基于SC-FDE的水声通信技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于时变性和频率选择性衰落,水声信道是目前已知的最为复杂的信道。水声信道的这些特性阻碍了水下高可靠性、高速率通信系统的发展。传统的SC-TDE水声通信采用自适应判决反馈均衡的结构和相位跟踪的方法,随着通信速率的提高,符号持续时间变短,信道的时延扩展导致均衡器的复杂度升高,阻碍了其在高速水声通信中的进一步应用。OFDM因频谱利用率高、数据传输速率快、抗多径衰落能力强和实现简单成为近年来高速水声通信中的研究重点和热点之一,但其峰均比过高的弱点已逐渐成为系统实现和性能提高的瓶颈。SC-FDE技术,不仅可以有效对抗信道的频率选择性衰落,实现高速率、大容量的数据传输,而且能够避免SC-TDE系统复杂度过大和OFDM技术峰均比太高的不足,成为未来高速水声通信中的一项重要技术。
     本论文主要针对水声通信中SC-FDE的关键技术与应用进行了研究,所做的主要工作有:
     1.详细分析了SC-FDE系统中三种帧结构的优劣,重点研究了SC-FDE系统中参数帧周期的选取问题。
     2.SC-FDE水声通信系统中的多普勒估计与补偿。研究了三种多普勒估计算法,分别是块估计、CW脉冲测频估计和脉冲对估计,分析比较了不同算法的优缺点,在此基础上,论文提出了两种组合多普勒估计算法,并通过仿真验证了算法的性能。
     3.信道估计与均衡。分析比较了不同种类的信道估计与均衡算法并指出了如何选择SC-FDE系统的训练序列。另外,利用LS算法进行信道估计时,需要对其降噪,论文中提出采用变换域的方法对导频降噪。
     4.从系统原理、误码性能和峰均比等八个方面分析比较了水声SC-FDE和OFDM系统的性能。
     5.进行了水池实验,论证了基于SC-FDE水声通信的可行性和比较了SC-FDE和OFDM系统的性能。
Underwater acoustic channel is the most challenging channel in the world for its time varying and frequency-selective characters. These facts obstacle the development of high-speed and reliable underwater data transmission. In the traditional SC-TDE underwater acoustic communication, the adaptive decision feedback equalizer coupled with phase tracking methods is adopted. As the communication rate is increasing, symbol duration is becoming shorter, and the equalizer is more complex with the channel delay spread, the application of traditional methods is hampered in the high-speed underwater acoustic communication. In recent years, OFDM becomes one of the researchful priorities and hotspots in the high-speed underwater acoustic communication due to its high spectral efficiency, high data rate, robustness against multi-path delay and simple implementation, but the high PAPR becomes one bottleneck gradually when the system is implemented and the performance is improved. SC-FDE allows an advantageous of high-speed data transmission in the frequency-selective fading channel, it avoids the complexity of SC-TDE and the high PAPR of OFDM. SC-FDE will become significant technology in the future underwater acoustic communication.
     In this thesis, key technologies and applications of SC-FDE are researched mainly for the underwater acoustic communication. The works done as follows:
     1. The advantages and disadvantages of three frame structures as well as the principles of how to choose the frame size are analyzed and studied detailedly.
     2. Doppler estimation and compensation in the SC-FDE underwater acoustic communication system. Three algorithms are studied and compared which are block doppler estimation and frequency measurement method based on CW pulse and pulse pairing doppler estimation. Based on the performance of different algorithms, two new kinds of combinatorial doppler estimation algorithms are proposed and the algorithm performances are validated through simulation.
     3. Channel estimation and equalization. Analysis and comparison of the different types of channel estimation and equalization techniques are made out, and the principles of how to choose the training sequence are pointed out. In addition, noise reduction is a compulsory task in the channel estimation based on LS algorithm, Pilot noise reduction which is adopted in the transform domain is pointed out in this thesis.
     4. Analysis and comparison of mechanism, error probability, PAPR, and so on for SC-FDE and OFDM over underwater acoustic channel are done in this thesis.
