轻质高强混凝土脆性机理与改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土材料是人类最大宗的人造建筑材料,其固有缺点是自重大与脆性突出,改善混凝土的脆性、实现混凝土的轻质高强化是提高混凝土材料使用效能,减轻结构自重,节约建筑材料资源与能源的最有效技术途径之一,也是混凝土材料科学基础理论研究与应用技术开发的主要目标。
     论文依托国家自然科学基金项目“高强轻集料混凝土的脆性特征及其增韧技术(编号:50272045)”,运用细观力学原理与分析方法,对轻集料混凝土的断裂力学行为进行了数值模拟分析与试验验证,探明了轻集料混凝土中的脆性机、理。在此基础上,提出轻质高强混凝土韧化设计方法,系统研究了高韧性轻质高强混凝土的配比优化设计方法,掌握了高韧性轻质高强混凝土的配比关键技术参数及其系统增韧技术,并将研究成果成功应用于实际工程。
     论文开展的主要工作和取得的重要成果有:
     依据轻集料混凝土组成与结构特点,利用蒙特卡罗方法研究提出了轻集料混凝土随机集料分布物理模型,结合轻集料的几何形态和级配分析计算,构建出可供有限元计算与分析的轻集料混凝土数值模型,确定了混凝土细观单元体尺度与断裂性质的关系以及有限元单元体网格划分方法,分析设定了各种应力作用条件下的材料破坏准则,探讨了轻集料-水泥石界面层性能对混凝土断裂力学行为的影响,提出了轻集料混凝土断裂行为的细观非线性有限元分析方法,构建出轻集料混凝土断裂行为数值模拟分析模型。
     利用细观非线性有限元模型实现了轻集料混凝土的准静态断裂过程数值模拟,分别对单轴拉伸、单轴压缩、三点弯曲应力作用下轻集料混凝土的断裂行为进行了细观力学分析,得到了不同应力作用下轻集料混凝土的应力-应变曲线,获得了不同加载时刻轻集料混凝土内部应力分布状态,探明了轻集料混凝土中裂缝产生、扩展规律,并实时原位观测了轻集料混凝土从加载开始到最终破坏全过程的裂纹扩展和变形状态,探明了轻集料混凝土的脆性断裂破坏机理。
     基于轻集料混凝土脆性断裂行为的细观力学分析结果,提出了轻集料混凝土裂缝扩展路径曲化、界面韧化的轻质高强混凝土增韧设计原理、方法,提出了利用高强高韧性颗粒物质取代轻集料制备高韧性轻质高强混凝土的技术方法,系统研究了普通集料取代率、普通集料级配设计对混凝土力学性能、密度与韧性指数的影响,确定了最佳的材料制备参数,实验表明在普通集料取代轻集料30%以上的情况下,轻质混凝土的延性指数可提高40%以上,大大改善了轻质高强和混凝土的脆性。开发了轻集料聚合物浸渍与界面增韧剂复合增韧轻集料-水泥石界面改性技术,显著改善了轻集料混凝土的脆性。
     探讨了水胶比、轻集料的体积率、胶凝材料组成主要因素对轻质高强混凝土强度、密度与韧性的影响规律,掌握了协调强度、密度与脆性的混凝土配比优化设计方法,系统研究了纤维、聚合物增韧技术对于轻质高强混凝土韧性的影响规律,开发了适于轻质高强混凝土的纤维与聚合物增韧技术。
     综合应用以上集成技术,研制开发出高韧性轻质高强混凝土,总结提出了高韧性轻质高强混凝土应用成套关键技术,成功将其应用于钢箱梁桥面铺装工程与预应力混凝土桥梁工程,并取得显著的经济与社会效益。
Concrete is the most widely used construction material and its intrinsic disadvantages are heavy dead weight and prominent brittleness. The improvement in brittleness of concrete with lightweight and high strength is of the most efficient routes to increase the use effectiveness, reduce the dead load of structures and conserve construction resource and energy, it is also the main target for theoretical research and application development of concrete materials.
