沙丘场时空演化跨尺度动力学模型及其仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙漠化或者荒漠化问题是我国,特别是西北地区,的最大环境问题之一。定量预测沙漠或荒漠边缘的扩展速度、准确评估相关防治措施的有效性,有着十分重要的现实意义。风成沙丘场的演化过程是一类典型的时空多尺度问题,目前采用不同手段所进行野外观测,包括对其它星球,如火星,都还难以获得其演化的全过程,也尚未见对其成功模拟的例子。因此,对风成沙丘场的演化过程建立可靠、有效的定量模拟的方法,不仅是非常必要的,而且也是从一个侧面对多尺度科学问题的探索,有着十分重要的科学意义。
     本学位论文对风成沙丘场提出了一种耦合尺度普适模型,其中不仅包含了沙粒碰撞与跃移、风沙流形成与持续、沙丘场演化这三种时空尺度且跨越8-9个数量级及其相互的耦合,而且可适用于不同来流风场和地表等情况。该模型的主要创新点为1)建立了一种计算沙丘场局地风场的新模式,使得对由沙丘场地表形态变化引起的风速变化的处理更加合理并接近实际;2)在引入一个宏观上远小于沙丘场尺度而微观上又包含了足够多的沙粒运动微观信息的细观尺度上的“沙体元”后,首次提出了“沙体元”的“覆盖因子”和“传输因子”这2个风沙运动研究中的新的统计量,由此搭建起“沙体元”的厚度和在给定时间段内整体移动的距离这些宏观量与风沙流中的沙粒在沙床表面的侵蚀与沉积、反弹或溅起、平均跃移长度和时间、沙粒冲击床面的平均速度等这些微观量联系的“桥梁”。
     本学位论文以这一新的模型为基础,采用空间并行方案,即将沙丘场划分为多个子区域,每个处理器计算一个子区域内沙丘场的形成发展过程,使得对面积在数百平方公里的风成沙丘场长达百年演化过程的定量模拟得以实现。定量再现出的在单一和多个主风向作用下风成沙丘场的演化过程和不同的沙丘形态与野外观测结果定性一致,沙丘移动速度随高度的变化规律和沙丘高度随沙源厚度变化的规律与野外观测结果定量吻合。
     由此得到了野外观测难以获得的来流风速和主风向数、沙源厚度和粒径对沙丘场演化过·程、沙丘形态和移动速度以及相互碰撞影响等的定量规律,并给出了1)沙丘场形态发生变化的临界沙源厚度;2)沙丘高度和移动速度分别随沙粒粒径和来流风速等因素变化的拟合公式;3)沙丘尺度的概率密度分布函数等。在将该模型推广到不同地表情形的沙丘场演化和扩展过程后,1)给出了火星新月形沙丘在演化过程、形态和移动速度等方面与地球新月形沙丘的定量上差异,以及火星在目前条件下仍可形成沙丘并在火星沙尘暴的作用下发生移动的理论分析依据;2)沙漠和荒漠边缘的扩展速度以及随风速、粒径以及植被盖度和草方格铺设方式及其退化率变化的定量规律;3)草场沙化强度随单位面积过牧量和放牧面积变化的拟合公式。本文的研究为沙漠或荒漠边缘扩展速度的预测、相关防治措施的设计及其有效性的准确评估提供了可靠的定量分析途径和理论依据。
Desertification or sand desertification has been becoming one of the severe environmental problems in China, particularly in Northwestern China. It is of a very important and practical meaning to quantitative predicting the spreading rate of desert boundary and evaluating the effectiveness of related prevention strategies. The evolution process of Aeolian dune field is a typical issue involving multiple temporal and spatial scales which is still out of accurate description through current field observation on earth and other planets like Mars or successful simulation with existing numerical models. Therefore, to establish an available method aiming for the evolution process of aeolian dune field, as an exploratory probe into multi-scale science, is of an urgent necessary and significant scientific value.
