氧化锌基一维纳米复合材料制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料制备及应用是当今世界各国重点发展的研究领域之一。一维纳米材料由于其新颖的物理、化学和生物特性以及在纳米器件中的潜在用途成为当今纳米技术的研究热点。本文对一维氧化锌基复合纳米材料的制备及其气体敏感性能和光催化活性进行了系统研究。
     对传统水热/溶剂热法进行了改进,设计了一种简单的前驱物超声辅助—水热/溶剂热法,在120℃低温合成了结构均匀、分散性好、产率高的氧化锌纳米棒,发现前驱物溶液先经过超声处理,产生部分氧化锌晶核作为晶种再进行水热/溶剂热反应,能提高纳米棒的产率和均匀性。系统研究了辅助剂、反应温度和时间等影响因素对氧化锌纳米结构和形貌的影响,结果表明阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)和有机高分子表面活性剂PEG400是合成一维氧化锌的最佳辅助剂。
     创新性地将固体原料乙酸锌和氢氧化钠直接置于含PEG400辅剂的乙醇溶剂中,在120℃的低温中一步合成了直径约20nm的氧化锌纳米线和纳米棒,研究发现氢氧化钠的比例是控制纳米氧化锌长度的关键,从而实现了氧化锌一维纳米材料的可控合成。提出氧化锌纳米棒、纳米线的生长机理为溶解—醇解—成核—生长机制。
     采用静态配气法测试了不同结构纳米氧化锌的气敏性能。与零维纳米粒子相比,一维氧化锌纳米材料具有较高的气体灵敏度和较好的气敏稳定性;通过气敏元件表面分析和比表面测试分析,推断出氧化锌一维纳米结构灵敏度高于零维结构的主要原因是,气敏材料经高温烧结制成气敏元件后,一维氧化锌能够保持自身形貌并形成大量空穴,具有较高的有效表面积。
     独创了氧化物气敏材料的贵金属量子点修饰法,有效地提高了氧化物气敏材料的灵敏度和选择性。采用液相法合成了贵金属量子点(Pd,Pt),研究发现贵金属量子点修饰法较之传统的浸渍煅烧掺杂法更为有效、方便。采用钯量子点修饰氧化锌纳米线后可以得到超高灵敏度和高选择性的硫化氢气体传感器,可以检测ppb级的硫化氢气体。铂量子点修饰氧化锌纳米线后的气敏性能也有明显改善,对酒精、甲醛气体的检测下限也有所降低。
     采用了一种简单的光化学沉积法制得了Ag负载ZnO纳米棒的新型气敏材料,气敏性能研究结果表明,这种新型的气敏材料具有优良的气敏性能,可以检测ppm级的酒精。
     根据氧化锌和氧化钨均能形成一维纳米材料且都具有良好地光催化性能,这两种氧化物的复合产物钨酸锌也应能形成一维纳米材料并具备良好的光催化性能这样的思路,采用了一种简单的、不加任何辅助剂的沉淀—水热法合成了直径约20nm,长度约200nm且结构均匀、分散性好、产率高的钨酸锌纳米棒。系统研究了反应温度、时间对一维纳米结构形成和结晶度的影响,提出了钨酸锌纳米棒的生长机理为成核—成棒—晶化过程。并研究了不同条件下制备的钨酸锌纳米棒的光致发光性能以及对有机染料罗丹明B的光催化降解效率。发现水热温度为200℃,反应时间为16小时得到的产品直径小、形貌均一、结晶度高、荧光发射强度高且对罗丹明B的光催化降解效率高,几乎可以和高效光催化剂TiO_2(Degussa P-25)媲美。
Today the synthesis and the application of nanomaterials has become one of the key research areas for countries all over the world. One dimensional nanomaterials are now the hop spot of research of nanotechnologies because of their fresh new physical, chemical and biological properties and their potential usage in the nano-instruments. So we conducted a systematic reasearch on the synthesis of one dimensional ZnO based nanomaterials and their gas sensitivity and photocatalytic properties.
     The traditional hydrothermal solution method was modified and a simple precursor ultrasonic-assisted-hydrothermal solution method was designed. At the temperature of 120℃, the ZnO nanorods were synthesized with this method, the nanorods with high output were uniform in structure and well dispersed. The results show that the output and uniformity of the nanorods could be improved if the precursor solution was ultrasound treated and some ZnO crystal nucleus thus produced as crystal seeds had been reacted in hydrothermal-solution reaction. We systematically studied the influence factors like assistants, reaction temperatures and reaction time that affected the ZnO nano morphologies and structures. The results demonstrate that the cationic surfactant CTAB and the organic macromolecule surfactant PEG400 are the best assistants for control synthesis of one-dimensional ZnO.
     The solid ZnAc_2·2H_2O and NaOH were creatively used as raw materials, and were put into the alcoholic solution that contained PEG400 as assistants and at the low temperature of 120℃, ZnO nano wires and nanorods could be synthesized at one step, their diameters were around 20 nm. The percentage of NaOH plays a key role in controlling the length of ZnO nanomaterials. Thus we suggest that the ZnO nanorods and nanowires' growth mechanism is dissolution-alcoholysis-nucleation mechanism.
     The gas sensing properties of ZnO nanomaterials with different structures were measured by mixing detected gas and air in static state. In comparison with ZnO nanoparticles, one- dimensional ZnO nanomaterials have higher gas sensitivity and better gas sensing stability. One-dimensional ZnO nanostucture was higher in gas sensitivity than zero dimensional structure. Through analysis with SEM photographs and data of specific surface area, we concluded the main reason to be that after the gas sensor had been sintered through high temperature, one dimensional ZnO may retain its morphology and form large amount of gas channels that provided relatively high effective surface area.
     The creative modification with Pd and Pt quantum dots (QDs) method on oxide gas sensing materials had effectively increased the sensitivity and selectivity of the sensors. Pd and Pt QDS were synthesized with solution-grown method and the study found that the modification with Pd and Pt QDS method was more effective and convenient than the traditional doped method. We used Pd QDs to modify ZnO nanowires, thus we got the highly sensitive and highly selective H_2S gas sensor. The sensor can detect H_2S gases of ppb grade. After being modified by Pt QDs, the gas sensitivity of the ZnO nanowires had improved considerably, the minimum amount of alcohol and HCHO it could detect had lowered.
     A simple photochemical precipitation method was used to synthesize a new gas sensitive material of Ag-doped ZnO nanorods. The results show that this new type of material had outstanding gas sensing capability and can detect alcohol at ppm grade.
     Since ZnO and WO3 can both be synthesized into one-dimensional nanomaterials and have good photocatalytic properties, their compound ZnWO_4 might be synthesized into one-dimensional nanomaterials and could have good photocatalytic properties. A simple precipitation-hydrothermal method was used without any assistants to synthesize the ZnWO_4 nanorods that were uniform in structures, well dispersed, of high output and had the diameter of 20 nm and length of around 200 nm. We systematically studied the influence of reaction temperature and time on the formation and degree of crystallization of one-dimensional nanostructure. And we propose the growth mechanisms of the ZnWO_4 nanorods to be nucleation-nanorods forming-crystallization. We studied the photoluminescence performance of the ZnWO_4 nanorods synthesized under different conditions and their photocatalytic degradation efficiency of the organic dye RhB. We found that at the temperature of 200℃with reaction time of 16 hours, the products we got was of small diameters, uniform in morphologies, high in fluorescence emissive power, of high crystallization and its photocatalytic degradation efficiency of RhB was so high that it was almost comparable to the highly efficient catalyst TiO_2 (Degussa P-25).
