009,104(5):635-668.
    Large R., Thomas H., Craw D., et al. Diagenetic pyrite as a source for metals in orogenic golddeposits, Otago Schist, New Zealand. New Zealand Journal of Geology and Geophysics.2012,55(2):137-149.
    Large R.R., Bull S.W., Maslennikov V.V. A Carbonaceous Sedimentary Source-Rock Model forCarlin-Type and Orogenic Gold Deposits. Economic Geology.2011,106(3):331-358.
    Large R.R., Danyushevsky L., Hollit C., et al. Gold and Trace Element Zonation in Pyrite Using aLaser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-StyleSediment-Hosted Deposits. Economic Geology.2009,104(5):635-668.
    Large R.R., Maslennikov V.V., Robert F., et al. Multistage Sedimentary and Metamorphic Originof Pyrite and Gold in the Giant Sukhoi Log Deposit, Lena Gold Province, Russia. EconomicGeology.2007,102(7):1233-1267.
    Leloup PH, Philippe Hervé, Lacassin, et al.The Ailao Shan-Red River shear zone (Yunnan, China),Tertiary transform boundary of Indochina.Tectonophysics.1995,251(1):3-84.
    Lepvrier C, Vuong NV, Maluski H, et al. Indosinian tectonics in Vietnam. C. R.ComptesRendusGeosciences.2008,340:94-111.
    LepvrierC,MaluskiH,NguyenV,et al. Indosinian NW-trending shear zones within the Truong Sonbelt (Vietnam)40Ar-39Ar TriassicagesandCretaceous toCenozoic overprints.Tectonophysics.1997,283:105-127.
    Lhotka PG, Nesbitt BE. Geology of unmineralized and gold-bearing iron formation, ContwoytoLake-Point Lake region, Northwest Territories, Canada: Reply. Canadian Journal of EarthSciences.1990,27(9):1260-1262.
    Lindgren W. Mineral Deposit.4th ed. New York: Mc-Graw-Hill Book Company.1933
    Lindgren W.The relation of ore deposition to physicalconditions.Economic Geology.1907,2:105–127.
    Loftus~Hills G., Solomon M. Cobalt, nickel and selenium in sulphides as indicators of ore genesis.Mineralium Deposita.1967,2(3):228-242.
    LongerichHP, Jackson SE, GüntherD.Inter-laboratory note. Laser ablation inductivelycoupledplasma mass spectrometric transient signal data acquisition and analyteconcentrationcalculation. Journal of Analytical Atomic Spectrometry.1996,11(9):899-904.
    Loucks RR, Mavrogenes JA. Gold solubility in supercritical hydrothermal brines measured insynthetic fluid inclusions. Science.1999,284(5423):2159-2163.
    Marschik R, Mathur R, Ruiz J, et al. Late Archean Cu-Au-Mo mineralization at Gameleira andSerra Verde, Carajás Mineral Province, Brazil: constraints from Re-Osmolybdenite ages.MineraliumDeposita,2005,39(8):983-991.
    Maslennikov V V, Maslennikova S P, Large R R, et al. Study of trace element zonation in ventchimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (SouthernUrals, Russia) using laser ablation-inductively coupled plasma mass spectrometry(LA-ICPMS). Economic Geology.2009,104(8):1111-1141.
    McCuaig TC, Kerrich R. P-T-t-deformation-fluid characteristics of lode gold deposits: evidencefrom alteration systematics. Ore Geology Reviews.1998,12(6):381-453.
    Metcalfe I. Gondwanaland dispersion,Asian accretion and evolution of eastern Tethys.AustralianJournal of Earth Sciences.1996,43(6):605-623.
    Metcalfe I. Paleozoic and Mesozoic tectonic evolution and Paleogeography of East Asian crustalfragments: The Korean peninsula in context. Gondwana Research.2006,9:24-46.
    Mikucki EJ. Hydrothermal transport and depositional processes in Archean lode-gold systems: areview. Ore Geology Reviews.1998,13(1):307-321.
    Mookherjee A., Philip R. Distribution of copper, cobalt and nickel in ores and host-rocks,Ingladhal, Karnataka, India. Mineralium Deposita.1979,14(1):33-55.