     This dissertation put forward a universal scale-coupled model concerning aeolian dune fields. This model incorporates underlying physical processes including the collision and saltation of sand particles, the formation and development of wind-blown sand flow, and the evolution of sand dune fields as well as the coupling among them which spans three specific tempo-spatial scales ranging 8-9 orders of magnitude. It therefore is suitable for various incoming wind and surface conditions. The main highlights of innovation in this dissertation are:1) to establish a new mode for calculating local wind velocity fields around sand dunes so as to obtain a more reasonable and realistic description to the variation of wind velocity raised by the change of surface morphology in a dune field and 2) to introduce a meso-scale "sand body element" which is much smaller than the scale of dune fields in macro but containing micro information on the movement of sufficient number of sand particles, for the first time put forward two new statistic quantities in the study of wind-blown sand movements, i.e. the coverage factor and transportation factor of "sand body element", and therefore build a "bridge" between macro quantities such as the thickness and transportation length within a given period of "sand body element" and micro quantities describing the erosion and deposition of sand surface, rebound and ejection of sand particles including the average velocity particles impacting sand bed, saltation length and time etc. The novel model proposed in this dissertation made a quantitative simulation of the whole evolution process of an aeolian dune field with an area of hundreds of square kilometers over one century.
     Based on the novel model, this dissertation successfully reproduced the whole formation and evolution processes of aeolian dune fields under the action of single and multiple prevailing wind directions. The simulated achieved a qualitative agreement in dune pattern and a quantitative correspondence in changing law of dunes' migration speed with dune height and that of dune height with thickness of sand supply comparing with field observations, and further revealed quantitative laws on the influence of incoming wind velocity, kinds of prevailing wind directions, thickness of sand supply and sand diameter to the evolution of dune fields, dune patterns, and collision behaviors of sand dunes. Results presented 1) the threshold thickness of sand supply determining dune patterns; 2) fitting formula governing the dune height and migration speed varying with sand diameters and incoming wind velocities; and 3) a probability distribution function of dune size etc. By extending this model to describe the evolution and spreading of dune field under various surface conditions, it can realize 1) the quantitative differences between barchans dunes on earth and Mars in evolution processes, dune patterns and migration speeds etc. and theoretical evidence for the possibility of forming dunes under the action of sand storms taking place on Mars under the contemporary atmospheric conditions; 2) boundary of desert and the quantitative laws of its spreading rates changing with wind velocities, sand diameters, vegetation coverage, laying manners of straw checkerboard barriers and grassland degradation rates etc.; 3) a fitting formula describing the grassland degradation intensity varying with overgrazing sheep units per area and grazing area. The results given out in this dissertation provided reliable quantitative analysis methods and theoretical evidences for predicting the spreading rate of the boundary of deserts, designing related prevention strategies and evaluating their efficiency.
引文
1) Tucker C J and Nicholson S E (1999), Variations in the size of the Sahara Desert from 1980 to 1997, Ambio,28:587-591.
    2) Buerkert A, Gang W, Zhang X and Runge M (2003), Vegetation changes in a river oasis on the southern rim of the Taklamakan Desert in China between 1956 and 2000, Phytocoenologia,33:801-818.
    3) Zhong D C (1998), Dynamic evolution of sand desert in China (in Chinese), Gansu Cultural Publishing House, Lanzhou.
    4) 吴正等(2003),风沙地貌与治沙工程学[M],北京:科学出版社,61-62.
    5) United Nations General Assembly (UNGA) (1994), Elaboration of an international convention to combat desertification in countries experiencing serious drought and/or desertification, particularly in Africa, United Nations General Assembly Document A/AC.241/27.
    6) 刘普幸(2009),近54年民勤绿洲气候变化趋势与周期特征,干旱区研究,26(4)471-476.
    7) 赵承(2007),决不能让民勤成为第二个罗布泊--温家宝总理民勤之行纪实,中国林业,0B.
    8) 李芳,胡永效(2008),决不能让民勤成为第二个罗布泊,中国林业,20.
    9) 卡召加(2005),甘南玛曲县草地沙化现状成因及治理对策,甘肃农业,06.
    10) Hayward R K(2007), Mars Global Digital Dune Database and initial science results, Journal of Geophysical Research,112, E11007, doi:10.1029/2007JE002943.
    11) Moore H J (1985), The Martian dust storm of Sol 1742, Journal of Geophysical Research,90: 163-174.
    12) Greeley R, Kraft M, Sullivan R, Wilson G, Bridges N, Herkenhoff K, Kuzmin R O, Malin M and Ward W (1999), Aeolian features and processes at the Mars Pathfinder site, Journal of Geophysical Research,104:8573-8584.