引文
[1]张立德,牟其美。纳米材料和纳米结构[M]。北京:科学出版社。2001
    [2]张立德,牟其美。纳米材料学[M]。沈阳:辽宁科学技术出版社。1994
    [3]朱静,纳米材料与器件[M]。北京:清华大学出版社。2003
    [4]Klein D.L.,Roth R.,Lim A.K L.,et al.A single-electron transistor made from a cadmiumselenide nanocrystal[J].Nature,1997,389(6652):699-701
    [5]Alivisatos A.P.Perspectives on the physical chemistry of semiconductor nanocrystals [J].J.Phys.Chem.,1996,100(31):13226-13239
    [6]Alivisatos A.R Semiconductor clusters,nanocrystals,and quantum dots[J].Science,1996,271:933-937
    [7]Hu J.Y.,Odom T.W.,Lieber C.M.Chemistry and physics in one dimension:Synthesis and properties of nanowires and nanotubes Accounts[J].Chem.Res.,1999,32(5):435-445
    [8]Morales A.M.,Lieber C.M.A laser ablation method for the synthesis of crystalline semiconductor nanowires[J].Science,1998,279(1):208-211
    [9]Fujishima A,Honda K.Photolysis-decomposition of water at the surface of an irradiated semiconductor[J].Nature,1972,238:37-38.
    [10]Carey J H,Lawrence J,Tosine H M.Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension[J].Bull Environ Contain Toxic,1976,16(6):697-701.
    [11]Malato S,Blanco J,Vidal A,et al.Applied studies in solar photocatalytic detoxification:an overview[J].Sol Energy,2003,75(4):329-336.
    [12]Sun D,Meng T T,Loong T H,et al.Removal of natural organic matter from water using a nano-structured photocatalyst coupled with filtration membrane[J].Water Sci.Technol.,2004,49(1):103-110.
    [13]Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354(11):56-58
    [14]Duan X..F,Lieber C.M.General synthesis of compound semiconductor nanowires [J].Adv.Mater.,2000,12(4):298-302
    [15]M.H.Huang,S.Mao,H.N.Feick,et al.Room-temperature ultraviolet nanowires nanolasers[J].Science,2001,292:1897-1899.
    [16]Pan Z.W.,Dai Z.R.,Wang Z.L.Nanobelts of semiconducting oxides[J].Science,2001,291:1947-1949
    [17]Kong X.Y.,Ding Y.,Yang R.,et al.Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts[J].Science,2004,303:1348-1351
    [18]R.M.Wang,Y.J.Xing,J.Xu.et al.Fabrication and microstructure analysis zinc oxide nanotubes[J].New Journal of Physics,2003,5:115.1-115.7
    [19]J.Q.Hu,Q.Li,X.M.Meng,Thermal Reduction Route to the Fabrication of Coaxial Zn/ZnO Nanocables and ZnO Nanotubes[J].Chem.Mater.,2003,15(1):305-308
    [20]Y.W.Wang,L.D.Ghang,G.G.Wang,et al.Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties[J].J.Cryst.Growth,2002,234(1):171-175
    [21]J.Q.Hu,X L.Ma,Z.Y.Xie,et al.Characterization of zinc oxide crystal whiskers grown by thermal evaporation[J].Chem.Phys.Lett.,2001,344(1-2):97-100
    [22]Michael H.Huang,Yiying Wu,Henning Feick,Peidong Yang,et al.,Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport[J].Adv.Mater.,2001,13:113-116
    [23]Seu Yi Li,Chia Ying Lee,Tseung Yuen Tseng,Copper-catalyzed ZnO nanowires on silicon(100) grown by vapor-liquid-solid process[J].J.Crys.Growth.2003,247(3-4):357-362
    [24]P.X.Gao,Y Ding,.Z.L.Wang.Crystallographic Orientation-Aligned ZnO Nanorods Grown by a Tin Catalyst[J].Nano Lett.,2003,3:1315-1320
    [25]B.D.Yao,Y F.Chan,N.Wang,Formation of ZnO nanostructures by a simple way of thermal evaporation[J],Appl.Phys.Lett.,2002,81(4):757-759
    [26]Seung Chul Lyu,Ye Zhang,Cheol Jin Lee,Low-Temperature Growth of ZnO Nanowire Array by a Simple Physical Vapor-Deposition Method[J],Chem.Mater.,2003,15(17):3294-3299
    [27]V.A.L.Roy,A.B.Djuristic,W.K.Chan,et al.,Luminescent and structural properties of ZnO nanorods prepared under different conditions[J].Appl.Phys.Lett.,2003,83(1):141-143
    [28]Haoquan Yan,Rongrui He,Johnny Pham,Peidong Yang,Morphogenesis of One-Dimensional ZnO Nano-and Microcrystals[J].Adv.Mater.,2003,15(5):402-405
    [29]Puxian Gao.Zhong Lin Wang,Self-Assembled Nanowire-Nanoribbon Junction Arrays of ZnO[J].J.Phys.Chem.B,2002,106(49):12653-12658
    [30]J.C.Wen,J.Y.Lao,D.Z.Wang,et al.Self-assembly of semiconducting oxide nanowires,nanorods,and nanoribbons[J].Chem.Phys.Lett.,2003(5-6):372717-722
    [31]Jing Yu Lao,lian Guo Wen,,Zhi Feng Ren,Hierarchical ZnO Nanostructures[J]. Nano.Lett.,2002,2(11):1287-1291
    [32]J.Y.Lao,J.Y.Huang,D.Z.Wang,Z.F.Ren,ZnO Nanobridges and Nanonails[J].Nano.Lett.,2003,3(2):235-238
    [33]F.L.Deepak,C.Pvinod,K.Mukhopadhyay et al.Boron nitride nanotubes and nanowires[J].Chem.Phys.Lett.,2002,353:345-352
    [34]M K.Sunkara,S.Sharma,R.Miranda.et al.Bulk synthesis of silicon nanowires using a low-temperature vapor-liquid-solid method[J].App.Phys.Lett.,2001,79:1546-1548
    [35]Jih-Jen Wu,Sai-Chang Liu.Catalyst-Free Growth and Characterization of ZnO Nanorods[J].J.Phys.Chem.B,2002,106(37):9546-9551
    [36]Ko-Wei Chang,lih-ten Wu.Low-Temperature Catalytic Growth of Ga_2O_3,nanowires by Single Organomctallic Precursor[J].J.Phys.Chem.B,2004,108(6):1838-1843
    [37]Chia-Chun Chen,Chun-Chia Yeh,Chun-Ho Chen et al.Catalytic Growth and Characterization of Gallium Nitride Nanowires[J].J.Am.Chem.Soc.2001,123(12):2791-2798
    [38]Hwa Young Kim,Jeunghee Park,Hyunik Yang.Direct synthesis of aligned silicon carbide nanowires from the silicon substrates[J].Chem.Commun.,2003,256-257
    [39]Jih-Jen Wu,Sai-Chang Liu.Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition[J].Adv.Mater.,2002,14(3):215-218
    [40]Pan Z.W.,Dai Z.R.,Wang Z.L.Nanobelts of semiconducting oxides[J].Science,2001,291:1947-1949
    [41]M.Wirtz,C.R.Martin,Template-fabricated gold nanowires and nanotubes[J].Adv.Mater.,2003,15:455-458