     Under the support of NSFC (National Natural Science Foudation of China) grant "The brittleness characteristics and toughening technology of high strength light weight aggregate concrete (LWAC)" (50272045). The fractural mechanical behavior of LWAC is numerically modeled and experimentally verified by mesomechanics and the brittleness mechanism is explored. Based on this, the toughening method of LWAC is put forward and the mix design is systematically studied, from which, key parameters are obtained and the research outcome is applied to some projects.
     The primary research carried out and results obtained are as follows:
     Based on the composition and structure of LWAC, Monte Carlo Method is employed to put forward the random aggregate distribution model of LWAC; the model of finite element method (FEM) is constructed based on the geometry and grading of lightweight aggregate(LWA), from which, the relationship between meso unit dimension and fracture property of concrete, and the meshing of FEM elements; The failure criteria under various stress levels are analyzed, and the influence of LWA-cement interface on the fractural mechanical behavior; The meso non-linear FEM of the fractural mechanical behavior of LWAC is put forward and the model for numerical analysis is constructed.
     Quasi-static fracture process of LWAC is numerically modeled by meso non-linear finite element model; the fracture behavior of LWAC is investigated by uniaxial extension, compression, three-point flexural experiments and the corresponding stress-strain curves and the stress distribution within concrete are obtained. The crack generation, propagation within LWA is clarified and monitored in situ from the start of loading to total failure, from which, the brittle failure mechanism is demystified.
     Based on the above results, the toughening method by winding the crack propagation path and toughening the interface is put forward, and the replacement of LWA by high strength, high flexibility material to prepare high strength concrete is put forward. The effect of replacement ratio, conventional mix design method on mechanical property, density and toughening index of concrete is investigated and the optimized parameters are obtained. Results indicate that with a replacement ratio of above 30%, the ductility index of lightweight concrete is increased by 40%. The combination of polymer impregnation and interface toughening to improve the LWA-cement paste interface is put forward and the brittleness of concrete is greatly improved.
     The effect of w/b, LWA volume and the composition of cementitious materials on strength, density and toughening of concrete is studied and the mix design method by optimizing strength, density and brittleness is mastered; the effect of fibre, polymer toughening on the toughening of lightweight concrete.
     Concrete of high strength, toughness and light weight is developed by the integration of the above techniques and its application key technologies are summarized. It has been successfully applied to several projects of the paving of steel box bridge and prestressed concrete bridges with noticeable economic and social benefits.
引文
[1]国家统计局.中华人民共和国1991-2009年国民经济和社会发展统计公报.http://www.stats.gov.cn
    [2]王增忠.基于混凝土耐久性的建筑工程项目全寿命经济分析[D].上海:同济大学,2006
    [3]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999
    [4]龚洛书,柳春圃.轻集料混凝土[M].北京:中国铁道出版社出版,1996
    [5]ACI 544.2R-89(1999). Measurement of Properties of Fiber Reinforced Concrete
    [6]JCI-SF4(1984). JCI standards for test methods of fiber reinforced concrete.