    Murowchick J.B., Barnes H.L. Effects of temperature and degree of supersaturation on pyritemorphology. American Mineralogist.1987,72(11~12):1241-1250.
    Nesbitt BE. Oxide-sulfide-silicate equilibria associated with metamorphosed ore deposits; Part I,Theoretical considerations. Economic Geology.1986,81(4):831-840.
    Ngoc Nam, Tran. Thermotectonic events from Eparly Proterozoic to Miocene in the Indochinacraton: implication of K-Ar ages in Vietnam.Journal of Asian Earth Sciences.1998,16(5~6):475-484.
    Niggli,P. Ore deposits of magamatic origin. London,ThomasMurby and CO,1929.
    Ohmoto H. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. EconomicGeology.1972,67(5):551-578.
    Ohmoto H.,Rye R.O. Isotopes of sulfur and carbon. In: Barnes H.L.,eds. Geochemistry ofhydrothermal ore deposits. New York: John Wiley and Sons.1979,509-567.
    OwadaM, Osanai Y, NakanoN, et al. Crustal anatexis and formation of two types of graniticmagmas in the Kontummassif, central Vietnam: Implications for magma processes incollision zones. Gondwana Research.2007,12(4):428-437.
    Parnell C, Langhoffroos J, Iversen R. Pushing method in the expulsive phase of labor-ARandomized trial.Acta Obstetricia ET Gynecologica Scandinavica.1993,72(1):31-35.
    Phillips G N, Powell R. Link between gold provinces. Economic Geology,1993,88(5):1084-1098.
    Phillips GN, Evans KA. Role of CO2in the formation of gold deposits. Nature.2004,429(6994):860-863.
    Phillips GN, Groves DI, Martyn JE. An epigenetic origin for Archean bandediron-formation-hosted gold deposits. Economic Geology.1984,79(1):162-171.
    Pitcairn I.K., Olivo G.R., Teagle D.A.H., et al. Sulfide evolution during prograde metamorphismof the Otago and Alpine schists, New Zealand. Canadian Mineralogist.2010,48(5):1267-1295.
    Pitcairn I.K., Teagle D.A.H., Craw D., et al. Sources of metals and fluids in orogenic gold deposits:Insights from the Otago and Alpine schists, New Zealand. Economic Geology.2006,101(8):1525-1546.
    Pokrovski GS, Zakirov IV, Roux J, et al. Experimental study of arsenic speciation in vapor phaseto500C: implications for As transport and fractionation in low-density crustal fluids andvolcanic gases. Geochimica et Cosmochimica Acta.2002,66(19):3453-3480.
    Polat A, Kerrich R. Geodynamic processes, continental growth, and mantle evolution recorded inlate Archean greenstone belts of the southern Superior Province, Canada. PrecambrianResearch.2001,112(1):5-25.
    Powell R, Will TM, Phillips GN. Metamorphism in Archean greenstone belts-calculatedfluidcompositions and implications for gold mineralization.Journal of MetamorphicGeology,1991,9(2):141-150
    Price B.J. Minor elements in pyrites from the smithers map area, b.c. and exploration applicationsof minor element studies:[Doctoral thesis]. Vancouver: The University of BritishColumbia.1972,1-270.
    Reich M., Kesler S.E., Utsunomiya S., et al. Solubility of gold in arsenian pyrite. Geochimica etCosmochimica Acta.2005,69(11):2781-2796.
    Rock N M S, Groves D I. Can lamprophyres resolve the genetic controversy over mesothermalgold deposits?Geology,1988,16(6):538-541.
    Schneiderhohn.Lehrbuch der Erzlagerstattenkunde. Jena, Gustav Fischer.1941.
    Sibson RH, Robert F, Poulsen KH. High-angle reverse faults, fluid-pressure cycling, andmesothermal gold-quartz deposits. Geology.1988,16(6):551-555.
    Simon G., Huang H., Penner-Hahn J.E., et al. Oxidation state of gold and arsenic in gold-bearingarsenian pyrite. American Mineralogist.1999,84(7~8):1071-1079.
    Sun XM., Zhang Y, Xiong DX, et al. Crust and mantle contributions to gold-forming process atthe Daping deposit, Ailaoshan gold belt, Yunnan, China. Ore Geology Reviews.2009,36(1-3):235-249.