    13) Malin M C, and Edgett K S (2001), Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission, Journal of Geophysical Research,106(E10): 23,429-23,570.
    14) Michael J and Kavulich J(2008), The Physics of Sand Dune Formation and Migration on Mars, Planetary Dunes Workshop:A Record of Climate Change, Priorities for Future Research on Planetary Dunes, Eos, Vol.89, No.45.
    15) Bagnold R A (1941), The physics of blown sand and desert dunes, Methuen, London.
    16) Owen P R (1964), The saltation of uniform sand in air, Journal of Fluid Mechanics, 20:225-242.
    17) Ungar J E and Haff P K (1987), Steady state saltation in air, Sedimentology,34:289-299.
    18) Anderson R S and Haff P K (1988), Simulation of eolian saltation, Science,241:820-823.
    19) Schmidt D S, Schmidt R A and Dent J D (1998), Electrostatic force on saltating sand, Journal of Geophysical Research,103(D8):8997-9001.
    20) Huang N, Zheng X J, Zhou Y H and Van Pelt R S (2006), Simulation of wind-blown sand movement and probability density function of liftoff velocities of sand particles, Journal of Geophysical Research,111:D20201 (13).
    21) Yue G W and Zheng X J (2006), Electric field in wind-blown sand flux with thermal diffusion, Journal of Geophysical Research,111:D16106 (9).
    22) Zheng X J, Xie L and Zou X Y (2006), Theoretical prediction of liftoff angular velocity distributions of sand particles in windblown sand flux, Journal of Geophysical Research,111: D11109(9).
    23) Kok J F and Renno N O (2008), Electrostatics in wind-blown sand, Physical Review Letter, 100:014501(4).
    24) Zheng X J, Huang N and Zhou Y H (2003), Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement, Journal of Geophysical Research,108(D10):ACL 13 (9).
    25) Shinbrot T and Herrmann H J (2008), Granular matter:Static in motion, Nature,451: 773-774.
    26) Zheng X J, Xie L and Zou X Y (2006), Theoretical prediction of liftoff angular velocity distributions of sand particles in windblown sand flux, Journal of Geophysical Research,111: D11109(9).
    27) Zheng X J, Cheng N and Xie L (2008), A three-dimensional analysis on lift-off velocities of sand grains in wind-blown sand flux, Earth Surface Process Landform,33:1824-1838.
    28) Wang Z T and Zheng X J (2002), A simple model for calculating measurements of straw checkerboard barriers (in Chinese), Journal of Desert Research,22:229-230.
    29) Zhou Y H, He Q S and Zheng X J (2005), Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles, European Physical Journal E, 17:181-187.
    30) Wang P, Zheng X J and Hu W W(2008), Saltation and suspension of wind-blown particle movement, Science in China(Series G), dio:10.1007/s11433-008-0106-6.
    31) Zheng X J(2009), Mechanics of Wind-blown Sand Movement, Springer, German.
    32) Breed C S and Grow T(1979), Morphology and distribution of dunes in sand seas observed by remote sensing, In:McKee, E. D.
    33)朱震达,陈治平,吴正等(1981),塔克拉玛干沙漠风沙地貌研究,北京:科学出版社.
    34) Pye K and Tsoar H(1990), Aeolian Sand and Sand Dune, London:Unwin Hyman.
    35) Lancaster N, Greeley R and Christensen P R(1987), Dunes of the Gran Desierto Sand Sea, Sonora, Mexico, Earth Surface Processes and Landforms,12:277-288.
    36)李振山,倪晋仁(2000),国外沙丘研究综述,泥沙研究,5:73-80.
    37) Wasson R J and Hyde R (1983), Factors determining desert dune type, Nature,304:337-339.
    38) Livingstone I, Wiggs G F S and Weaver C M (2007), Geomorphology of desert sand dunes:A review of recent progress, Earth Science Reviews,80(4):239-257.
    39) Finkel H J (1959), The barchans of southern Peru, Journal of Geology,67:614-647.
    40) Hastenrath S L and Madison W (1967), The barchans of the Arequipa region, southern Peru, Zeitschrift fur Geomorphology,11:300-331.
    41) Long J T and Sharp R P (1964), Barchan-dune movement in the Imperial Valley, California, Geology Social American Bulletin,75:149-156.