    [42]M.Wirtz,S.F.Yu,C.R.Martin,Template synthesized gold nanotube membranes for chemical separations and sensing[J].Analyst,2002,127:871-879
    [43]G.L.Che,B.B.Lakshmi,E.R.Fisher,et al.Carbon nanotube membranes for electrochemical energy storage and production[J].Nature,1998,393(6683):346-349
    [44]H.J.Dai,E.W.Wong,Y.Z Lu,C.M.Lieber,et al.Synthesis and Characterization of carbide nanorods[J],Nature 1995,375(6534):769-772
    [45]W.Q.Han,S.S.Fan,Q.Q.Li,et al.Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction[J].Science,1997,277:1287-1289
    [46]U.Simon,M.E Franke.Electrical properties of nanoscaled host/guest compounds[J].Microporous and Mesoporous Materials,2000,41(1/3):1-36
    [47]S.Ravaine,G.E.Fanncci,C.T.Seip,et al.Photochemical Generation of Gold Nanoparticles in Langmuir-Blodgett Films Serge Ravaine[J].Langmuir,1998,14(3):708-713
    [48]R.P.Bague,K.C.Khilar.Effects of Intermicellar Exchange Rate on the Formation of Silver Nanoparticles in Reverse Microemulsions of AOY[J].Langmuir,2000,16(3):905-910
    [49]J.P.Casom,C.B.Roberts,Metallic Copper Nanoparticle Synthesis in AOT Reverse Micelles in Compressed Propane and Supercritical Ethane Solutions[J].J.Phys.Chem.B,2000,104(6):1217-1221
    [50]X.C.Jiang,Y.Xie,J.Lu,et al.Oleate vesicle template route to silver nanowires[J].J.Mater.Chem.,2001,11(7):1775-1777
    [51]N.R.B.Coleman,G.S.Attard,Ordered mesoporous silicas prepared from both micellar solutions and liquid crystal phases[J].Microporous and Mesoporous Materials,2001,44-45:73-80
    [52]X.C.Jiang,Y.Xie,J.Lu,et al.Simultaneous In Situ Formation of ZnS Nanowires in a Liquid Crystal Template by γ-Irradiation[J].Chem.Mater.,2001,13(4):1213-1218
    [53]Hongtao Shi,limin Qi,Jiming Ma,et al.,Polymer-Directed Synthesis of Penniform BaWO_4,Nanostructures in Reverse Micelles[J].Am.Chem.Soc.,2003,125:3450-3451
    [54]Hongtao Shi,limin Qi,Jiming Ma,et al.,Synthesis of single crystal BaWO_4nanowires in catanionic reverse micelles[J].Chem.Commun.,2002,1704-1705
    [55]Yujie Xiong,Yi Xie,Jun Yang,et al.In situ micelle-template-interface reaction route to CdS nanotubes and nanowires[J].Mater.Chem.,2002,12:3712-3716
    [56]元如林,施尔畏,王步国等,氧化锌晶粒生长基元与生长形态的形成机理[J]。中国科学(E辑),1997,27(3):229-236
    [57]X.Wang,X.M.Sun,D.R Yu,et al.Rare earth compound nanotubes[J].Adv Mater.,2003,15(17):1442-1445
    [58]X.Wang,Y.D.Li.Selected-control hydrothermal synthesis of alpha-and beta-MnO_2single crystal nanowires[J].J.Am.Chem.Soc.,2002,124(12):2880-2881
    [59]Y.D.Li,J.W.Wang,Z.X.Deng,et al.Bismuth nanotubes:A rational low-temperature synthesisroute[J].J.Am.Chem.Soc.,2001,123(40):9904-9905
    [60]X.Wang,Y.D.Li.Rational synthesis of alpha-MnO2 single-crystal nanorods[J].Chem.Commun.,2002,764-765
    [61]Weixin Zhang,Zeheng Yang,xinmin Huang,Yitai Qian,et al.Low temperature growth of bismuth sulfide nanorods by a hydrothertnal method[J].Solid State Communications,2001,119(3):143-146
    [62]X.Wang,Y.D.Li.Synthesis and formation mechanism of manganese dioxidenanowires/nanorods [J].Chem.Eur.J.,2003,9(1):300-306
    [63]Debao Wang,Mingwang Shao,Dabin Yu,et al.,Polyol-mediated preparation of Bi_2S_3 nanorods[J].J.Crys.Growth.,2002,243:331-335
    [64]X.M.Sun,X.Chen,Z.X.Deng,YD.Li.A CTAB-assisted hydrothermal orientation growth of ZnO nanorods[J].Mater Chem.Phys.,2002,78:99-104
    [65]L.Vayssieres Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions[J].Adv.Mater,2003,15(5):464-466
    [66]聂秋林,袁求理,徐铸德。单齿络合剂辅助水热合成CdS纳米棒[J]。无机材料学报,2004,19:1411-1414
    [67]Zhengquan Li,Yujie Xiong,Yi Xie.Selected-Control Synthesis of ZnO Nanowires and Nanorods via a PEG-Assisted Route[J].Inorg.Chem.,2003,42(24):8105-8109
    [68]Jun Zhang,Lingdong Sun,Huayong Pan,et al.,ZnO nanowires fabricated by a convenient route [J].New J.Chem.,2002,26:33-34
    [69]Peng Zhang,Lian Gao,Synthesis and Characterisation of CdS Nanorods via Hydrothermal Microemulsion[J].Langmuir,2003,19(1):208-210
    [70]J.R.Heath,F.K.LeGoues,A liquid solution synthesis of single crystal germanium quantum wires [J].Chem.Phys.Lett.,1993,208(3-4):263-268
    [71]Li Y D,Liao H W,Ding Y,et al.Solvothermal elemental direct reaction to CdE(E=S,Se,Te)semiconductor nanorod[J].Inorg.Chem.,1999,38:1382-1387
    [72]Peng Q,Dong Y J,Li Y D,et al.Low-temperature elemental-direct-reaction route to Ⅱ-VIsemiconductor nanocrystalline ZnSe and CdSe[J].lnorg.Chem.,2001,40:3840-3841
    [73]Li Y D,Liao H W,Qian Y T,et al.Nonaqueous synthesis of CdS nanorod semiconductor[J].Chem.Mater,1998,10:2301-2303
    [74]Dong Y J,Peng Q,Li Y D,et al.Synthesis and characterization of an open framework gallium selenide:Ga_4Se_7(en)_2-(enH)_2[J].Inorg.Chem.,2003,42:1794-1796
    [75]Deng Z X,Li L B,Li Y D.Novel inorganic-organic-layered structures:Crystallographicunderstanding of both phase and morphology formations of one-dimensional CdE (E=S,Se,Te) nanorods in ethylenediamine[J].Inorg Chem.,2003 42:2331-2341
    [76]X.Wang,Y.D.Li.Rare earth compounds nanowires,nanotubes and fullerene-likenanoparticles:synthesis,characterization and properties[J].Chem.Eur.J.,2003,9(22):5627-5635
    [77]Shu-Hong Yu,Yong-Sheng Wu,Jian Yang,et al.,A Novel Solventothermal Synthetic Route to Nanocrystalline CdE(E=S,Se,Tc) and Morphological Control[J].Chem.Mater.,1998,10(9): 2309-2312
    [78]J.Q.Hu,Q.Y.Lu,K.13.Tang,et al.Synthesis and Characterization of SiC Nanowires through a Reduction-Carburization Route[J].J.Phys.Chem.B,2000,104(22):5251-5254