    Thiery R, van den Kerkhof AM, Dubessy J. NU-X properties of CH4-CO2and CO2-N2fluidinclusions for modelling for T<31degrees C and P<400bars. European Journal ofMineralogy.1994,6(6):753-771.
    Thomas H.V., Large R.R., Bull S.W., et al. Pyrite and Pyrrhotite Textures and Composition inSediments, Laminated Quartz Veins, and Reefs at Bendigo Gold Mine, Australia: Insights forOre Genesis. Economic Geology.2011,106(1):1-31.
    Turneaure F S. Metallogenetic provinces and epochs.Econ.Geol,1955,50(1):38.
    Van den Kerkh of AM, Hein UF. Fluid inclusion petrography. Lithos.2001,55(1):27-47.
    Walshe JL, Halley SW, Hall GA, et al. Contrasting fluid systems, chemical gradients and controlson large-tonn age, high-grade Au deposits, Eastern Goldfields Province, Yilgarn Craton,Western Australia. In Biennial SGA Meeting.2003,7:827-830.
    Wang C, Deng J, Carranza E J M, et al. Tin metallogenesis associated with granitoids in thesouthwestern Sanjiang Tethyan Domain: Nature, deposit types, and tectonic setting.Gondwana Research,2013.
    Wang JH, Yin A, Harrison TM, et al.AtectonicmodelforCenozoicigneousactivitiesintheeasternIndo-Asian collisionzone. Earth and Planetary Science Letters.2001,188(3-4):123-133.
    Wilkinson JJ, Eyre SL, Boyce AJ. Ore-forming processes in Irish-type carbonate-hostedZn-Pbdeposits: Evidence from mineralogy, chemistry, and isotopic composition of sulfides atthe Lisheen mine. Economic Geology.2005,100(1):63-86.
    Witt W K, Vanderhor F. Diversity within a unified model for Archaean gold mineralization in theYilgarn Craton of Western Australia: an overview of the late-orogenic,structurally-controlled gold deposits. Ore Geology Reviews,1998,13(1):29-64.
    Xu DR, Xia B, Li PC, et al. Protolith natures and U-Pb zircon SHRIMP ages of the metabasitesinHainan Island, South China: Implications for geodynamic evolution since the LatePrecambrian Island Arc.2007,16:575-597.
    Yakubchuk A S, Shatov V V, Kirwin D, et al. Gold and base metal metallogeny of the centralAsian orogenicsupercollage.2005.
    Zartman R E,Doe B R. Plumbotectonics—the model. Tectonophysics.1981,75(1):135-162.
    Zhang J, Deng J, Chen H, et al. LA-ICP-MS trace element analysis of pyrite from the Chang'angold deposit, Sanjiang region, China: Implication for ore-forming process. GondwanaResearch.2013.
    Zhao H., Frimmel H.E., Jiang S., et al. LA-ICP-MS trace element analysis of pyrite from theXiaoqinling gold district, China: Implications for ore genesis. Ore Geology Reviews.2011,43(1):142-153.
    安芳,朱永峰.热液金矿成矿作用地球化学研究综述.矿床地质.2011,30(5):799-814.
    柏天宝.小寺沟钼铜矿床的成矿作用地球化学研究(摘要).地质地球化学.1988,(10):98-101.
    毕献武,胡瑞忠,何明友.哀牢山金矿ESR年龄及其地质意义.科学通报,1996,41(14):1301-1303.
    毕献武,胡瑞忠,叶造军,等.A型花岗岩与铜成矿关系—以马厂箐为例,中国科学(D辑).1999,29(6):489-495.
    蔡元吉,周茂.金矿床黄铁矿晶形标型特征实验研究.中国科学(B辑化学生命科学地学).1993,(09):972-978.
    陈德兴.成矿作用地球化学研究.地质科技情报.1985,4(4):149-155.
    陈光远,孙岱生,张立,等.黄铁矿成因形态学.现代地质.1987,1:60-76.
    陈国达.关于多因复成矿床的一些问题.大地构造与成矿学.2000,24(3):199-201.
    陈建平,唐菊兴,陈勇,等.西南三江北段纳日贡玛铜钼矿床地质特征与成矿模式.现代地质,2008,22(1):9-17.
    陈锦荣,崔学武,武玉海,等.云南墨江金厂金矿床成岩成矿年龄研究.黄金地质.2002,(1):1-5.