    [7]ASTM C 1018-1997. Standard Test Method for Flexural Toughness and First-crack Strength of Fiber-Reinforced Concrete (Using Beam with Third-point Loading)
    [8]JSCE-SF4.Method of Test for Flexural Strength and Flexural Toughness of SFRS
    [9]中华人民共和国建设部.JG/T3084-1999钢纤维混凝土[S].北京:中国标准出版社,1999
    [10]Norwegian Concrete Association (NB, Norsk Betongforening). Sprayed Concrete for Rock Support-Technical Specification and Guidelines [M]. Oslo:Publication No.7,1993
    [11]Nemkumar Banthia, Jean-Francois Trottier. Test Methods for Flexural Toughness Characterization of Fiber Reinforced Concrete:Some Concerns and a Proposition [J]. ACI Materials Journal,1995,92(1):48-57
    [12]中华人民共和国建设部.JGJ51-2002轻骨料混凝土技术规程[S].北京:中国标准出版社,2002
    [13]Satish Chandra,Leif Berntsson. Lightweight aggregate concrete:science, technology, and applications[M]. Norwich, New York:Noyes Publications/William Andrew Publishing, 2002
    [14]胡曙光,王发洲.轻集料混凝土[M].北京:化学工业出版社,2006
    [15]Kok Seng Chia, Min-Hong Zhang. Water permeability and chloride penetrability of high-strength lightweight aggregate concrete [J]. Cement and Concrete Research,2002,32 (4):639-645
    [16]谭克锋.轻集料及高性能轻集料混凝土的性能研究[J].同济大学学报(自然科学版),2006,34(4):472-474
    [17]郑秀华,张宝生.页岩陶粒预湿处理对轻集料混凝土的强度和抗冻性的影响[J].硅酸盐学报,2005,33(6):758-762
    [18]A. K. Haug, S. Fjeld. A floating concrete platform hull made of lightweight aggregate Concrete[J]. Engineering Structures,1996,18(11):831-836
    [19]丁庆军,田耀刚,王发洲等.集料组成对次轻混凝土宏观性能影响的研究[J].武汉理工大学学报,2005,27(5):37-39
    [20]胡曙光,田耀刚,丁庆军.轻集料对高强次轻混凝土物理力学性能的影响[J].混凝土与水泥制品,2007,(6):1-4
    [21]丁庆军,黄修林,马平等.高强次轻混凝土的设计及其在钢桥面铺装中的应用[J].施工技术,2007,36(12):64-66
    [22]丁庆军,邹定华,王发洲等.次轻混凝土匀质性影响因素研究[J].混凝土,2005,(8):57-61.
    [23]王发洲.高性能轻集料混凝土研究及其应用[D].武汉:武汉理工大学,2003
    [24]王振宇,丁建彤,郭玉顺.结构轻骨料混凝土的应力-应变全曲线[J].混凝土,2005,3:39-41
    [25]叶家军.高强轻集料混凝土构件优化设计与性能研究[D].武汉理工大学,2005
    [26]重庆建筑工程学院,南京工学院等.混凝土学[M].北京:中国建筑工业出版社,1981
    [27]Floyd O. Slate, Ramon E. Matheus. Volume Changes on Setting and Curing of Cement Paste and Concrete From Zero to Seven Days [J]. ACl.Journal proceedings,1967,64(1): 34-39
    [28]Roy D M, Goudu G R, Brobrowsky A. Very high strength cement pastes prepared by hot pressing and other high pressure techniques [J]. Cement and Concrete Research 1972,2(3):349-353
    [29]Hu shuguang. An investigation of bonding behaviour on the interface of polyacrylamide-aluminous composites [J]. Journal of Wuhan University of Technology-Materials Science,1993,(2):19-25.
    [30]胡曙光.聚丙烯酰胺—铝酸一钙水化过程的一些特性分析[J].武汉工业大学学报,1994,16(3):69-73
    [31]胡曙光.聚合物—水泥界面粘结层的结构分析[J].武汉工业大学学报,1993,15(4):12-17
    [32]Richard P. and Cheyrezy M. Composition of reactive powder concretes. Cement and Concrete Research,1995,25(7):1501-1511.