    42) Sauermann G, Rognon P, Poliakov A and Herrmann H J (2000), The shape of the barchan dunes of Southern Morocco, Geomorphology,36:47-62.
    43)王训明,董治宝,屈建军(2002).塔克拉玛干沙漠简单横向沙丘的形态学矢量特征,兰州大学学报(自然科学版),38(6):110-116.
    44)任孝宗,刘陶,王振亭(2010),河西沙区新月形沙丘形态参数观测,水土保持研究,17(1):163-166.
    45) Barndorff-Nielsen 0 et.al. (1982), Variation in particle size distribution over a small dune, Sedimentology,29(Ⅰ):53-65.
    46)陈渭南,雷加强(1992),塔克拉玛干沙漠新月形沙丘不同部位的粒度特征,干旱区资源与环境,02.
    47) Lancaster N(1982), Dunes on the Skeleton Coast, Namibia (southwest Africa): geomorphology and grain size relationships, Earth Surface Processes and Landforms, 7:575-87.
    48) McArthur D S(1987), Distinctions between grainsize distributions of accretion and encroachment deposits in an inland dune, Sediment Geology,54:147163.
    49)赵景峰,李崇舜,周兴佳,雷加强(1993),新月形沙丘丘表流场与沙丘蚀积特征,中国沙漠,03.
    50) Duran O, Schwammle V, Lind P G and Herrmann H J(2009), The dune size distribution and scaling relations of barchan dune fields, Granular Matter,11(1):7-11.
    51) Lancaster N(1995), Geomorphology of desert dunes, London:Routledge.
    52)王训明,董治宝,屈建军(2003),塔克拉玛干沙漠简单线形沙丘形态-动力学过程研究,中国沙漠,23:257-262.
    53) Lancaster N(1989), The dynamics of star dunes:an example from the Gran Desierto, Mexico, Sedimentology,36:273-289.
    54) Hersen P, Douady S and Andreotti B (2002), Relevant length scales for barchan dunes, Physical Review Letter,89:264301.
    55) Andreotti B, Claudin P and Douady S (2002), Selection of dune shapes and velocities Part 1: Dynamics of sand, wind and barchans, European Physical Journal B,28:321-339.
    56) Lancaster N(1985),Variation in wind velocity and sand transport on the windward flanks of desert sand dunes, Sedimentology,32:581-593.
    57) Lancaster N(1987), Reply:variations in wind velocity and sand transport on the windward flanks of desert sand dunes, Sedimentology,34:511-520.
    58) Watson A(1987), Discussion:variations in wind velocity and sand transport on the windward flanks of desert sand dunes, Sedimentology,34:511-520.
    59) Wiggs G F S(1993), Desert dune dynamics and the evaluation of shear velocity:an integrated approach. In:Pye, K. (Ed.), The Dynamics and Environmental Context of Aeolian Sedimentary Systems, Geological Society Special Publication,72:37-46.
    60) Frank A and Kocurek G(1996), Airflow up the stoss slope of sand dunes:limitations of current understanding, Geomorphology,17:47-54.
    61) Lancaster N, Nickling W G, McKenna Neuman C and Wyatt V E(1996), Sediment flux and airflow on the stoss slope of a barchans dune, Geomorphology,17:55-62.
    62) Wiggs G F S, Livingstone I and Warren A(1996), The role of streamline curvature in sand dune dynamics:evidence from field and wind tunnel measurements, Geomorphology,17:29-46.
    63)哈斯,董光荣,王贵勇(1999),腾格里沙漠东南缘沙丘表面气流与坡面形态的关系,中国沙漠.01.
    64)杨婷婷,丁国栋,郝玉光等(2006),乌兰布和沙漠新月形沙丘迎风坡风速变化的初步研究,水土保持研究,13(3).
    65) Walker I J and Nickling W G(2003), Simulation and measurement of surface shear stress over isolated and closely spaced transverse dunes in a wind tunnel, Earth Surface Processes and Landforms,28:1111-1124.
    66)哈斯,王贵勇(2000),沙丘背风侧气流变化特征及其意义,地理科学,20(6):573-576.
    67) Livingstone I, Wiggs G and Weaver C (2007), Geomorphology of desert sand dunes:a review of recent progress, Earth-Science Reviews,80(3-4):239-257.