    陈衍景.造山型矿床成矿模式与找矿潜力.中国地质.2006,33(6):1181-1196.
    邓军,葛良胜,杨立强.构造动力体制与复合造山作用——兼论三江复合造山带时空演化.岩石学报.2013,29(4):1099-1114.
    邓军,侯增谦,莫宣学,等.三江特提斯复合造山与成矿作用.矿床地质.2010a,29(1):37-42.
    邓军,王长明,李龚健.三江特提斯叠加成矿作用样式及过程.岩石学报,2012,28(5):1349-1361.
    邓军,杨立强,葛良胜,等.滇西富碱斑岩型金成矿系统特征与变化保存.岩石学报.2010b,26(6):1633-1645.
    邓军,杨立强,王长明.三江特提斯复合造山与成矿作用研究进展.岩石学报,2011,27(9):2501-2509.
    董云鹏,朱炳泉,常向阳,等.哀牢山缝合带中两类火山岩地球化学特征及其构造意义.地球化学.2000,29(1):6-13.
    范蔚茗,彭头平,王岳军.滇西古特提斯俯冲碰撞过程的岩浆作用记录.地学前缘.2009,16(6):291-302.
    方维萱,胡瑞忠,谢桂青,等.墨江镍金矿床(黄铁矿)硅质岩的成岩成矿时代.科学通报.2001,46(10):857-860.
    方维萱,胡瑞忠,谢桂青,等.云南哀牢山地区构造岩石地层单元及其构造演化.大地构造与成矿学.2002,26(1):28-36.
    付绍洪,顾雪祥,王乾,等.黔西南水银洞金矿床载金黄铁矿标型特征.矿物学报.2004,24(1):75-80.
    葛良胜,邓军,郭晓东,等.哀牢山多金属矿集区深部构造与成矿动力学.中国科学(D辑:地球科学).2009,39(3):271-284.
    葛良胜,邓军,李汉光,等.云南大坪大型金多金属矿床叠加成矿作用:地质、流体包裹体和稳定同位素证据.岩石学报.2007b,23(9):2131-2143.
    葛良胜,邓军,杨立强,等.哀牢山矿集区构造环境演化与金多金属成矿系统.岩石学报.2010,26(6):1699-1722.
    葛良胜,邓军,杨立强,等.云南大坪超大型金多金属矿床地质地球化学特征.地质与勘探.2007a,43(3):17-24.
    郭晓东,王治华,张勇,等.云南省宝兴厂铜、钼、金多金属矿床矿化类型及成因探讨,矿床地质.2008,(S1):23-32.
    韩润生,金世昌,雷丽.云南元阳大坪改造型金矿床的成矿热液系统地球化学.矿物学报.1997,17(3):337-344.
    韩润生,金世昌.云南元阳金矿床的成因及找矿标志.有色金属矿产与勘查.1994,3(4):218-222.
    何江,马东升,刘英俊.江南古陆边缘渣滓溪锑矿带成矿作用地球化学研究.矿床地质.1996,15(1):41-52.
    何江,马东升,刘英俊.湘西低温Au、Sb、Hg矿床成矿作用地球化学研究.南京大学学报.1995,31(4):678-684.
    何学贤,朱祥坤,杨淳,等.多接收器等离子体质谱(MC-ICP-MS)Pb同位素高精度研究.地球学报.2005,26(S1):19-22.
    和中华,王勇,莫宣学,等.云南金平长安金矿成矿物质来源-来自矿石及地层、岩浆岩的成矿元素含量证据.东华理工大学学报(自然科学版).2008,31(3):207-212.
    侯增谦,莫宣学,杨志明,等.青藏高原碰撞造山带成矿作用:构造背景时空分布和主要类型.中国地质.2006,33(2):340-351.
    侯增谦.大陆碰撞成矿论.地质学报.2010,84(1):30-58.
    胡斌,戴塔根,胡瑞忠.滇西地区壳体大地构造单元的划分及其演化与运动特征.大地构造与成矿学.2005,29(4):537–544.
    胡瑞忠,毕献武,何明友,等.哀牢山金矿带矿化剂对金成矿的制约.中国科学(D辑).1998,28(增):24-30.