    [33]Richard P. and Cheyrezy M. Reactive powder concretes with high ductility and 200-800 MPa compressive strength. ACI SP.,1994,144(24):507-518
    [34]胡曙光.先进水泥基复合材料[M].北京:科学出版社,2009
    [35]王涛.高强轻集料混凝土的脆性与增韧技术研究[D].武汉:武汉理工大学,2004
    [36]丁庆军,王涛,胡曙光等.混掺纤维增强轻集料混凝土研究[J].武汉理工大学学报,2004,26(1):42-45
    [37]Yoshihiko Ohama. Recent progress in concrete-polymer composites [J]. Advanced Cement Based Materials,1997,5(2):31-40
    [38]K.L. Scrivener. Nanotechnology and Cementitious Materials. Nanotechnology in Construction 3,2009, Part 1,37-42, DOI:10.1007/978-3-642-00980-8_4
    [39]杨久俊,董延玲,海然等.骨料表面化学预处理对界面区的组分梯度分布和混凝土力学性能的影响Ⅰ:骨料化学预处理对其表面特性与界面过渡区结构的影响[J].混凝土与水泥制品,2003(6):1-5
    [40]孙家瑛,陈志源,吴初航.硅灰裹石掺混合材体系对混凝土抗氯离子渗透能力影响研究[J].混凝土,2000,8:28-30
    [41]Zhang MH, Gj(?)rv OE. Pozzolanic reactivity of lightweight aggregates [J]. Cement and Concrete Research,1990,20(6):884-890
    [42]Min-Hong Zhang, Odd E.Gjorv. Microstructure of the interfacial zone between lightweight aggregate and cement paste [J]. C&C R,1990(20):610-618
    [43]王发洲,周斌,彭艳洲等.轻集料与水泥石界面区元素分布特征研究[J].武汉理工大学学报,2005,27(3):30-33
    [44]胡曙光,王发洲,丁庆军.轻集料与水泥石的界面结构[J].硅酸盐学报,2005,33(6):713-717
    [45]国家建筑材料工业局.GB/T17431.1-1998轻集料及其试验方法第1部分:轻集料[S].北京:中国标准出版社,1999
    [46]A. Ulrik Nilson, Paulo J. M. Monteriro, Odd E. Gjφrv. Estimation of the elastic moduli of lightweight aggregate [J]. Cement & Concrete Research,1995,25(2):276-280
    [47]J. Muller-Rocholz. Determination of the elastic properties of lightweight aggregate by ultrasonic pulse velocity measurement [J]. International Journal of Cement Composites and Lightweight Concrete,1979,1(2):87-90
    [48]Carpinteri A., Ingraffea A. R.编,杨煜惠,黄政宇,万良芬译.混凝土断裂力学—材料特性与试验[M].长沙:湖南大学出版社,1988
    [49]郭佳宁.高强轻集料混凝土的力学特性及其对集料的要求[J].黑龙江水利科技,2001,1:71-72
    [50]JM Hammersley, D. C. Handscomb. Monte Carlo Methods [M].Norwich:Fletcher & Son Ltd,1964
    [51]E. Schlangen, J. G. M. van Mier. Simple lattice model for numerical simulation of fracture of concrete materials and structures [J]. Material Structure,1992,25(9):534-542
    [52]Zienkiewicz C. The Finite Element Method [M]. London:McGraw-Hill,1977
    [53]Bazant Z P, Tabbara M R, Kazemi M T,et al. Random particle models for fracture of aggregate or fiber composites [J]. Journal of engineering mechanics, 1990,116(8):1686-1705
    [54]Tan D M, Tschegg E K, Rotter H, et al. Cracks at Mortar-Stone Interfaces [J]. Acta Mettallurgica et materialia,1995,43(10):3701-3707
    [55]张德海,朱浮声,刑纪波.混凝土拉伸断裂的细观数值分析[J].计算力学学报,2006,23(1):65-70
    [56]J. M. Chi, R. Huang, C. C. Yang, et al. Effect of aggregate properties on the strength and stiffness of lightweight concrete [J]. Cement and Concrete Composites,2003,25(2): 197-205