    68) Fryberger S G, Dean G and McKee E D (1979), Dune forms and wind regime. In:McKee ED(ed) A Study of Global Sand Seas, Professional Paper 1052, US Geological Survey, Denver,137-170.
    69) Hastenrath S L and Madison W (1967), The barchans of the Arequipa region, southern Peru, Zeitschrift fur Geomorphology,11:300-331.
    70)董治宝,陈广庭,韩致文,颜长珍,王训明(1998),塔里木沙漠石油公路沿线沙丘移动规律,中国沙漠,18(4):328-333.
    71) Elbelrhiti H, Claudin P and Andreotti B (2005), Field evidence for surface-wave induced instability of sand dunes, Nature,437:720-723.
    72) Sauermann G, Kroy K and Herrmann H J (2001), A continuum saltation model for sand dunes, Physical Review E,64:031305.
    73) Tsoar H (1983), Dynamic processes acting on a longitudinal (seif) sand dune, Sedimentology, 30:567-578.
    74) Rubin D M and Hunter R E (1987), Bedform alignment in directionally varying flows, Science,237:276-278.
    75) Bristow C S, Bailey S D and Lancaster N (2000), The sedimentary structure of linear sand dunes, Nature,406:56-59.
    76) Livingstone I (2003), A Twenty-one-Year Record of Surface Change on a Namib Linear Dune, Earth Surf Process Landform,28:1025-1031.
    77) Tsoar H, Blumberg D G and Stoler Y (2004), Elongation and migration of sand dunes, Geomorphology,57:293-302.
    78) Norris R M and Norris K S(1961), Algodones dunes of southeastern California, Bulletin of the Geological Society of America,72:605-620.
    79) Gay S P(1999), Observation regarding the movement of barchan sand dunes in the Nazca to Tanaca area of southern Peru, Geomorphology,27:279-293.
    80) Endo N, Taniguchi K and Katsuki A (2004), Observation of the whole process of interaction between barchans by flume experiments, Geophysical Research Letter,31:L12503.
    81) Hersen P and Douady S (2005), Collision of barchan dunes as a mechanism of size regulation, Geophysical Research Letter,32:L21403 (5).
    82) Al-Dabi H, Koch M, Al-Sarawi M A, and ElBaz F (1997), Evolution of sand dune patterns in Space and time in north-western Kuwait using Landsat images, Journal of Arid Environment, 36:15-24.
    83) Janke J R(2002), An analysis of the current stability of the Dune Field at Great Sand Dunes National Monument using temporal TM imagery(1984-1998), Remote Sensing of Environment,83:488-497.
    84) Cutts J A and Smith R S U (1973), Aeolian deposits and dunes on Mars, Journal of Geophysical Research,78:4139-4154.
    85) Breed C S (1977), Terrestrial analogs of the Hellespontus dunes, Mars, Icarus,30(2):326-340.
    86) Breed C S and Grow T (1979), Morphology and distribution of dunes in sand seas observed by remote sensing, in A Study of Global Sand Seas, edited by E. D. McKee, U.S. Geol. Surv. Prof. Pap.,1052,253-302.
    87) Tsoar H, Greeley R and Peterfreund A R (1979), Mars:The north polar sand sea and related wind patterns, Journal of Geophysical Research,84:8167-8180.
    88) Thomas P (1984), Martian intra-crater splotches:Occurrence, morphology, and colors, Icarus, 57:205-227.
    89) Edgett K and Christensen P R (1994), Mars aeolian sand:Regional variations among dark-hued crater floor features, Journal of Geophysical Research,99:1997-2018.
    90) Lee P and Thomas P (1995), Longitudinal dunes on Mars:Relation to current wind regimes, Journal of Geophysical Research,100(E3):5381-5395.
    91) Balme M R and Bourke M C (2005), Preliminary results from a new study of transverse aeolian ridges (TARS) on Mars, Lunar Planet. Sci., ⅩⅩⅩⅥ, Abstract 1892.
    92) Hayward R K(2007), Mars Global Digital Dune Database and initial science results, Journal of Geophysical Research,112:E11007, doi:10.1029/2007JE002943.
    93) Fenton L K(2005), Aeolian processes in Proctor Crater on Mars:Mesoscale modeling of dune-forming winds, Journal of Geophysical Research,110:E06005, doi:10.1029/2004JE002309.