    胡瑞忠,毕献武,彭建堂,等.华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题.矿床地质,2007,26(2):139-152.
    胡瑞忠,毕献武.哀牢山成矿带成矿流体的He和Ar同位素地球化学.中国科学(D辑).1999,29(4):321-330.
    胡云中,唐尚鹑,王海平,等.哀牢山金矿地质.北京:地质出版社.1995.
    黄智龙,刘丛强,肖化云,等.云南老王寨金矿区煌斑岩富集地幔源区的Sr, Nd同位素和NH+4地球化学证据.自然科学进展.1999b,9(12,增刊):1291-1297.
    黄智龙,刘丛强,朱成明,等.云南老王寨金矿区煌斑岩成因及其与金矿化的关系.北京:地质出版社.1999a,30-191.
    黄智龙,王联魁,朱成明.云南马厂箐金矿区煌斑岩地球化学及成因探讨.矿物岩石.1996,16(2):82-89.
    简平,汪啸风,何龙清,等.云南新平县双沟蛇绿岩U-Pb年代学初步研究.岩石学报.1998,14(2):80-84.
    江永宏,李胜荣,王吉中.云南墨江金厂金矿床黄铁矿标型特征研究.矿物岩石.2003,23(2):22-26.
    金世昌,韩润生,宋焕斌.元阳大坪金矿床铅同位素组成特征及地质意义.地质地球化学.1991,19(5):62-65.
    黎彤,倪守斌.中国大陆岩石圈的化学元素丰度.地质与勘探.1997,33(1):31-37.
    李宝龙,季建清,付孝悦,等.滇西点苍山-哀牢山变质岩系变质时限研究.岩石学报.2009,25(3):595-608.
    李宝龙,季建清,付孝悦,等.滇西点苍山-哀牢山变质岩系锆石SHRIMP定年及其地质意义.岩石学报.2008,24(10):2322-2330.
    李定谋,曹志敏,覃功炯,等.哀牢山蛇绿混杂岩带金矿床.北京:地质出版社.1998.
    李定谋,李保华.云南哀牢山金矿床的成矿条件.沉积与特提斯地质.2000,20(1):60-77.
    李峰,段嘉瑞.滇西地区板块-地体构造.昆明理工大学学报.1999,24(1):29-36.
    李高良,杨仕潘.云南绿春牛波金矿构造-岩浆控矿作用.云南地质.2006,25(1):40-44.
    李龚健,王庆飞,禹丽,等.哀牢山古特提斯洋缝合时限:晚二叠世花岗岩类锆石U-Pb年代学与地球化学制约.岩石学报,2013,29(11):3883-3900.
    李光勋.哀牢山老王寨金矿田构造问题探讨.云南地质.1990,9(3):186-199.
    李楠,杨立强,张闯,等.西秦岭阳山金矿带硫同位素特征:成矿环境与物质来源约束.岩石学报.2012,28(5):1577-1587.
    李楠.阳山金矿带成矿作用地球化学.中国地质大学(北京).2013,1-147.
    李前德,刘文龙.云南省墨江县金厂矿区金矿详细地质勘探报告.1982.
    李士辉,张静,邓军,等.哀牢山南段长安金矿床成矿流体特征及成因类型探讨.岩石学报.2012,27(12):3777-3786.
    李文,李兆麟,石贵勇.云南哀牢山变质流体特征.岩石学报.2000,16(4):649-654.
    李兴振,刘文均,王义昭.西南三江地区特提斯构造演化与成矿(总论).北京:地质出版社.1999,1-97.
    李元,韩润生,庄凤良.云南墨江金矿的成矿流体地球化学及成矿机理.中国地质学会.第四届全国青年地质工作者学术讨论会论文集.中国地质学会.1999,6.
    李元,金世昌,俞广钧.云南墨江金矿床的同位素地球化学及成因探讨.地质地球化学.1998,26(4):15-20.
    李元.墨江金矿床的成矿物质来源探讨.云南地质.1992,11(2):130-143.
    廖宗廷,陈跃昆,魏志红,等.滇西晚古生代以来的构造演化.同济大学学报.2003,31(9):1029-1033.
    林文信.老王寨金矿区韧性变质带变形特征和岩石组合.云南地质.1992,11(2):153-161.