    [57]曹庆坚.基于网格模型的混凝土细观结构数值模拟[D].大连:大连理工大学,2005
    [58]G萨布尼斯等著,朱世杰等译.结构模型和试验技术[M].北京:中国铁道出版社,1989
    [59]George E, Andreew. Brittle failure of rock materials:test results and constitutive models[M]. A.A.Balkema/Rotterdam/Brockfield,1995
    [60]徐世娘,赵国藩.混凝土断裂力学研究[M].大连:大连理工大学出版社,1991
    [61]严安,吴科如,姚武,等.混凝土的断裂能随断裂路径的变化规律[J].水利学报,2002,33(1):76-80
    [62]谢和平.岩石、混凝土损伤力学[M].北京:中国矿业大学出版社,1999
    [63]Chiaia B, Mier J G M, Vervuurt A. Crack growth mechanisms in four different concretes: microscopic observations and fractal analysis [J]. Cement and Concrete Research, 1998,28(1):103-114
    [64]钱觉时,卢浩,张智强.表面憎水处理改善陶粒吸水性能的研究[J].建筑材料学报,2002,5(2):181-185
    [65]钱觉时,卢浩,张智强.陶粒憎水处理对新拌陶粒混凝土工作性能的影响[J].混凝土与水泥制品,2001,2:12-14
    [66]王智,史才军,钱觉时等.表面处理轻集料混凝土的性能[J].硅酸盐学报,2008,36(1):54-60
    [67]陈伟,钱觉时,范英儒.破碎陶粒表面处理与其对混凝土性能的影响[J].混凝土与水泥制品,2009,2:17-20
    [68]杨婷婷.基于集料功能设计的水泥石界面性能研究[D].武汉:武汉理工大学,2010
    [69]祁景玉,肖淑敏,高燕萍,巴恒静.混合型粗集料轻混凝土的微观结构(Ⅰ)[J].同济大学学报,2001,29,(8):946-950
    [70]祁景玉,肖淑敏,高燕萍,巴恒静,混合型粗集料轻混凝土的微观结构(Ⅱ)[J].同济大学学报,2001,29,(10):1185-1190
    [71]李晓东.水泥和硅灰增强轻集料的研究[D].武汉:武汉理工大学,2002
    [72]Min-Hong Zhang, Odd E. Gjcprv. Mechanical Properties of High-Strength Lightweight Concrete [J]. ACI Materials Journal,1991,88(3):240-247
    [73]胡曙光,王发洲,丁庆军等.轻集料的吸水率与预处理时间对混凝土工作性的影响[J].华中科技大学学报·城市科学版,2002,19(2):1-4
    [74]刘敬忠,增康,燕全志.全轻超长距离泵送技术[J].山东建材,1999,3:21-22
    [75]Jiang jing, Wu Delong, Li Mingzhong, et al. Study on the application of concrete mixtures for pumping height 382.5m in construction of Jin Mao Mansion [A]. In:The 4th Beijing International Symposium on Cement and Concrete [C]. Beijing:China construction press,1998,2:806-812
    [76]Slate F.O., Nilson A. H., Martinez S. Mechanical properties of high strength lightweight aggregate concrete [J]. ACI Materials Journal,1986,3:10-16
    [77]Denis Montgomery, Sidney Diamond. The influence of fly ash cenospheres on the details of cracking in flyash-bearing cement pastes [J]. Cement and Concrete Research,1984, 14(6):767-775
    [78]王培铭,陈志源,Schol H.粉煤灰与水泥浆体间界面的形貌特征[J].硅酸盐学1997,25(4):475-479
    [79]L.J. Cohen, J.P. Romualdi.Stress, strain and displacement fields in a composile material reinforced with discontinuous fibers [J]. Journal of the Franklin Institute,1967,284(6), 1967:388-406
    [80]R. N. Swamy and Sa'ad A. AI-Ta'an. Deformation and Ultimate Strength in Flexure of Reinforced Concrete Beams Made with Steel Fiber Concrete[J]. ACI Journal Proceedings, 1981,78(5):395-405
    [81]R. N. Swamy, H. Stavrides. Influence of Fiber Reinforcement on Restrained Shrinkage and Cracking [J]. ACI Journal Proceedings,1979,76(3):443-460
    [82]R.N. Swamy, P.S. Mangat. A theory for the flexural strength of steel fiber reinforced concrete [J]. Cement and Concrete Research,1974,4(2):313-325