    94) Zurek R W, Barnes J R, Haberle R M, Pollock J B, Tillman J E and Leovy C B(1992), Dynamics of the atmosphere of Mars, in Mars,835-933, Univ. of Ariz. Press, Tucson.
    95) Sagan C, Veverka J, Fox P, Dubisch R, Lederberg J, Levinthal E, Quam L, Tucker R, Pollack J B and Smith B A (1972), Variable Features on Mars:Preliminary Mariner 9 Television Results, Icarus,17:346-372.
    96) Veverka J, Gierasch P and Thomas P(1981), Wind streaks on Mars:Meteorological control of occurrence and mode of formation, Icarus,45:154-166.
    97) Thomas P and Veverka J(1979), Seasonal and secular variation of wind streaks on Mars:An analysis of Mariner 9 and Viking Data, Journal of Geophysical Research,84:8131-8146.
    98) Geissler P E(2005), Three decades of Martian surface changes, Journal of Geophysical Research,110:E02001, doi:10.1029/2004JE002345.
    99) Edgett K S and Malin M C(2000), New views of Mars eolian activity, materials, and surface properties:Three vignettes from the Mars Global Surveyor Mars Orbiter Camera, Journal of Geophysical Research,105(E1):1623-1650.
    100) Williams K K(2006), Are martian dunes migrating? a plant-wide search for dune movement, Lunar and Planetary Science ⅩⅩⅩⅦ.
    101) Fenton L K(2006), Dune migration and slip face advancement in the Rabe Crater dune field, Mars, Geophysical Research Letters,33:L20201, doi:10.1029/2006GL027133.
    102) Knight M, Thomas D S G and Wiggs G F S(2004), Challenges of calculating dunefield mobility over the 21st century, Geomorphology,59(1-4):197-213.
    103) Jackson P S, Hunt J C R(1975), Turbulent wind flow over a low hill, Quarterly Journal of the Royal Meteorological Society,101:929-955.
    104) Howard A D, Morton J B, Gad-El-Hak M and Pierce D B (1978), Sand transport model of barchan dune equilibrium, Sedimentology,25:307-338.
    105)Wippermann F K and Gross G (1986), The wind-induced shaping and migration of an isolated dune:a numerical experiment, Boundary Layer Meteorology,36:319-334.
    106) Weng W S, Hunt J C R, Carruthers D J and Warren AG (1991), Air flow and sand transport over sand-dunes, Acta Mechanics suppl,2:1-22.
    107)Wiggs G F S(2001), Desert dune processes and dynamics, Progress in Physical Geography, 25(1):53-79.
    108) Sauermann G, Kroy K and Herrmann H J (2001), A continuum saltation model for sand dunes, Physical Review E,64:031305.
    109) Sauermann Q Andrade J S, Maia L P and Costa U M S (2003), Wind velocity and sand transport on a barchan dune, Geomorphology,54:245-255.
    110)Hersen P (2004), On the crescentic shape of barchan dunes, European Physical Journal of B, 37:507-514.
    111) Schwammle V and Herrmann H J (2005), A model of barchan dunes including lateral shear stress, European Physical·Journal of E,16:57-65.
    112) Schwammle V and Herrmann H J (2003), Solitary wave behaviour of sand dunes, Nature, 426:619-620.
    113)Duran O, Schwammle Vand Herrmann H J (2005), Breeding and solitary wave behavior of dunes, Physical Review E,72:021308.
    114) Andreotti B, Claudin P and Douady S (2002), Selection of dune shapes and velocities Part 1: Dynamics of sand, wind and barchans, European Physical Journal of B,28:321-339.
    115) Livingstone I, Wiggs G F S and Baddock M (2005), Barchan dunes:why they cannot be treated as'solitons'or'solitary waves', Earth Surface Process Landform,30:255-257.
    116) Parteli E J R., Duran O and Herrmann H J(2007), Minimal size of a barchan dune, Physical Review E,75:011301.
    117) Baas A C W and Nield J M(2007), Modelling vegetated dune landscapes. Geophysical Research Letters,34:L06405, doi:10.1029/2006GL029152.
    118)Nishimori H and Ouchi N (1993), Formation of Ripple Patterns and Dunes by Wind-Blown Sand, Physical Review Letter,71:197-200.