    [79]Shcnzhong Li,Hui Zhang,Yujie Ji,et al.,CuO nanodendrites synthesized by a novel hydrothermal route[J],Nanotechnology,2004,15:1428-1432
    [80]Aharon Gedanken.Using-sonochemistry for the fabrication of nanomaterials[J].Ultrasonics Sonchemistry,2004,11(2):47-55
    [81]Yingchun Zhu,Hongliang Li,Yuri Koltypin,et al.Sonochemical synthesis of titania whiskers and nanotubes[J].Chem.Commun.,2001,2616-2617
    [82]Byron Gates,Brian Mayers,Andrew Grossman,Younan Xia.A Sonochemical Approach to the Synthesis of Crystalline Selenium Nanowires in Solutions and on Solid Supports[J].Adv.Mater.,2002,14(23):1749-1752
    [83]Brian Mayers,Younan Xia,Formation of Tellurium Nanotubes through Concentration Depletion at the Surfaces of Seed[J].Adv.Mater.,2002,14(4):279-282
    [84]Byron Gates,Yadong Yin,Younan Xia,Solution-Phase Approach to the Synthesis of Uniform Nanowires of Crystalline Selenium with Lateral Dimensions in the Range of 10-30 nm[J].J.Am.Chem.Soc.,2000,122(50):12582-12583
    [85]Brian Mayers,Byron Gates,Yadong Yin,Ynunan Xia;Large-Scale Synthesis of Monodisperse Nanorods of Se/Te Alloys Through a Homogeneous Nucleation and Solution Growth Process[J].Adv.Mater.,2001,13:1380-1384
    [86]Claudia Pacholski,Andreas Komowski,Horst Wellter.Self-Assembly of ZnO:From Nanodots to Nanorods[J].Angew Chem.Int.Ed.,2002,41:1188-1191
    [87]Yujie Xiong,Yi Xie,Changzheng Wu.et al.Formation of Silver Nanowires Through a Sandwiched Reduction Process[J].Adv.Mater.,2003,15(5):405-408
    [88]Liu Yingkai,Liu Zhihui,Wang Guanghou,Synthesis and characterization of ZnO nanorods[J],J.Cryst.Growth,2003,252(1-3):213-218
    [89]Xu Congkang,Xu Guoding,Liu Yingkai,et al.A simple and novel route for preparation of ZnO nanorods[J].Solid State Com.,2002,122(3-4):175-179
    [90]Liu Yingkai,Zheng Chenglin,Wang Wenzhong,et al.Preparation of SnO_2 nanorods by redox reaction[J].J.Cryst.Growth,2001,233:8-12
    [91]Zhan Yongjie,Zheng Chenglin,Liu Yingkai,et al.Synthesis of NiO nanowires by an oxidation route[J].Mater.Lett.,2003,57(21):3265-3268
    [92]Wang Wenzhong,Zhan Yongjie,Wang Xiaoshu,et al.Synthesis and characterization of CuO nanowhiskers by a novel one step,solid state reaction in the presence of a nonionic surfactant[J]. Mater.Res.Bull.,2002,37(6):1093-1100
    [93]李永军,刘春艳。一维无机纳米材料的研究进展[J]。感光科学与老化学,2003,21(6):446-468
    [94]N.R.Jana,L.Gearheart,C.J.Muephy,et al.,Wet chenical synthesis of high aspect ratio cylindrical gold nanorods[J],J.Phys.Chem.B,2001,105(19):4065-4047
    [95]S.Link,M.B.Mohamed,M.A.El-Sayed,Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant [J].J.Phys.Chem.B,1999,103(16):3073-3077
    [96]C.H.Liang,G..W.Meng,Y.Lei,et al.Catalytic growth of semiconducting In_2O_3 nanofibers[J].Adv.Mater.,2001,13(17):1330-1332
    [97]S.C.Lyu,Y.Zhang,H.Ruh,et al.,Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires[J].Chem.Phys.Lett.,2002,363:134-138
    [98]M.H.Huang,S.Mao,H.Feick,et al.Room-temperature ultraviolet nanowire nanolasers[J].Science,2001,292(5523):1897-1898
    [99]T.M.Whitney,J.S.Jiang,P.C.Searson,et al.Fabrication and magnetic properties of metallic nanowires[J].Science,1993,261(5126):1316-1319
    [100]X.Duan,Y.Huang,Y.Cui,et al.Indium phosphide nanowires as building blocks for nanoscale electronic and photoelectronic devices[J].Nature,2001,409(6816):66-69
    [101]J.Muster,G.T.Kin,V.Krstic,et al.Electrical transport through individual vanadium pentoxide nanowires[J].Adv.Mater.,2000,12(6):420-424
    [102]Shoushan Fan,Michael G.Chapline,Nathan R.Franklin,et al.Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties[J].Science,1999,283:512-514
    [103]Z.Pan,H.L.Lai,F.C.K.Au,et al.Oriented silicon carbide nanowires:synthesis and field emission properties[J].Adv.Mater.,2000,12(16):1186-1190
    [104]Jing Kong,Nathan R Franklin,Chongwu Zhou,et al.,Nanotube Molecular Wires as Chemical Sensors[J].Science,2000,287:622-625
    [105]W.Y.Li,L.N.Xu,J.Chen,Co_3O_4 nanomaterials in lithium-ion batteries and gas sensors[J].Adv.Funct.Mater.,2005,15:851-857
    [106]Y.Liu,M.L.Liu,Growth of aligned square-shaped SnO_2 tube arrays[J].Adv.Funct.Mater.,2005,15:57-62
    [107]G.K.Mor,M.A.Cavalho,O.K.Varghese,et al.A room-temperature TiO_2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination[J].J.Mater.Res.,2004,19:628-634
    [108]Wang C.H.,Chu X.F.,Wu M.M..Detection of H_2S down to ppb levels at room temperature using based ZnO nanorods[J].Sens.Actuators.B,2006,113(1):320-323
    [109]B.S.Kang,Y.W.Heo,L.C.Tien,et al.Hydrogen and ozone gas sensing using multiple ZnO nanorods[J].Appl.Phys.A,2005,80:1029-1032
    [110]B.S.Kang,F.Ren,Y.W.Heo,et al.pH measurements with single ZnO nanorods integrated with a microchannel[J].Appl.Phys.Lett.,2005,86(11):112105-112107
    [111]H.T.Wang,B.S.Kang,F.Ren,et al.Hydrogen-selective sensing at room temperature with ZnO nanorods[J].Appl.Phys.Lett.,2005,86(24):243503-243505
    [112]T.Gao,T.H.Wang,Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications[J].Appl.Phys.A,2005,80:1451-1454
    [113]J.Q.Xu,Y.P.Chen,D.Y.Chen,et al.Hydrothermal Synthesis and gas sensing character of ZnO nanorods[J].Sens.Actuators B,2006,113:526-531
    [114]J.Q.Xu,Y.P.Chert,Y.D.Li,et al.Gas sensing properties of ZnO nanorods prepared by hydrothermal method[J].J.Mater.Sci.,2005,40:2919-2921
    [115]Z.L.Wang,Nanobelts,nanowires,and nanodiskettes of semiconducting oxides-From materials to nanodevices[J].Adv.Mater.,2003,15(5):432-436.