     5. Through the trial in the tank, the feasibility of SC-FDE for the underwater acoustic communication is demonstrated, and the performance of SC-FDE and OFDM system is compared.
引文
[1]李启虎.水声学研究进展,声学学报.2001(44):295-301页
    [2] M.Stojaovic.Recent Advances in High-Speed Underwater Acoustic Communication. IEEE Journal of Oceanic, 1996, 21(2):125-136P
    [3] J.D.B.Kifoyle and A.B.Baggeroer. The State of the Art Underwater Acoustic Telemetry. IEEE Journal of Oceanic Engineering, 2000, 25(1), 4-26
    [4]艾宇慧,王庆天.母船与潜艇水声通信技术研究.哈尔滨工程大学学报.1996(17)4:8-13页
    [5]惠俊英,生雪丽.水下声信道.国防工业出版社,2007
    [6] M. Stojanovic. Underwater Acoustic Communication, Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley&Sons, Hoboken, NJ
    [7] Quazi and W.Konrad. Underwater acoustic communications. IEEE Comm. Magazine.1982(3):24-29P
    [8] D.J.Garrood,Applications of the MFSK acoustical communication system. presented at the Oceans’81, Boston,MA,1981:67-61P
    [9] A.Baggeroer,D.E.Koelsch,K. von der Heydt and J. Catipovic. DATS—A digitalacoustic telemetry system for underwater communications. presented at the Oceans’81,Boston,MA,1981:50-60P
    [10] Milica Stojanovic. Recent Advances in High-Speed Underwater Acoustic Communication.IEEE J.Oceanic Eng.Vol 21,No 2. 1996:125-136P
    [11]桑恩方.视频图象水下声传输试验研究.中国船舶科技报告.中国船舶工业总公司.1994,12:25-28页
    [12]桑恩方,尤立夫,韩彦,卞红雨.视频图象水下传输试验研究.高技术通信.1995,5(6):25-28页
    [13] Kilfoyle D B, Baggeroer A B. The state of the art in underwater acoustic telemetry. Oceanic Engineering,IEEE Journal of,vol.25,no.1, Jan 2000:4-27P
    [14] M Stojanovic, J Catipovic,J Proakis. Phase Coherent Digital Communications for Underwater Acoustic Channels. IEEE Journal of Oceanic Engineering, vol.19,No.1,January 1994:100-111P
    [15] M Stojanovic,J Proakis,J Catipovic. Analysis of the Impact of Channel Estimation Errors on the Performance of a Decision Feedback Equalizer in Multipath Fading Channels.IEEE Transactions on Communications ,vol.43,No.2/3/4,February/March/April 1995:887-886P
    [16] M Stojanovic,J A Catipovic,J G Proakis. Performance of high-rate adaptive equalization on a shallow water acoustic channel. 127th Meeting of the Acoust. Soc. Am,Cambridge,MA,95,2809-2810,1994:1-21P
    [17] M Suzuki,T Sesaki. Digital acoustic image transmission system for deep sea research submersible.Proc.OCEANS’92 Newport.RI.OCT.1992 :567-770P
    [18] G Aycla,J M Coudeville. TIVA:A long range,high baud rate image/data acoustic transmission system fro underwater applications.presented at Proc.Underwater Defence Technol. Conf, PAPRis,France,1991
    [19] J Fischer,K Bennett,S Reible,J Cafarella,I Yao. A high rate underwater acoustic data communications transceiver. Proc. Oceans’92,Newport,RI,Oct,1992:571-576P
    [20] Milica Stojanovic. Adaptive Multichannel Combining and Equalization for Underwater Acoustic Communications. J. Acoust. Soc. Amer. 1993,94(3):1621-1631P
    [21]席红艳.用于水声通信的自适应均衡技术研究.哈尔滨工程大学博士论文. 1999