    刘翠,邓晋福,刘俊来,等.哀牢山构造岩浆带晚二叠世-早三叠世火山岩特征及其构造环境.岩石学报,.201127(12):3590-3602.
    刘汇川,王岳军,蔡永丰,等.哀牢山构造带新安寨晚二叠世末期过铝质花岗岩锆石U-Pb年代学及Hf同位素组成研究.大地构造与成矿学.2013,37(1):87-98.
    刘建明,叶杰,徐九华,等.胶东金矿床碳酸盐矿物的碳-氧和锶-钕同位素地球化学研究.岩石学报.2004,19(4):775-784.
    刘英俊,马东升,季峻峰.论江南型金矿床的成矿作用地球化学.桂林冶金地质学院学报.1991,(2):130-138.
    刘英俊,马东升,牛贺才.湖南益阳-沅陵一带金矿床的成矿作用地球化学.1994,地球化学.23(1):1-12.
    龙晓平,王立社,余能.东昆仑山清水泉镁铁质——超镁铁质岩的地球化学特征.地质通报,2004,23(7):664-669.
    陆建军.河台韧性剪切带型金矿床成矿作用地球化学研究.南京大学学报.1993,29(2):293-302.
    骆耀南,俞如龙.西南三江地区造山演化过程及成矿时空分布.地球学报.2003,23(5):417-422.
    马杏垣,刘和甫,王维襄,等.中国东部中、新生代裂陷作用和伸展构造,地质学报.1983,(1):22-32.
    马宗晋,张家声,汪一鹏.青藏高原三维变形运动学的时段划分和新构造分区,地质学报.1998,(3):211-227.
    毛景文,王志良,李厚民,等.云南鲁甸地区二叠纪玄武岩中铜矿床的碳氧同位素对成矿过程的指示.地质论评.2003,49(6):610-615.
    毛世德,何明友,刘峰,等.云南老王寨金矿田金的迁移形式和富集机理探讨.矿物岩石地球化学通报.2003,22(3):228-231.
    莫宣学,路凤香,沈上越.三江特提斯火山作用与成矿.北京:地质出版社.1993.
    牛贺才,马东升.在低温开放体系水/岩反应过程中金、锑、钨的实验地球化学研究.科学通报.1991,24:1879-1881.
    潘家永,马东升.热液矿床成矿元素地球化学异常探讨.地质与勘探.2002,38(6):10-12.
    彭媛媛.哀牢山地区金多金属矿产资源预测研究.吉林大学.2010,1-110.
    戚学祥,王秀华,朱路华,等.滇西印支地块东北缘新元古代侵入岩形成时代的厘定及其构造意义:锆石LA-ICP-MS U-Pb定年及地球化学证据.岩石学报.2010,26(7):2141-2154.
    秦德先.近年在我国三个特大型锡矿床中相继发现的火山(成矿)作用及其科学意义.昆明理工大学学报(理工版).2008,1:123-124.
    沈上越,魏启荣,程惠兰,等.云南哀牢山金矿带成因类型探讨.特提斯地质.1997,21:75-86.
    石贵勇,孙晓明,张燕,等.云南哀牢山大坪金矿床成矿流体H-O-C-S同位素组成及其成矿意义.岩石学报.2010,26(6):1751-1759.
    宋焕斌,韩润生,祁斌.元阳大坪金矿床黄铁矿的标型特征及其地质意义.云南地质.1989,Z1:249-255.
    宋焕斌,祁斌,韩润生.云南大坪金矿床控矿断裂受力机制分析.矿产与地质,1990,4(4):21-26.
    宋焕斌,庄凤良.滇南大坪金矿床V_9矿脉的地质特征及气液包裹体研究.黄金.1993,1:6-11.
    宋新宇,任胜利.老王寨金矿成矿构造特征及矿体赋存规律.黄金.1994,15(9):7-11.
    宋新宇.云南镇沅老王寨金矿地质特征.矿物岩石地球化学通讯.1993,3:128-130.
    孙晓明,石贵勇,熊德信,等.云南哀牢山金矿带大坪金矿铂族元素(PGE)和Re-Os同位素地球化学及其矿床成因意义.地质学报.2007a,81(3):394-404.
    孙晓明,熊德信,石贵勇,等.云南哀牢山金矿带大坪剪切带型金矿成矿40Ar/39Ar定年.地质学报.2007b,81(1):88-92.