    [116]E.Comini,G.Faglia,G.Sberveglieri,et al.Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts[J].Appl.Phys.Lett.,2002,81(10):1869-1871.
    [117]Law Matt,Kind Hannes,Messer Benjamin,et,al.Photochemical sensing of NO_2 with SnO_2nanoribbon nanosensors at room temperature[J].Angew.Chem.Inter.Edi.,2002,41(13):2405-2408.
    [118]A.Maiti,J.A.Rodriguez,M.Law,et al.SnO_2 nanoribbon as NO_2 sensors:insights from first principles calculations[J].Nano Lett.,2003,3:1025-1028
    [119]A.Kolmakov,D.O.Klenov,Y.Lilach,et al.Enhanced gas sensing by individual SnO_2 nanowires and nanobelts functionalized with Pd catalyst particles[J].Nano.Lett.,2005,5(4):667-673
    [120]J.F.Liu,X.Wang,Q.Peng,Y.D.Li Vanadium pentoxide nanobelts:highly selective and stable ethanol sensor material[J].Adv.Mater.,2005,17:764-767
    [121]A.Kolmakov,Y.X.Zhang,G.S.Cheng,et al.,Detection of CO and O_2 using tin oxide nanowire sensors[J].Adv.Mater.,2003,15(12):997-1000
    [122]Daihua Zhang;Chao Li,Xiaolei Liu,et al.Doping dependent NH_3 sensing of indium oxide nanowires[J].Appl.Phys.Lett.,2003,83(9):1845-1847.
    [123]D.Zhang;C.Li,S.Han,et al.Ultraviolet photodetection properties of indium oxide nanowires[J].Appl.Phys.A:Mater.Sci.Process,2003,77(1):163-166.
    [124]C.Li,,D.H.Zhang,X.L.Liu,In_2O_3 nanowires as chemical sensors[J].Appl.Phys.Lett.,2003, 82(10):1613-1615.
    [125]Y.L.Wang,X.C.Jiang,Y.N.Xia,A solution-phase,precursor route to polycrystalline SnO_2nanowires that can be used for gas sensing under ambient condition[J].I.Am.Chem.Soc.,2003,125(52):16176-16177
    [126]Q.Wan,T.H.Wang,Single-crystalline Sb-doped SnO_2 nanowires:synthesis and gas sensor application[J].Chem.Commun.,2005,3841-3843
    [127]N.S.Ramgir,I.S.Mulla,K.P.Vijayamohanan,A room temperature nitric oxide sensor actualized from Ru-doped SnO_2 nanowires[J].Sens.Actuators B,2005,107(2):708-715
    [128]Q.Wan,Q.H.Li,Y.J.Chen,et al.Fabrication and ethanol sensing characteristics of ZnO nanowires gas sensors[J].Appl.Phys.Lett.,2004,84:3654-3656
    [129]Q.H.Li,Y.X.Liang,Q.Wan,et al.,Oxygen sensing characteristics of individual ZnO nanowires transistors[J].Appl.Phys.Lett.,2004,8(26)5:6389-6391
    [130]Q.Wan,Q.H.Li,Y.J.Chen,et al.Positive temperature coeffcient resistance and humidity sensing properties of Cd-doped ZnO nanowires[J].Appl.Phys.Lett.,2004,84:3085-3087
    [131]M.F.Yu,M.Z.Atshbar,X.L.Chen,Mechanical and electrical characterization of β-Ga_2O_3nanostructures for sensing application[J].IEEE Sens.J.,2005,5:20-25
    [132]徐甲强,张全法,范福玲。传感器技术(下)[M]。哈尔滨:哈尔滨工业大学出版社,2004
    [133]N.Yamazoe,G.Sakai,K.Shimanoe.Oxide gas sensor[J].Catal Surveys Asia,2003,7(1):63-75
    [134]N.Yamazoe.Toward innovations of gas sensor technology[J].Sens Actuators B,2005,108(1-2):2-14
    [135]F.Patolsky and C.M.Lieber.Nanowire nanosensors[J].Mater.Today,2005,8(4):20-28
    [136]Fujishima A.,Honda K.Electrochemical photocatalysis of water at a semiconductor electrode[J].Nature.1972,238:37-38.
    [137]Frank S.N.,Bard A.J.Semiconductor Electrodes.12.Photoassisted Oxidations and Photoelectrosynthesis at Polycrystalline TiO2 Electrodes[J].Journal of American Chemical Society.1977,99(14):4667-4675
    [138]Frank S.N.,Bard A.J.Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder[J].Journal of American Chemical Society.1977,99(1):303-304
    [139]Inoue T.,Fujishima A.,Konishi S.et al.Photoelectrocatalytic reduction of carbon dioxide in aquous suspensions of semiconductor powders[J].Nature.1979,277:637-638.
    [140]Kudo A.,Hijii S.H_2 or O_2 evolution from aqueous solution on layered oxide photocatalysts consisting of Bi~(3+) with 6s(2) configuration and d(0) transition metal ions[J].Chem.Lett.,1999(10):1103-1104
    [141]Kudo A.,Kato H,Nakagawa s.Water splitting into H_2 and O_2 on new Sr_2M_2O_7(M=Nb and Ya)photocatalysts with layeres perovskite structure:Factors affecting the photocatalytic activity[J].J.Phys.Chem.B,2000,104(3):571-575
    [142]Kudo A.,Kato H,Effect of lanthanide-doping into NaTaO_3 photocatalysts for efficient water splitting[J].Chem.Phys.Lett.,2000,331(5-6):373-377
    [143]Kato H,Kudo A.,Photocatalytic water splitting into H_2 and O_2 over various tantalite photocatalysts[J].Catalysis Today,2003,78(1-4):561-569
    [144]Zou ZG,Ye JH,Abe R,et al.Photocatalytic decomposition of water with Bi_2InNbO_7[J].Catalysis Lett.,2000,68(3-4):235-239
    [145]Zou ZG,Ye JH,Arakawa H,Optical and electrical properties of solid photocatalyst Bi_2InNbO_7[J].J.Mater.Res.,2000,15(10):2073-2075
    [146]Zou ZG,Ye JH,Arakawa H,Synthesis,magnetic and electrical transport properties of the Bi_2InNbO_7 compound[J].Solid State Commu.,2000,116(5):259-263
    [147]Zhang C,Zhu Y F.Synthesis of Square Bi_2WO_6 Nanoplates as High-Activity Visible-Light-Driven Photocatalysts[J].Chem.Mater.,2005,17:3537-3545.