    [22]朱维庆,朱敏,王军伟等.水声高速图像传输信号处理方法.声学学报. 2007,32(5):385-397页
    [23]朱婷婷,王英民,林欢欢.一种新的适用于水声信道的常模类盲均衡算法.应用声学.2008,27(6):449-453页
    [24]张银兵,赵俊渭,李金明等.一种分数间隔判决反馈盲均衡算法的研究.计算机仿真.2008,25(8):331-334页
    [25]孙丽君,连卫民,孙超.一种浅海水声信道分数间隔自适应均衡算法研究.声学技术.2007,26(1):137-140页
    [26]郭中源,陈岩,贾宁等.水下数字语音通信系统的研究和实现.声学学报. 2008,33(5):409-418页
    [27]许肖梅.浅海水声数据传输技术研究.厦门大学博士学位论文.2002
    [28] Bingham J A C. Multicarrier modulation for data transmission:An idea whose time has come.IEEE Commun.Magazine,vo1.28,May 1990:5-14P
    [29] S.Coatelan,A. Glavieux.a Design and Test of A Multicarrier Transmisstion System on The Shallow Water Acoustic Channel.OCEANS '94 . 'Oceans Engineering for Today's Technology and Tomorrow's Preservation.' Proceedings Volume 3,13-16 Sept. 1994:472-477
    [30] S. Coatelan,A. Glavieux.Design and Test of A Coding OFDM System on the Shallow Water Acoustic Channel.OCEANS '95,MTS/IEEE,1995,3:2065-2070
    [31] W.K. Lam,R. F. Ormondroyd.A novel broadband COFDM modulation scheme for robust communication over the underwater acoustic channel. MILCOM 98 Proceedings IEEE.1998:128-133
    [32] W.K. Lam and R.F. Ormondroyd.A Broadband UWA Communication System Based on COFDM Modulation.Proc.OCEANS’97,MTS/IEEE,Nova Scotia,Oct. 1997:862-869P
    [33] W. K. Lam,R. F. Ormondroyd,J. J. Davies.A Frequency Domain Adaptive Coded Decision Feedback Equalizer for a Broadband UWA COFDM System. OCEANS '98 Conference Proceedings Volume 2,28 Sept.-1 Oct. 1998:794– 799P
    [34] Byung-Chul Kim and I-Tai Lu,PAPRameter studies of OFDM underwater communications systems.in Proc.MTS/IEEE Oceans 2000.vo1.21 ,Sept.2000:251-1255P
    [35] Li B,Zhou S,Stojanovic M,Freitag L.Pilot-tone based ZP-OFDM Demodulation for an Underwater Acoustic Channel.OCEANS 2006.2006:1-5P
    [36] Milica Stojanovic.Low Complexity OFDM Detector for Underwater Acoustic Channels. in Proc. MTS/IEEE Oceans.2006:1-6P
    [37] Chitre M,Ong S H,Potter J. Performance of coded OFDM in very shallow water channels and snapping shrimp noise. OCEANS’2005. Proceedings of MTS/IEEE,Vol. 2,Sept 2005:996-1001P
    [38] Leus G,van Walree P. Multiband OFDM for Covert Acoustic Communications. Selected Areas in Communications,IEEE Journal on.vol.26,no.9,December 2008:1662-1673P
    [39] P van Walree,E Sangfelt,G Leus. Multicarrier Spread Spectrum for Covert Acoustic Communications. In Proc. of Oceans’2008,Quebec City,Canada,September 2008:1-8P
    [40] G Leus,P van Walree,J Boschma C,Fanciullacci H,Gerritsen,P Tusoni. Covert Underwater Communications with Multiband OFDM.In Proc. of Oceans 2008,Quebec City,Canada,September 2008:1-8P
    [41] J Gomes , A Silva , S Jesus. OFDM Demodulation in Underwater Time-Reversed Shortened Channels. Proceedings of MTS/IEEE OCEANS′08,Quebec City,Canada,September 2008
    [42] J Gomes,A Silva,S Jesus.Experimental assessment of time-reversed OFDM underwater communications.Proceedings of ACOUSTICS′08,PAPRis,France,July 2008