    孙晓明,熊德信,石贵勇,等.云南大坪金矿白钨矿惰性气体同位素组成特征及其成矿意义.岩石学报.2006,22(3):725-732.
    唐尚鹑,李经典,何叔欣.哀牢山北段金矿成矿带成矿规律初探,云南地质.1991,10(1):44-70.
    王冬兵,唐渊,廖世勇,等.滇西哀牢山变质岩系锆石U-Pb定年及其地质意义.2013,29(4):1261-1278.
    王江海,漆亮.云南老王寨金矿区煌斑岩的侵位年龄和铂族元素地球化学.中国科学:D辑,2001,31(B12):122-127.
    王生伟,孙晓明,周邦国,等.西南地区岩浆硫化物矿床的Cu/Pd、Cu/Pt比值差异及找矿意义.矿物学报.2009, S1:96-97.
    王顺华,王照波.哀牢山造山带南段构造混杂岩-蛇绿岩带的发现.云南地质.2004,23(3):287-303.
    王勇.云南省金平县长安金矿地质特征及成矿模式.博士后工作报告.北京:中国地质科学院.2008,1-78.
    王治华,郭晓东,葛良胜,等.云南省大坪金矿区二长花岗岩的地球化学特征及地质意义.地质与勘探.2012,48(3):618-628.
    肖新建.东胜地区砂岩铀矿低温流体成矿作用地球化学研究,核工业北京地质研究院博士学位文.2004,1-134.
    谢桂青,胡瑞忠,方维萱,等.云南墨江金矿热水喷流沉积成岩成矿的地质地球化学证据.沉积学报.2002,20(3):387-393.
    谢桂青,胡瑞忠,倪培,等.云南墨江金矿床含金石英脉中流体包裹体的地球化学特征及其意义.矿物学报.2001a,21(4):613-618.
    谢桂青,胡瑞忠.云南墨江金矿床硅质岩沉积环境的地球化学探讨.地球化学.2001b,30(5):491-497.
    熊德信,孙晓明,翟伟,等.云南大坪韧性剪切带型金矿富CO2流体包裹体及其成矿意义.地质学报,2007,81(5):640-653.
    胥颐,刘建华,刘福田,等.哀牢山-红河断裂带及其邻区的地壳上地幔结构.中国科学(D辑:地球科学).2003,33(12):1201-1208.
    闫全人,王宗起,刘树文,等.青藏高原东缘构造演化的SHRIMP锆石U-Pb年代学框架.地质学报.2006,80(9):1285-1294.
    杨立强,邓军,赵凯,等.哀牢山造山带金矿成矿时序及其动力学背景探讨.岩石学报.2011,27(9):2519-2532.
    杨立强,刘江涛,张闯,等.哀牢山造山型金成矿系统:复合造山构造演化与成矿作用初探.岩石学报.2010,26(6):1723-1739.
    杨夕辉.镇源老王寨构造蚀变岩型金矿矿床成因.云南地质.2005,24(4):371-378.
    杨岳清.哀牢山南段金的成矿作用.第五届全国矿床会议论文集.北京:地质出版社.1993,263-265.
    应汉龙,蔡新平.云南墨江金矿床含金硅质岩的地球化学特征和成因.地球化学.1999,28(4):307-317.
    应汉龙,王登红,刘和林.云南墨江金厂镍-金矿床镍矿化地质特征及形成时间.矿床地质.2005,24(1):44-51.
    应汉龙.云南大坪金矿床围岩蚀变和同位素地球化学特征.黄金科学技术,1998,6(4):14-23.
    俞广钧.哀牢山金矿带原生金矿床的类型及控矿条件.地质与勘探.1990,26(5):3-11.
    袁士松,葛良胜,路彦明,等.哀牢山成矿带壳幔相互作用与金成矿关系探讨—以元阳大坪金矿床为例.矿床地质.2010,29(2):253-264.
    云南地矿资源股份有限公司.2002.云南省金平县长安金矿详查地质报告.
    云南省地质矿产局第三地质大队,1990,云南省新平县库独木金矿普查地质报告.
    云南省地质矿产局第三地质大队,1993,云南省镇沅县镇沅金矿老王寨矿段地质勘探报告.
