复杂电磁信号侦察处理机可配置计算关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文依托某预先研究、某基金以及某科研计划等多个项目的研制,以“大尺寸、非规则、紧相关”为主要特点的复杂电磁信号侦察处理为主要应用背景,以小型化、低功耗、多功能系统设计为主要研制目的,紧密围绕基于FPGA平台的可配置计算技术在宽带卫星电子侦察应用中的若干关键技术开展深入研究,内容涉及面向宽带信号侦察应用的信号处理流程与计算特性分析、可配置计算模型与应用框架研究、配置开销优化技术、以及基于动态配置的引导式智能化信号侦察系统设计技术等。论文主要研究内容包括以下几个部分:
     第一部分,对应用背景、信号处理流程以及相关算法进行深入分析,提出新型可配置信号处理结构(第二章)。
     深入分析了卫星电子侦察系统发展趋势与载荷需求,研究了宽带复杂信号被动侦察系统一般组成、几种主要接收机及信号分析处理机结构,分析了传统信号侦察系统中“单向、确定的”信号处理流程局限性,以及信号侦察中以实时频谱分析技术为核心的相关算法及其对动态配置的需求。在此基础上,提出了“两阶段可配置信号处理流程加有限配置点”的新型信号处理结构,基于该结构的系统,在可配置计算技术支撑下,可以将多种接收机结构以及多种工作模式集成于一套系统,通过模式间的快速切换,实现系统的多功能,有效提高系统资源利用率、降低系统整体尺寸和功耗,使系统具有较大的灵活性;
     第二部分,针对宽带电磁信号侦察的新型信号处理结构,开展可配置计算体系结构研究,针对复杂密集实时计算特点,提出了扩展SoPC混合可配置结构模型,建立了宽带信号侦察可配置计算模型BSRRCM(第三章)。
     传统的RCSA结构分类,CPU与RFs之间具有固定程度的耦合关系,松耦合结构易于扩展,但控制能力与系统性能是一对矛盾,紧耦合结构控制灵活,但是计算能力受限。本文在对比分析这些结构特点基础上,结合宽带复杂信号侦察计算密集性特点,提出了扩展SoPC混合可配置结构模型。该结构在保留SoPC混合结构优点的同时,扩展了可配置计算资源,具有独立的数据接口和配置接口,在eCPU与RF之间提供不同程度的耦合关系,克服了其它结构模型在通信延迟、或者计算资源方面的局限性,使系统具有灵活的扩展能力。
     基于扩展SoPC混合可配置结构,建立了宽带信号侦察可配置计算模型BSRRCM。BSRRCM吸收了流模型与空间模型的优点,其主要功能是:在应用的驱动下完成计算到结构模型的自动映射。BSRRCM同时支持参数级、局部模块级以及整体芯片级的多层次动态配置策略,使系统满足多功能的应用需求,具有灵活便于扩展的优点。BSRRCM是面向流程、而不是面向任务的计算模型,避免了面向任务模型由于频繁配置切换所带来的大量时间开销,具有很好的搜索性能。
     第三部分,为解决宽带复杂电磁信号侦察系统软硬件统一管理、资源和功能复、以及系统快速重构的问题,建立实现了面向该领域应用的功能级可配置计算框架(第四章)。
     BSRRCS-RCAF框架提供了构建系统所必要的四类公共服务体系:○1基于MVC的BSRRCM模型自动机,具有通过设计视图自动截获应用需求、通过控制代理自动支持BSRRCM模型实现、以及对可配置计算资源统一管理的功能;○2设计接口集成使用和统一管理器;○3多层次动态配置策略;○4基于灵巧型片外配置存储器(CF卡)的可配置阶段流程以及配置点模块算法库。
     基于上述公共服务元素,顶层用户不必关心系统底层实现细节,可根据每一次应用的需求参与“定制”系统的设计,实现“应用即设计”的可视化设计思想,由于BSRRCS-RCAF实现了对系统软硬件以及接口资源的统一管理、建立了可不断扩充和更新的组件库,使得当应用需求发生变化导致时,整个系统的体系框架不会发生根本变化,极大限度实现了在领域应用范围内的计算资源与功能复用、以及系统的快速重构,该框架具有灵活的适应性和便于扩展的特点。
     第四部分,深入研究了基于PBMC技术的优化配置开销问题(第五章)。
     详细分析和测试了各类动态配置策略的时间开销,针对single-context芯片中模块级局部动态配置开销大的问题,借鉴可配置芯片体系结构设计中的multi-context设计思想,提出了利用在商业single-context芯片上基于多区域设计技术的PBMC技术,以达到隐藏部分配置时间、或者提高有效资源利用率的目的。
     针对信号侦察应用背景下以串行程度较高计算任务为主的实际情况,综合考虑宽带信号侦察计算模块尺寸较大的特点,深入分析比较了N context2时各种典型任务图在任务完成总时间、有效资源利用率两方面的性能情况,得出了一组对BSRRCS_RCAF设计有指导意义的结论,并进行了仿真验证。
     将PBMC技术用于解决宽带信号侦察系统中的两类问题:一类是大尺寸模块计算资源不够的问题,另一类是多个相似功能算法模块在系统中被反复调度时有效降低时间开销问题,都取得了预期的效果。
     第五部分,设计实现了可配置引导式信号侦察原型系统,并探讨了在信号侦察领域更进一步应用可配置计算技术的问题(第六章)
     完成了可配置的“宽带XXX实时频谱分析系统”样机系统工程化实现。基于该样机系统、充分利用多种工作模式输出的多维度电子情报信息,提出了“渐进引导式智能化信号侦察”的新型电子侦察系统设计思想。为了验证该思想可行性,设计实现了一个基于简单“盲侦察”策略的“渐进引导式复杂信号综合分选识别”原型系统,并通过实测和仿真数据验证了该设计思想的可行性。
     本文研究成果能够应用到卫星电子侦察有效载荷信息处理平台、以及多种小型化、多功能信号侦察处理系统中,对提高电子侦察卫星有效载荷具有重要的理论意义与实际应用价值,将为我国星载电子侦察处理技术的进一步发展提供重要的技术储备。研究成果还可以推广应用到其它机载、舰载、车载等小型化系统中。
The work of this thesis is funded by some research program in advance, someadvanced research fund, and some science and technology research project. Theapplication background is the processing of complex electromagnetic signalreconnaissance, which is a complex and intensive computing characterized with largeblock size, irregularity and dependences. The research aims to design a miniaturized,low power and multi-functional broadband satellite electronic reconnaissance system.The