    119) Werner B T (1995), Eolian dunes:computer simulations and attractor interpretation, Geology, 23:1107-1110.
    120)Nishimori H, Yamasaki M and Andersen K H (1998), A simple model for the various pattern dynamics of dunes, International Journal of Modern Physics B,12:257-272.
    121)Katsuki A, Nishimori H, Endo N and Taniguchi K(2005), Collision Dynamics of Two Barchan Dunes Simulated Using a Simple Model, Journal of the Physical Society of Japan, 74:538-541.
    122) Anderson R S (1996), The attraction of sand dunes, Nature,379:24-25.
    123) Lancaster N(1988), Development of linear dunes in the southeastern Kalahari,southern Africa Journal of Arid Environments,14:233-244.
    124)Fryberger S G, Dean G and McKee E D (1979), Dune forms and wind regime. In:McKee ED(ed) A Study of Global Sand Seas, Professional Paper 1052, US Geological Survey, Denver, ppl37-170
    125)David G T, Knight M and Wiggs G F S, Remobilization of southern African desert dune systems by twenty-first century global warming, Nature,435:1218-1221.
    126) Levin N,Ben-Dor E and Karnieli A(2004), Topographic information of sand dunes as extracted from shading effects using Landsat images, Remote Sensing of Environment, 90:190-209.
    127) Wang X M, Yang Y and Dong Z B(2009), Responses of dune activity and desertification to twenty-first century global warming in China, Global Planetary and Change, doi: 10.1016/j.gloplacha.2009.02.004.
    128)Bullard E and Nash D J (1997), Linear dune pattern variability in the vicinity of dry valleys in the south-west Kalahari, Geomorphology,23:35-54.
    129) Williams K K(2003), Measurements of dune heights on Mars. Sixth International Conference on Mars. Lunar and Planetary Institute, Pasedena, p.3220.
    130)Bourke M C, Balme M and Zimbelman J R(2004), A comparative analysis of barchan dunes in the intra-crater dune fields and the north polar sand sea. Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, Texas, p.1453.
    131) Beyer R A, McEwen A S and Kirk R L(2003), Meter-scale slopes of candidate MER landing sites from point photoclinometry, Journal of Geophysical Research (Planets),108 (E12): doi:10.1029/2003JE002120.
    132)Garvin J B, Frawley J J and Sakimoto S E H(1999), North polar dunes on Mars:MOLA measurements and implications for sediment volumes. Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, Texas, p.1721.
    133) Bai Y L, Wang H Y, Xia M F and Ke F J(2005), Statistical Mesomechanics of solid, liking coupled multiple space and time scales, Applied Mechanics Review,58:372-388.
    134)Aidun J B, Lo D C S, Trucano T G and Fye R M(1999), Representative Volume Size:A Comparison of Statistical Continuum Mechanics and Statistical Physics, SAND99-1176.
    135) Gennes P G (1996), Superconductivity of Metals and Alloys, Benjamin, New York
    136)韩福贵,仲生年,常兆丰(2005),民勤沙区沙丘的基本特征及其移动规律研究,防护林科技,6:4-6.
    137)王升堂,邹学勇,张春来,程宏(2007),民勤绿洲边缘带灌丛沙丘防风作用研究,地理科学,1:104-108.
    138)吴北平,李征航(2003),GPS网络RTK线性组合法与内插法关系的讨论,测绘信息与工程,05
    139)Nalpanis P, Hunt J C R and Barrett C F (1993), Saltating particles over flat beds, Journal of Fluid Mechanics,251:661-685.
    140)Shao Y P (2000), Physics and modelling of wind erosion, Kluwer Academic Publishers, Boston
    141)Barbosa L M and Dominguez J M L (2004), Coastal dune fields at the Sao Francisco river strandplain, northeastern. Brazil:morphology and environmental controls, Earth Surface Processes and Landforms,29:443.
    142) Zheng X J, He L and Zhou Y H (2004), Theoretical model of the electric field produced by charged particles in windblown sand flux, Journal of Geophysical Research,109:D15208 (9).
    143) Walker I J and Nickling W G (2002), Dynamics of secondary airflow and sediment transport over and in the lee of transverse dunes, Progress in Physical Geography,26:47-75.