    云南省地质矿产局第三地质大队,1994,云南省镇沅县镇沅金矿搭桥箐矿段普查地质报告.
    张本仁,欧阳建平,张宏飞,等.壳幔相互作用深部过程的地球化学研究.固体地球系统复杂性与地质过程动力学学术讨论会论文摘要集,2004.
    张闯,杨立强,赵凯,等.滇西哀牢山老王寨金矿床控矿构造样式.岩石学报,2012,28(12):4109-4124.
    张德会.关于成矿作用地球化学研究的几个问题.地质通报.2005,(Z1):11-17.
    张海涛,杨家瑞,薛道政.超基性岩蚀变热液型金矿床——云南金厂矿床成因探讨.云南地质.1984,1(4):17-23.
    张进江,钟大赉,桑海清,等.哀牢山-红河构造带古新世以来多期活动的构造和年代学证据.地质科学.2006,41(2):291-310.
    张静,邓军,李士辉,等.哀牢山南段长安金矿床岩浆岩的岩石学特征及其与成矿关系探讨.岩石学报,2010,26(6):1740-1750.
    张静,祁进平,仇建军,等.河南省内乡县银洞沟银矿床流体成分研究.岩石学报.2007,23(9):2217-2226.
    张理刚,王可法,陈振胜,等.中国东部中生代花岗岩长石铅同位素组成与铅同位素省划分.科学通报.1993,38(3):254-257.
    张铭杰,王先彬.地幔流体组成.地学前缘.2000,7(2):401-412.
    张旗,钱青,王焰,等.扬子地块西南缘晚古生代基性岩浆岩的性质与古特提斯洋的演化.岩石学报.1999,15(4):576-583.
    张旗,周德进,李秀云,等.云南双沟蛇绿岩的特征和成因.岩石学报.1995,11(增):190-202.
    张旗,周德进,赵大升,等.滇西古特提斯造山带的威尔逊旋回:岩浆活动记录和深部过程讨论.岩石学报.1996,12(1):17-28.
    张志兰,张树发,袁海华,等.云南墨江金厂金矿的同位素地质特征及成因探讨.成都地质学院学报.1987.
    张作衡.西秦岭地区造山型金矿床成矿作用和成矿过程,北京,中国地质科学院.2002,博士毕业论文.
    赵德军,陈洪德,王道永,等.哀牢山造山带南段中二叠世晚期娘宗岩体厘定.地质科技情报.2013,32(3):19-25.
    赵德奎,汪梅生,薛怀友,等.云南元阳哈播金矿地质特征及成因分析.地质学刊,2009,33(3):230-234.
    赵海香.河南小秦岭金矿成矿作用地球化学研究.南京,南京大学.2011,博士学位论文.
    赵岩.哀牢山金矿带镇沅金矿成矿模式研究.北京,中国地质大学(北京).2011,硕士学位论文
    赵元艺,马志红,仲崇学.多宝山铜矿床成矿作用地球化学研究.西安地质学院学报,1997,19(1):28-35.
    赵凯,杨立强,李坡,熊伊曲.滇西老王寨金矿床黄铁矿形貌特征与化学组成.岩石学报,2013,3937-3948
    郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社.2000.
    郑永飞,傅斌,张学华.岩浆去气作用的碳硫同位素效应.地质科学.1996,31(1):43-53.
    郑永飞.稳定同位素体系理论模式及其矿床地球化学应用.矿床地质,2001,20(1):57-70.
    中国人民武装警察部队黄金地质研究所.云南省元阳县大坪金矿区构造地球化学研究及深部成矿预测.2004
    钟大赉.川滇西部古特提斯造山带.北京:科学出版社,1-231.1998.
    周德进,周云生,徐平.滇西墨江西部石炭、纪火山岩.地质科学.1992,3:249-259.
    朱和平,王莉娟,刘建明.不同成矿阶段流体包裹体气相成分的四极质谱测定.岩石学报.2003,19(2):314-318.
    朱路华,戚学祥,彭松柏,等.青藏高原东南缘哀牢山大坪金矿成矿流体演化.岩石学报.2011,27(11):3395-3408.
    朱永峰,安芳.热液成矿作用地球化学:以金矿为例.地学前缘.2010,17(2):45-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700