research focuses on the key technologies of reconfigurable computing applicationsin broadband satellite electronic reconnaissance based on the commercial FPGA chips.The research includes complex signal processing and computing features analysis,reconfigurable computing models and application frameworks, the optimization ofreconfiguration overhead, and the design of guided and intelligent signal reconnaissancesystem based on dynamic reconfiguration. The research includes the following aspects:
     The first aspect is the complex signal processing and computing featuresanalysis, and an advanced process of broadband signal passive reconnaissance isproposed.
     In this part, the developing trends of electronic reconnaissance satellite payloadand requirement is analysed in-depth, and major characteristics for some typicalreceiver and signal processor are studied. And then the limitations of unidirectional anddetermined signal processing in traditional signal system are drawn out. In the followingthe relevant algorithms of real-time spectrum analysis technology in signal detectionsystem and the demands of being reconfigured are analyzed. On this basis, a novelprocessing structure of "two-stage configurable signal processing and limitedconfiguration point" is proposed, which is helpful to integrate two types of electronicreceiver structure, and a variety of operating modes into one system, and makes itpossible to realize fast switching among multi-modes through dynamic reconfiguration.The system resource utilization is effectively improved, the system size and power arereduced, also the system flexibility is improved greatly by this design.
     The second research is the reconfigurable architecture about broadbandelectronic reconnaissance system with above-mentioned advanced signal process.Aimed at the complex and intensive computation, the Reconfigurable Extended SoPCHybrid structure model and the Broadband Signal Reconnaissance ReconfigurableComputing Model(BSRRCM) are proposed.
     There is a fixed coupling relationship between CPU and RFs for the traditionalclassification of RCSA. It’s easy for loose coupling architecture to be extended, but it’sdifficult to balance between the controllability and the system performance; while it’sflexible to control in tight coupling architecture but the computability is limited. In this part, the advantages and limitations of several typical architecture of RSCA iscompared and analyzed, and then the Reconfigurable Extended SoPC Hybrid structureModel is proposed. In this structure model, the embedded processor (eCPU) of SoPCchip acts as the system configuration controller, and the FPGA chips act as extensioncomputing resources. The commercial interface IPs is used to achieve an independentconfiguration path and data path, and there are different degrees of coupling relationshipbetween eCPU and RFs. Thus, the flexibility of multiple configurations and the qualityof communication are provided at the same time.