    [43] Baosheng Li,Shengli Zhou,Stojanovic M,Freitag L,Jie Huang,Willett P. MIMO-OFDM Over An Underwater Acoustic Channel. Oceans’2007. 2007:1-6P
    [44]朱彤.基于正交频分复用的水声通信技术研究.哈尔滨工程大学博士论文.2004
    [45]王明华.高速水声通信中OFDM的关键技术与应用研究.哈尔滨工程大学博士学位论文.2007
    [46]黄建国,孙静等.OFDM高速水声通信系统及实验研究.通信理论与信号处理新进展-通信理论与信号处理年会论文集.2005
    [47]蔡惠智,刘云涛等.第八讲:水声通信及其研究进展.物理.2006(12):1038-1042页
    [48] Hayward,Thomas J,Yang T C. Single- and multi-channel underwater acoustic communication channel capacity: A computational study.The Journal of the Acoustical Society of America.vol.122(4),September 2007:1652-1661P
    [49] Sari H,Karam Q Jeancalud I. Frequency-domain equalization of mobile radio and terrestrial broadband wireless communications.2000 :1300-1305P
    [50] Falconer D,Ariyavisitakul S L.,Seeyar A B,et al. Frequency domain equalization for single-carrier broadband wireless systems. IEEE Communication (S0163-6804).2002,40(4):58-66P
    [51]吴江,吴伟陵.未来无线通信中的单载波频域均衡技术.数据通信.2004(05):4-7页
    [52] Wang Y,Dong XD,Wittke P H,et al. Cyclic Prefixed Single Carrier Transmission in Ultra-wideband Communications.IEEE Trans. Wireless Communication (S1536-1276). 2006,5(8): 2017-2021P
    [53]刘翔宇,郑建宏.基于4G关键技术的OFDM及SC-FDE研究.通信技术.2008,6(41):185-189页
    [54]胡飞将.无线信道中的单载波频域均衡技术.今日电子.2003,3: 36-37页
    [55]张国斌,黄湧,林臻.单载波频域均衡系统的信道估计技术.电力系统通信,2003,12:37-40页
    [56] ZhengY.R,ChengshanXiao,Yang.T.C.,Wen-Bin Yang. Frequency-Domain Channel Estimation and Equalization for Single Carrier Underwater Acoustic Communications.Oceans 2007 Sept. 29 2007-Oct. 4 2007 P:1-6P
    [57] Jianguo HUANG,Chengbing HE,Qunfei ZHANG,Zhenhua YAN. Cyclic Prefixed Single Carrier Transmission for Underwater Acoustic Communication.TENCON 2007 - 2007 IEEE Region 10 Conference Publication Date: Oct. 30 2007-Nov. 2 2007:1-4P
    [58]何成兵,黄建国,张涛,阎振华.单载波频域均衡高速水声通信仿真研究.系统仿真学报.2007,19(23):5455-5458页
    [59]张涛,黄建国,何成兵.单载波频域均衡技术及其在水声通信中的应用.探测与控制学报.2007,29(4):52-56页
    [60]张战争.高速水声通信技术研究.西北工业大学硕士论文.2007
    [61]涂峰,黄瑞光.水声信道的建模与仿真研究.微计算机信息.2003,第19卷,第5期:76-78页
    [62]程恩.水声电子邮件传输研究.厦门大学博士学位论文.2006
    [63] A Essebbar,G Loubet,F Vial. Underwater Acoustic Channel Simulations for Communication. Proc. OCEANS94. Brest. France.1994:495-500P
    [64] W L J Fox,P Arabshahi,S Roy,N PAPRrish.Underwater acoustic communications performance modeling in support of ad hoc network design. Proc. IEEE Oceans Conference,Vancouver,Canada. 2007:1-5P
    [65] J Preisig.Acoustic propagation considerations for underwater acoustic communications network development. in Proc. First ACM International Workshop on Underwater Networks (WuwNeT/Mobicom),Sept 2006:1-5P
    [66] M Chitre. A high-frequency warm shallow water acoustic communications channel model and measurements.Journal of the Acoustical Society of America,vol. 122 (5),Nov. 2007:2580-2586P
    [67] M Chitre,S Shahabo,M Stojanovic.Underwater Acoustic Communications and Networking: Recent Advances and Future Challenges.Marine Technology Society Journal,vol.42,No.1,Spring 2008:103-116P