    [148]Fu H B,Zhang L W,Yao W Q,et al.Photocatalytic properties of nanosized Bi_2WO_6 catalysts synthesized via a hydrothermal process[J].Appl.Cata.B.Environmental,2006,66:100-110
    [149]Fu H B,Lin J,Zhang L W,et al.Photocatalytic activities of a novel ZnWO_4 catalyst prepared by a hydrothermal process[J].Appl.Cata.A:General,2006,306:58-67.
    [150]Lin J,Lin J,Zhu Y F.Controlled synthesis of the ZnWO_4 nanostructure and effects on the photocatalytic performance[J].Inorg.Chem.,2007,46:8372-8378.
    [151]Huang G L,Zhang C,Zhu Y F.ZnWO_4 photocatalyst with high activity for degradation of organic contaminants[J].J.Alloys and Compounds,2007,432:269-276
    [152]Brinda B.Lakshmi,Charles J.Patrissi,and Charles R.Martin Sol-Gel Template Synthesis of Semiconductor Oxide Micro-and Nanostructures[J].Chem.Mater.,1997,9:2544-2550;
    [153]P.Davide Cozzoli,Andreas Kornowski,Horst Weller.Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase TiO_2 Nanorods[J].J.Am.Chem.Soc.,2003,125:14539-14548;
    [154]Allen J.Bard.Photoelectrochemistry[J].Science,1980,27(4427):139-144
    [155]A.L.Linsebigler,G.Q.Lu,J.Y.Yates.Photocatalysis on TiO_2 Surfaces:Principles,Mechanisms,and Selected Results[J].Chem.Rev.,1995,95(3):735-737.
    [156]M.Anpo,T.Shima,S.Kodama,et al.Photocatalytic hydrogenation of propyne with water on small-particle titania:size quantization effects and reaction intermediates[J].J.Phys.Chem.,1987,91(16):4305-4310.
    [157]Ollis D F,Pelizzelti E,Serpone N.Photocatalytic Powder Layer Reactor:A uniformly mixed gas phase occurring in a catalytic fixed-bed flow reactor[J].Environ Sci Technol.,1991,25:1523-1528..
    [158]许甲强,高巧欢,王培义,向群。氧化锌/偏锡酸锌复合氧化物的制备与光催化性能[J]。硅酸盐学报,2007(6):741-745
    [159]许甲强,张海林,潘庆谊等。水热合成工艺对Zn_2SnO_4纳米晶形貌及电化学性能的影响[J]。硅酸盐学报,2007,35(8):978-981
    [160]许甲强,贾晓华,娄向东等,Zn_2SnO_4气敏材料的水热合成及其掺杂改性[J]。传感技术学报,2005,18(4):693-696
    [161]Richard C,Martre A M,Boule P.Photocatalytic transformation of aromatic compounds in aqueous zinc oxide suspensions:effect of substrate concentration on the distribution of products [J].J.Photoch.Photobiol.A,1992,66(2):225-234.
    [162].Ying Dai,Yuc Zhang,Yuan Qiang Bai,Zhong Lin Wang,Bicrystalline zinc oxide nanowires[J].Chem.Phys.Lett.,2003,375:96-101
    [163]Ye Zhang,Hongbo Jia,Xuhui Luo,et al.,Synthesis,Microstructure,and Growth Mechanism of Dendrite ZnO Nanowires[J].J.Phys.Chem.B,2003,107:8289-8293173.
    [164]Pu Xian Gao,Zhong Lin Wang,esoporous Polyhedral Cages and Shells Formed by Textured Self-Assembly of ZnO Nanocrystals[J].J.Am.Chem.Soc.,2003,125:11299-11305
    [165]Zheng Wei Pan,Zu Rong Dai.Zhong hin Wang.Nanobelts of Semiconducting Oxides[J].Science,2001,291:1947-1949
    [166]Y B Li,Y Bando,T Sato,et al.ZnO nanobelts grown on Si suhstrate[J].Appl Phys Lett.,2002,8:1144-146
    [167]Zu Rong Dai,Zheng Pan.Z.L.Wang.Novel Nanostructures of Functional Oxides Sythesized By Thermal Evaporation[J].Adv.Fund.Mater,2003,13:9-24
    [168]Yong Ding,Pu Xian Gao,Zhong Lin Wang,Catalyst-Nanostructure Interfacial Lattice Mismatch in Determining the Shape of VLS Grown Nanowires and Nanobelts:A Case of Sn/ZnO[J].J.Am.Chem.Soc.,2004,126:2066-2072197
    [169]Peidong Yang,Haoquan Yan,Samuel Mao.Controlled Growth of ZnO Nanowires and Their Optical Properties[J].Adv.Fund.Mater,2002,12:323-331
    [170]Jing Yu Lao,lian Guo Wen,Zhi Feng Ren.Hierarchical ZnO Nanostructures[J].Nano Lett.,2002,2:1287-1291
    [171]Yanfa Yan,Ping Liu,J.G Vven,ln-Situ Formation of ZnO Nanobelts and Metallic Zn Nanobelts and Nanodisks[J]J.Phys.Chem.B 2003,107:9701-9704
    [172]Y W.Heo,V Varadarajan,M.Kaufman,et al.Site-specific growth of ZnO nanorods using catalysis-driven molecularbeam epitaxy[J].Appl.Phys.Lett.,2002,81:3467-3469
    [173]W.I.Park,D.H.Kim,S.W.Jung,Gyu-Chul Yi,Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods[J].Appl.Phys.Lett.,2002,80:4232-4234
    [174]Kwang-Sik Kim,Hyoun Woo Kim,Synthesis of ZnO nanorod on bare Si substrate using metal organic chemical vapor deposition[J].Phys.B,2003,328:368-371
    [175]Y Li,G W.Meng,L.D.Zhang,Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties[J].Appl.Phys.Lett.,2000,76:2011-2013
    [176]M.J.Zheng,L.D.Zhang,G.H.Li,et al.Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique[J].Chem.Phys.Lett.,2002,363:123-128
    [177]Y.C.Wang.L.C.Leu,M.H.Hon,Preparation and characterization of nanosized ZnO arrays by electrophoretic deposition[J].J.Cryst.Growth,2002,237-239:564-568
    [178]Brinda B.Lakshmi,Peter K.Dorhout.Et al.,Sol-Gel Template Synthesis of Semiconductor Nanostructures[J].Chem.Matcr.,1997,9:857-862
    [179]Lionel Vayssieres,Karin Keis,Anders Hagfeldt,et al.Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes[J].Chem.Mater.,2001,13:4395-4398
    [180]X.M.Sun,X.Chen,Z.X.Deng,YD.Li,A CTAB-assisted hydrotherrnal orientation growth of ZnO nanorods[J].Mater Chem.Phys.,2002,78:99-104
    [181]Jun Zhang,Lingdong Sun.Chunsheng Liao,et al.,A simple route towards tubular ZnO[J].Chem.Commun.,2002,262-263