    144) Momiji H, Carretero-Gonzalez R, Bishop S R and Warren A (2000), Simulation of the effect of wind speedup in the formation of transverse dune fields, Earth Surf Process Landform, 25:905-918.
    145) Anderson R S and Haff P K (1991), Wind modification and bed response during saltation of sand in air, Acta Mechanics Suppl,1:21-51.
    146) Xie L and Zheng X J(2007), Probability of rebound and eject of sand particle in wind-blown sand movement, Acta Mechianica Sinica, doi:10.1007/s10409-007-0103-4.
    147) SIAM Journal on Multiscale Modeling and Simulation
    148)王具元,蒋志荣,王继和等(2006),民勤绿洲荒漠交错带三种沙丘类型的自然植被特征,甘肃农业大学学报,41(2):51-55.
    149) Buckley R(1996), Effects of vegetation on the transport of dune sand, Annals of Arid Zone, 35(3):215-223.
    150)贾宝全,慈龙骏,蔡体久等(2002),绿洲—荒漠交错带环境特征初步研究,应用生态学报,13(9):1104-1108.
    151)Iversen J D and White B R(1982), Saltation threshold on Earth, Mars and Venus, Sedimentology,29:111.
    152) Shields(1936), Technical Report Publ. No.167, California Inst. Technology, USA.
    153) Jim'enez, J A and Madsen O A (2003), A Simple Formula to Estimate Settling Velocity of Natural Sediments, Journal of Waterway, Port, Coastal and Ocean Engineering March/April, 70-78.
    154) Dur'an O and Herrmann H J (2006), Modelization of saturated sand flux, JSTAT P07011.
    155)Rasmussen K R, Iversen J D and Rautahemio P (1996), Saltation and wind-flow interaction in a variable slope wind tunnel, Geomorphology,17:19-28.
    156) Iversen J D and Rasmussen K R (1999), The effect of wind speed and bed slope on sand transport, Sedimentology,46:723-731.
    157) Andreotti B (2004), A two-species model of aeolian sand transport, Journal of Fluid Mechanics,510:47-70.
    158) Dura'n O and Herrmann H J(2006), Vegetation Against Dune Mobility, Physical Review Letters,97:188001.
    159)盛海洋等(2007),甘南玛曲县草地沙化遥感监测研究,水土保持研究,14:63-66.
    160) Claudin P and Andreotti B(2006), A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples, Earth and Planetary Science Letters,252:30-44.
    161) Sutton J L, Leovy C B and Tillman J E (1978), Diurnal Variations of the Martian Surface Layer Meteorological Parameters During the First 45 Sols at Two Viking Lander Sites, Journal of the Atmospheric Sciences,35:2346-2355.
    162) Schofield J T, Barnes J R, Crisp D, Haberle R M, Larsen S, Magalh-aes J A, Murphy J R, Seiff A and Wilson G (1997), The Mars Pathfinder Atmospheric Structure Investigation/Metorology (ASI/MET) Experiment, Science,278:1752-1757.
    163) Golombek M P, Cook R A, Economou T, Folkner W M and et al., (1997), Overview of the Mars PathfinderMission and Assessment of Landing Site Predictions, Science, 278:1743-1748.
    164) Moore H J (1985), The Martian dust storm of Sol 1742, Journal of Geophysical Research, 90:163-174.
    165) Strausberg M J, Wang H Q, Richardson M I, Ewald SP and Toigo A D(2005), Observations of the initiation and evolution of the 2001 Mars global dust storm, Journal of Geophysical Research,110(E2)
    166)黄宁,郑晓静(2001).风沙跃移运动中的Magnus效应,兰州大学学报,37(3):9-25.
    167)Fenton L K (2003), Aeolian Processes on. Mars:Atmospheric Modelling and GIS Analysis, Ph.D. Thesis
    168)Noy-Meir I (1975), Stability of Grazing Systems:An Application of Predator-Prey Graphs, Journal of Ecology,63:459-481.
    169)Verhulst P F (1838), Notice sur la loi que la population suit dans son accroissement, Correspondence Mathematique et Physique,10:113-121.
    170) Andreotti B, Fourriere A, Ould-Kaddour F, Murray B, and Claudin P(2009), Giant aeolian dune size determined by the average depth of the atmospheric boundary layer, Nature,457(7233):1120-1123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700