    [68] David Falconer.Frequency Domain Equalization for Singer-Carrier Broadband Wireless Systems.IEEE Communication Magazines,2002,40 (4):58-66P
    [69] Witschnig H,Mayer T,Springer A,et al.A Different Look on Cyclic Prefix for SC/FDE.13th IEEE International Symposium on Personal,Indoor and Mobile Radio Communications,2002:824-828P
    [70] Witschnig H,Mayer T,Petit M,et al. The advantages of a unique word for synchronization and channel estimation in a SC-FDE system.[S.l.]:MichaelFaraday House.2003:436-440P
    [71]尹长川,罗涛,乐光新.多载波宽带无线通信技术.北京邮电大学出版社.2004:34页
    [72] M. Speth,F. Classen and Meyr. Frame Synchronization of OFDM systems in frequency selective fading channels.Vehicular Technology Conference, IEEE 47th VTC,1997,vol.3:1807-1811P
    [73]黄立勋,孟新红,孙丽君.基于独特字的单载波频域均衡系统的同步问题研究.信息通信. 2009,No.1:51-53页
    [74]殷敬伟.时反镜Pattern时延差编码水声通信技术研究.哈尔滨工程大学博士论文.2006
    [75] Sharif B S,Neasham J,Hinton O R,Adams A E.A computationally efficient Doppler compensation system for underwater acoustic communications. Oceanic Engineering,IEEE Journal of,vol.25,no.1,Jan 2000:52-61P
    [76] Sharif B S,Neasham J,Hinton O R,Adams A E. Doppler compensation for underwater acoustic communications. OCEANS '99 MTS/IEEE. Riding the Crest into the 21st Century,vol.1,1999:216-221P
    [77] Limin Yu,White L B. Optimum Receiver Design for Broadband Doppler Compensation in Multipath/Doppler Channels With Rational Orthogonal Wavelet Signaling. Signal Processing,IEEE Transactions on,vol.55,no.8, 2007:4091-4103P
    [78] Limin Yu,White L B.Broadband Doppler compensation for rational wavelet-based UWA communication systems.Communications , 2005 Asia-Pacific Conference on,Oct 2005:605-609P
    [79] Baosheng Li,Shengli Zhou,Stojanovic M,Freitag L,Willett P. Non-Uniform Doppler Compensation for Zero-Padded OFDM over Fast-Varying Underwater Acoustic Channels. OCEANS 2007-Europe. 2007:1-6P
    [80] Baosheng Li , Shengli Zhou, Stojanovic M , Freitag L , Willett P. Multicarrier Communication Over Underwater Acoustic Channels With Nonuniform Doppler Shifts.Oceanic Engineering,IEEE Journal of,vol.33,
    no.2,April 2008:198-209P
    [81]张翔.水声通信中多普勒频移补偿的仿真研究.系统仿真学报. 2005,17(5):1172-1174页
    [82]李红娟,孙超.水声通信自适应多普勒频移补偿仿真研究.计算机仿真. 2007,24(2):302-303页
    [83] M. Johnson,L. Freitag,and M. Stojanovic.Improved doppler tracking and correction for underwater acoustic communication.presented at the ICASSP’97,Munich,Germany,1997.vol(23):126-129P
    [84]张海滨.正交频分复用的基本原理与关键技术.国防工业出版社.2006:37-48页
    [85] Heiskala J.,Terry J.OFDM Wireless LANS: A theoretical and practical guide.Ind.: Sams Publishing,2002:51-76页
    [86] A.V.奥本海姆,R.V.谢弗,J.R.巴克.离散时间信号处理(第二版).西安交通大学出版社.2007:145-149页
    [87]万溢萍.OFDM系统的信道估计算法的研究.浙江大学硕士论文.2006
    [88] J. J. van de Beek,O. Edfors,M. Sandell,S. K. Wilson,P. O. B¨orjesson.On channel estimation in OFDM systems.in Proc. IEEE Vehicular Technology Conf.,vol. 2,Chicago,IL,July 1995:815-819P