    [182]Lionei Vayssieres,Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions[J].Adv.Mater.,2003,15:464-466
    [183]Dairong Chen,Xiuhng Jiao.Gang Cheng.Hydrothermal synthesis of zinc oxide powders with different morphologies[J].Solid State Commun.,2000,113:363-366
    [184]Bin Liu,.Hua Chun Zeng,Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm[J].J.Am.Chem.Soc.,2003,125:4430-4431
    [185]Lionel Vayssieres,Karin Keis,Sten-Fric rt al.Purpose-Built Anisotropic Metal Oxide Material 3D Highly Oriented Microrud Array of ZnO[J].J.Phys.Chem.B,2001,105:3350-3352
    [186]Jun Zhang,Lingdong Sun,Jialu Yin,et al.Control of ZnO Morphology via a Simple Solution Route[J].Chem.Mater,2002,14:4172-4177
    [187]Hui Zhang,Deren Yang,Yujie Ji,et al.Low Temperature Synthesis of Flowerlike ZnO Nanostructures by Cetyltrimethylammonium Bromide-Assisted Hydrothermal Process[J].Phys.Chem.B,2004,108(13):3955-3958
    [188]Xia Y.N.,Yang P.D.,Sun Y.G.,et al.One-dimensional nanostructures:Synthesis,characterization,and applications[J].Adv.Mater.,2003,15(3):353-389
    [189]Li,P;Wei,Y;Liu,H,et al.Growth of well-defined ZnO microparticles with additives from aqueous solution[J].J,Solid State Chem.,2005,178(3):855-860
    [190]Zhengrong R.Tian,James A.Voigt.Jun Liu,.et ai.Biomimetic Arrays of Oriented Helical ZnO Nanorods and Columns[J].J.Am.Chem.Soc.,2002,124:12954-12955
    [191]Loft E.Greene,Matt Law.Joshua Goldberger,Low-temperature Wafer-Scale Production of ZnO Nanowire Arrays[J].Angew Chem.Int.Ed.,2003,42:3031-3034
    [192]祝柏林,谢长生。ZnO气敏材料的研究进展[J]。传感技术学报,2002,(4):353-359
    [193]徐甲强,胡平,秦建华等。Ru-ZnO气敏材料的敏感特性研究[J]。功能材料,1998,29(3):281-283
    [194]徐甲强,潘庆谊,孙雨安,李占才。纳米氧化锌的乳液合成、结构表征及气敏特性研究[J]。无机化学学报,1998,14(3):355-359
    [195]臧竞存。钨酸盐闪烁单晶材料的现状和发展[J],材料导报,1995,6:35-37.
    [196]Kolbe W,Petermann K,Huber G.Broadband emission and laser action of Cr3+doped zinc tungstate at 1 μm wavelength[J].IEEE J.Quant Electron,1985,21(10):1596-1599.
    [197]Wang H,Medina F D,Zhou Y D,et al.Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals[J].Phys.Rev.B,1992,45(18):10356-10362.
    [198]Qu W,Wlodarski W,Meyer J U.Comparative study on micromorphology and humidity sensitive properties of thin-film and thick-film humidity sensors based on semiconducting MnWO4[J].Sens.Actuators B,2000,64:76-82.
    [199]Dai Q L,Song H W,Bai X,et al.Photoluminescence properties of ZnWO4:Eu3+nanocrystals prepared by a hydrothermal method[J].J.Phys.Chem.C,2007,111:7586-7592.
    [200]Wu J,Duan F,Zheng Y,et al.Synthesis of Bi2WO6 nanoplate-built hierarchical nest-like structures with visible-light-induced photocatalytic activity[J].J.Phys.Chem.C,2007,111:12866-12871.
    [201]O'Hara S.Zinc tungstate crystal growth,dislocations,and crystallography[J].J.Appl.Phys.,1964,35:1312-1316.
    [202]Jiang X H,Ma J F,Liu J,et al.Synthesis of ZnWO4 nano-particles by a molten salt method[J].Mater.Lett.,2007,61:4595-4598.
    [203]Zhao X,Yao W Q,Wu Y,et al.Fabrication and photoelectrochemical properties of porous ZnWO_4 film[J].J.Solid State Chem.,2006,179,2562-2570.
    [204]Wu Y,Zhang S C,Zhang L W,et al.Photocatalytic Activity of Nanosized ZnWO_4Prrepared by the Sol-gel Method[J].Chem.Res.Chinese.U.,2007,23(4):465-468.
    [205]Jeong Ho Ryu,Chang Sung Lim,Keun Ho Auh.Synthesis of ZnWO_4nanocrystalline powders,by the polymerized complex method[J].Mater.Lett.,2003,57,1550-1554
    [206]Huang J H,Gao L.One-step fabrication of ZnWO_4 hollow spheres by nanoparticle aggregation and ripening in alcohol solution[J].J.Am.Chem.Soc.,2006,89(12):3877-3880.
    [207]Liu B,Yu S H,Li L J,et al.Nanorod-direct oriented attachment growth and promoted crystallization processes evidenced in case of ZnWO_4[J].J.Phys.Chem.B,2004,108:2788-2792.
    [208]Yu S H,Liu B,Mo M S,et al.General synthesis of single-crystal tungstate nanorods/nanowires:a facile,low-temperature solution approach[J].Adv.Funct.Mater.,2003,13(8):639-647.
    [209]宋旭春,杨娥,郑遗凡等。反应条件对ZnWO4纳米棒的形貌和光致发光性能的影响[J]。物理化学学报,2007,23(7):1123-1126。
    [210]宋旭春,徐铸德,陈卫祥等。氧化锌纳米棒的制备和生长机理研究[J]。无机化学学报,2004,20(2):186-190
    [211]Li Yadong,Sui Meng,Ding Yi,et al.Preparation of Mg(OH)_2 Nanords[J].Adv.Mater.,2000,12(11):818-821
    [212]Zhou Hualan,Li Zhuang.Synthesis of nanowires,nanorods and nanoparticles of ZnO through modulating the ratio of water to methanol by using a mild and simple solution method[J].Mater.Chem.Phys.,2005,89(2-3):326-331
    [213]PENG Z.Adam,PENG Xiaogang,Mechanisms of the Shape Evolution of CdSe Nanocrystals[J].Am.Chem.Sot.,2001,123(7):1389-1395
    [214]Li Xiaolin,Liu Junfeng,Li Yadong.Low-temperature conversion synthesis of M(OH)_2(M=Ni,Co,Fe) nanoflakes and nanorods[J].Mater.Chem.Phys.,2003,80:222-227
    [215]Y.W.Heo,L.C.Tien,and D.P.Norton Electrical transport properties of single ZnO nanorods[J].Appl.Phys.Lett.,2004,85(11):2002-2004
    [216]徐甲强,朱文会,陈源。ZnO气敏陶瓷的制备与气敏性能研究[J]。功能材料,1993,24(1):30-33
    [217]P.D.Yang,H.Q.Yan,S.M.Mao,et al.Controlled growth of ZnO nanowires and their optical propertyes[J].Adv.Funct.Mater.,2002,12(5):323-331.