    [83]Anotine E.Naaman, Surendra P. Shah. Pull-Out Mechanism in Steel Fiber-Reinforced Concrete [J]. Journal of the Structural Division,1976,102(8):1537-1548
    [84]David A. Fanella, Antoine E. Naaman. Stress-Strain Properties of Fiber Reinforced Mortar in Compression [J]. ACI Journal Proceedings,1985,82(4):475-483
    [85]Kitisak Visalvanich, Antoine E. Naaman. Fracture Model for Fiber Reinforced Concrete [J]. ACI Journal Proceedings,1983,80(2):128-138
    [86]George Nammur Jr., Antoine E. Naaman. Bond Stress Model for Fiber Reinforced Concrete Based on Bond Stress-Slip Relationship [J]. ACI Materials Journal,1989,86(1): 45-57
    [87]Antoine E. Naaman, Fred Moavenzadeh. Probabilistic Analysis of Fiber-Reinforced Concrete [J]. Journal of the Engineering Mechanics Division,1974,100(2):397-413
    [88]Duane E. Otter, Antoine E. Naaman. Properties of Steel Fiber Reinforced Concrete Under Cyclic Load [J]. ACI Materials Journal,1988,85(4):254-261
    [89]赵国藩,彭少明,黄承逵.钢纤维混凝土结构[M].北京:中国建筑工业出版社,1999
    [90]孙伟,严云.高强砼与钢纤维高强砼冲击和疲劳特性及其机理的研究[J].土木工程学报,1992,27(5):20-26
    [91]Xin Luo, Wei Sun, Sammy Y N Chan. Characteristics of high-performance steel fiber-reinforced concrete subject to high velocity impact [J]. Cement and Concrete Research,2000,30(6):907-914
    [92]Sun Wei, Luo Xin, Yan H D, et al. Penetration and blast resistance of high performance steel fiber reinforced concrete [A]. In:Proceedings of 2nd Asia-Pacific Specialty Conference on Fiber Reinforced Concrete [C]. Singapore,1999:197-203
    [93]严少华,钱七虎,孙伟.钢纤维高强混凝土单轴压缩下应力—应变关系[J].东南大学学报(自然科学版),200 1,31(2):78-80
    [94]焦楚杰,孙伟,高培正等.钢纤维高强混凝土力学性能研究[J].混凝土与水泥制品,2005,3:35-38
    [95]龚益,沈荣熹.杜拉纤维在土建工程中的应用[M].北京:机械工业出版社,2002
    [96]张锋,纤维增强聚合物轻集料混凝土的研究[D].武汉:武汉理工大学,2002
    [97]黄继成,叶奋.钢桥面沥青铺装出现的问题及其防治[M].上海:同济大学,2007
    [98]莫玉生,王华中.钢桥面沥青铺装结构病害原因分析[J].中南公路工程,2001,3:56-58
    [99]杨若冲,程刚.钢桥面铺装车辙破坏机理及成因分析[J].公路,2004(3).52-55.
    [100]徐世法,季节.沥青铺装层病害防治与典型实例[M].北京:人民交通出版社,2005.
    [101]黄卫.大跨径桥梁钢桥面铺装设计[M].南京:东南大学,2007.
    [102]陈先华,黄卫.钢桥面浇注式沥青混合料铺装的性能[J].公路交通科技,2004(9).28~31.
    [103]陆庆.环氧沥青混凝土钢桥面铺装结构和试验研究[D].南京:东南大学,2000
    [104]陈仕周,张华.钢桥面SMA铺装技术的研究与发展[J].公路交通科技,2004,10:5-9
    [105]刘振清.大跨径钢桥桥面铺装设计关键技术研究[D].南京:东南大学,2004.
    [106]蔡华,朱晓济,许佳修.高强轻骨料混凝土粱的弯曲试验研究[J].苏州科技学院学报(工程技术版),2004,17(4):38-41
    [107]晏致涛,王继成.后张法预应力混凝士空心板梁张拉有限元分析[J].重庆建筑大学学报,2003,12:62-66
    [108]王继成,程德宏.后张法预应力混凝土空心板张拉试验及仿真分析[J].公路交通技术,2004,8:34-38
    [109]吴炜.用ANSYS对T梁和空心板梁桥进行结构仿真分析的研究[J].公路交通技术,2004,6:34-37
    [110]冯鹏GFRP空心板静载试验研究及分析[J].工业建筑.2004,4:22-25
    [111]王贤磊,丁建彤,叶列平等.预应力钢纤维高强轻质混凝土梁疲劳性能.混凝土与水泥制品,2004,3:36-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700