    [89] O. Edfors,M. Sandell,and J.-J. van de Beek.OFDM channel estimation by sigular value decomposition.IEEE Trans. Commun.,vol. 46,July 1998:931–939P
    [90] YEH S C,LIN Y Y.Channel estimation using pilot tones in OFDM system. IEEE ransactions on Broadcasting,1999,45(4):400-408P
    [91] YEH C S,LIN Y Y,WU Y Y. OFDM system channel estimation using time-domain training sequence for mobile reception of digitaltemestrial broadcasting. IEEE Transactions on Broadcasting,2000,46(3):215-220P
    [92]姜永权,马逸新.一种基于PN序列的OFDM时域信道估计方法.汕头大学学报(自然科学版).2006,11,21(4):75-79页
    [93]杨娇瑜.高速移动无线信道自适应均衡研究.北京交通大学硕士论文.2006
    [94]杜岩,张永生,王新征.基于辅助数据的SC-FDE系统频域LS信道估计.电子与信息学报.2007,4,29(4):954-958页
    [95] RL Frank,S A Zadoff.Phase Shift Pulse Codes with Good Periodic Correlation Properties.IRE Transactions on Information Theory,1962,(10):381-382P
    [96] DCChu.Polyphase Codes with Good Periodic Correlation Properties. IEEE Transactions on Information Theory.1972 ,(7):531-532P
    [97]张永生.OFDM和SC-FDE中的信道估计技术.山东大学硕士论文,2005
    [98]刘鲁平,唐金花,陈文正.SC-FDE、OFDM和SC-TDE三种系统的性能比较研究.科技通报.2008,7,24(4):543-547页
    [99] Tingting Shi,Shidong Zhou,Yan Yao.Capacity of single carrier systems with frequency domain equalization.IEEE 6th CAS Symposia on Emerging Technologies : Mobile and Wireless Communications.[ S. l. ] : IEEE ,2004:429-432P
    [100] Liu Q,Yang L. Theoretical compaprison of BER performance between single carrier frequency domain equalization and multi-carrier OFDM.Journal of Electronic & Information Technology,2005,27(3):411- 414P
    [101] Yuan-Pei Lin,See-May Phoong. MMSE OFDM and prefixed single carrier systems BER analysis. Acoustics,Speech,and Signal Processing,2003. Proceedings. (ICASSP '03). 2003 IEEE International Conference on Volume 4,6-10 April 2003 Page(s):IV - 229-232 vol.4
    [102]张战争,张效民,冯建利.基于OFDM和SC_FDE技术的水声通信系统研究.科学技术与工程.2007,4,7(7):1328-1332页
    [103] Yeesoo Han,Heo Huh,James V Krogmeier.ComPAPRison of Error Probability for OFDM and SC-FDE. Conference Record of the Asilomar Conference on Signals,Systems and Computers,2003.1:497-501P
    [104] WAN G Y,DON G X D. Impact of Frequency Offset and Timing Offset on the Performance of SC-FDE UWB.Global Telecommunications Conference,2006:1-5P
    [105] Yue Wang,Xiaodai Dong. ComPAPRison of Frequency Offset and Timing Offset Effects on the Performance of SC-FDE and OFDM over UWB Channels.Vehicular Technology,IEEE Transactions on Volume 58, Issue 1,Jan. 2009:242 -250P
    [106] Aue, V.,Fettweis, G.,Valenzuela,R.. A comPAPRison of the performance of linearly equalized single carrier and coded OFDM over frequency selective fading channels using the random coding technique. Communications,1998.ICC98.Conference Record.1998 IEEE International Conference onVolume 2,7-11 June 1998:753-757P
    [107]刘洋.SC-FDE系统中的编码研究.山东大学硕士论文.2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700