    [218]M.J.Zheng,L.D.Zhang,G.H.Li et al.Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique[J].Chem.Phys.Lett.,2002,363(1-2):123-128.
    [219]王成云,苏庆德,钱逸泰等。非水溶剂水热法制备CeO_2纳米粉[J]。化学研究与应用,2001,13(4):402-405
    [220]Kaibin Tang,Yitai Qian,Jinghuai Zeng Xiaogang Yang.Solvothermal route to semiconductor nanowires[J].Adv.Mater.,2003,15(5):448-450
    [221]Hu Chunxia,Wu Youshi,Ma Xuejuan,et al.PVA-assisted solvothermal fabrication of tin oxide sub-microrods[J].J.Cry.Growth,2004,265(1-2):235-240
    [222]Demazeau G,Millet J.M,Cros C,Largeleau A.Solvothermal synthesis of microcrystalites of transition metal oxide[J].J.Alloys Compound,1997,262-263(14):271-174
    [223]Yu S.H.Hydrothermal/solvothermal processing of advanced ceramic materials[J].J.Ceram.Soc.,2001,109(1269):S65-S75.
    [224]向群,刘荣利,施利毅等。水热合成一维氧化锌及其影响因素[J]。上海大学学报,2006,12(3):283-287
    [225]J.Dobryszycki,S.Biallozor.On some organic inhibitors of zinc corrosion in alkaline media[J].Corrosion Science,2001,43:1309-1319
    [226]Zhang L.D.,Mou C.M.Luminescence in nanostructured materials[J].Nanostruetured Mater.,1995,6:831-834
    [227]Dingle R.Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting Zinc Oxides[J].Phys.Rev.Lett.,1969,23(11):579.-581
    [228]Bylander E.G.Surface effects on the low-energy cathodoluminescence of zinc oxide [J].J.Appl.Phys.,1978,49(3):1188-1195
    [229]Lin B,Fu Z,Jia Y.Green luminescent center in undoped zinc oxide films deposited on silicon substrates[J].Appl.Phys.Lett.,2001,79(7):943-945
    [230]Liu M,Kitai A H,Mascher P.Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese[J].Luminescence,1992,54(1):35-42
    [231]K.Vanheusden,C.H.Seager,W.L.Warren,et al.Correlation between photoluminescence and oxygen vacancies in ZnO phosphors[J].Appl.Phys.Lett.,1996,68(3):403-405
    [232]陈友存,张元广。纳米ZnO微晶的合成及其发光特性[J]。光谱学与光谱分析,2004,24(9):1032.
    [233]Addy van Dijken,Eric A.Meulenkamp,Daniel Vanmaekelbergh et al.The Kinetics of the Radiative and Nonradiative Processes in Nanocrystalline ZnO Particles upon Photoexcitation[J].J.Phys.Chem.B,2000,104(8):1715-1723.
    [234]李旦振,郑宜,付贤智,纳米二氧化钛的光致发光[J]。材料研究学报,2000,14(6):639-642
    [235]井立强,辛柏福,王德军等,ZnO和TiO_2纳米粒子的光致发光性能及其与光催化活性的关系[J]。高等学校化学学报,2005,26(1):111-115
    [236]井立强,袁福龙,侯海鸥等,ZnO纳米粒子的表面氧空位与其光致发光和光催化性能的关系[J]。中国科学B辑化学,2004,34(4):310-314
    [237]Fu Z.X,Guo C.X,Lin B.X.,et al.Cathodoluminescence of ZnO films[J].Chin.Phys.Lett.,1998,15(6):457-459]
    [238]康昌鹤、唐省吾等编著。气、湿敏感器件及其应用[M]。科学出版社。1988
    [239]Xu Jiaqiang,Shun Yu/an,Pan Qingyi,et al.Sensing characteristics of double layer of ZnO[J].Sens.Actuators B,2000,66(1):161-163
    [240]Xu Jiaqiang;Pan Qingyi,Shun Yu'an et al.Grain size control and gas sensing properties of ZnO gas sensor[J].Sens.Actuators B,2000,66(1):277-279
    [241]B.B.Rao.Zinc oxide ceramic semiconductor gas sensor for ethanol vapour[J].Mater.Chem.Phys.,2000,64(1):62-65.
    [242]Koshizaki Naoton Oyama Toshie.Sensing characteristics of ZnO-based NOx Sensor [J].Sens.Actuators B,2000,66(1):119-121
    [243]Wagh M.S.Patil L.A.Seth Tanay,et al.Surface cupricated SnO_2-ZnO film as a H_2S gas sensor[J].Mater.Chem.Phys.,2004,84(2-3):228-233
    [244]徐甲强,王焕新,张建荣,沈嘉年。微波水解制备法制备纳米ZnO及其气敏特性研究[J]。无机材料学报,2004,19(6):1441-1445
    [245]徐甲强,李志伟,纪朋等。水热法合成氧化锌亚微米棒及气敏性能研究[J]。郑州轻工业学院学报,2005,20(3):
    [246]徐甲强,陈玉萍,李亚栋等。一维纳米材料在气体传感器中的应用[J]。传感器技术,2005,24(1):4-6
    [247]Yujie Xiong,Jingyi Chen,Benjamin Wiley et al.Understanding the Role of Oxidative Etching in the Polyol Synthesis of Pd Nanoparticles with Uniform Shape and Size[J].J.Am.Chem.Soc.,2005,127:7332-7333
    [248]Shinde VR,Gujar TP,Lokhande CD,Enhanced response of porous ZnO nanobeads towards LPG:Effect of Pd sensitization[J].Sens.Actuators B,2007;123:701.
    [249]Xu CN,Tamaki J,Miura N,Yanazoe N,Nature of sensitivity promotion in Pd-loaded SnO2 gas sensor[J].J.Electrochem.Soc.,1996;143:148.
    [250]Jingyi Chen,Yujie Xiong,Yadong Yin et al.Pt Nanoparticles surfactant-directed assembled into Colloidal spheres and used as substrates in forming Pt nanorods and nanowires[J].Small,2006,2(11):1340-1343
    [251]S.G.Nedilko,Yu.A.Hizlmyl,T.N.Nikolaenko.Calculation of the electronic transition energies in the system of luminescence ecnters of lead,cadmium and zinc tungstate crystals[J].Phys.Stat.Sol.(c),2005,2(1):481-484
    [252]Hinshelwood C.N.The Kinetics of Chemical Change in Gaseous Systems.1926.Oxford:Clarendon Press.
    [253]Langmuir I.The Adsorption of Gases on Plane Surfaces of Glass,Mica and Platinum[J].Journal of American Chemical Society,1918,40:1361-1403.
    [254]范山湖,孙振范,邬泉周等。偶氮染料吸附和光催化氧化动力学[J]。物理化学学报,2003,19(1):25-29.
    [255]高濂,郑珊,张青红等。纳米氧化钛光催化材料及应用[M]。化学工业出版社。2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700