     Based on above extended SoPC hybrid structure, the Broadband SignalReconnaissance Reconfigurable Computing Model (BSRRCM) is proposed, whichabsorbs advantages of the stream processing model and spatial computational model.The main function of BSRRCM is the automatic mapping from calculation to the extendSoPC hybrid structure platform driven by application. BSRRCM supports multi-leveldynamic reconfiguration strategies including parameter, partial modules and thecomplete recongfiguration of the chips. This multi-level reconfiguration allows thesystem to meet multi-functional application requirements and makes the system morescalable and flexible. BSRRCM is process-oriented rather than task-oriented computingmodel, so it can avoid a lot of overhead due to the frequent configuration tasksswitching, and has good search performance.
     The third part is about reconfigurable computing application framework. Toaddress the unified management of software and hardware, realize the reuse offunctions and reconfigure the system rapidly, a functional level reconfigurableapplication frameworks is built.
     The BSRRCS-RCAF provides four types of public service system:○1Theautomatic machine of BSRRCM, with the function of automatic capture of theapplication requirements through the design view, the automatic realization ofBSRRCM through the controlling agency, and the unified management of RFs;○2Theautomatic machine of effective integration and unified management of various types ofinterfaces;○3The multi-level dynamic reconfigurable strategy;○4The scalable libraryof components of configuration staged processes and the algorithm modules on thereconfiguration points, which are stored on the smart chip-outside configurationmemory (CF card).
     Based on these public services, the top-level users need not care about theunderlying implementation details on the platform of hardware.They can custom thesystem design according to the requirements of each application and achievementpartially so called “visualized design”. BSRRCS-RCAF also enables the unifiedmanagement of the system software, hardware and interfaces. The components inlibrary can be expanded and updated, but the platform structure will not be fundamentally changed, which greatly achieves the re-use in the field of computingresources and capabilities within the specific scope of application, and significantlyimproves the system flexibility and scalability.
     The forth part focuses on the optimization of reconfigurable overhead.
     The time overhead for multi-level dynamic reconfiguration are analyzed and testedin detail. Based on the multi-region design on the commercial single-context FPGA, thePlatform-Based Multi-Context(PBMC) technology is proposed, which could hide partof reconfiguration overhead, or to improve the effective utilization of resources.
     Taking into account the the larger blocks size and the fact that there are manycomputing tasks with higher serial degree in the signal reconnaissance applications, thecomparison of the total time and the effectively resource utilization of completing avariety of typical tasks is analysed indepth. Then a set of guides about the design ofBSRRCS_RCAF are concluded and verified by simulations.
     In this part of the final, PBMC technology has been used to solve two kinds ofproblems in the broadband signal reconnaissance system. One is to solve the calculatingresources insufficientness with the large-size blocks, and the other is to reduce the timeoverhead when a lot of algorithm modules with similiar functions are repeatedlyscheduled in the system. In both cases, the desired results are achieved.
     In the fifth part, a prototype of the reconfigurable guided signal reconnaissancesystem design is proposed and realized.
     In the final part of this thesis, based on the dynamic reconfiguration and the multi-dimension electronic intelligence from real-time spectrum analysis, a prototype of agradually guided complex signal sorting and recognition system is designed. Theprototype verifies the idea of reconfigurable guided signal reconnaissance systemdesign.
     The research of thesis shows that the reconfigurable computing technology can besuccessfully applied to the electronic reconnaissance satellite payload informationprocessing platform, and other varieties of small, multi-functional signal processingsystem. It is a key technology for further development for electronic reconnaissanceprocessing and has important theoretical and practical significance to improve thecapabilities of satellite payload. The research approach and results can be extended tothe airborne, ship-based, vehicle and other miniaturized systems. In a word, it has thevery large application prospects.
引文
[1]雷历,石星等.侦察与监视--作战空间的千里眼与顺风耳[M].北京:国防工业出版社,2008:209.
    [2]李坡.宽带数字侦察接收系统关键技术研究与实现[D].长沙:国防科技大学,2010:2~4,50~57.
    [3] James Tsui著,杨小牛,陆安南,金飚译.宽带数字接收机[M].北京:电子工业出版社,2002:1~2.
    [4]张嵘.宽带高灵敏度数字接收机[D].成都:电子科技大学,2002:1.
    [5] Richard G.Wiley著,吕跃广等译.电子情报(ELIENT)--雷达信号截获与分析[M].北京:电子工业出版社,2008:5,24,214~217.
    [6]张国柱.雷达辐射源识别技术研究[D],国防科技大学,2005:1~3.
    [7] G Estrin,et al.Parallel Processing in a Restructurable ComputerSystem[J].IEEE Trans. Electronic Computers.1963,(12):747~755.
    [8]K Bondalapati,V.K.Prasanna.Reconfigurable computing systems[J].Proceedings of the IEEE,2002:Vol90(7):1201~1217.
    [9] Tarek El-Ghazawi.Is High-Performance Reconfigurable Computing the NextSupercomputing Paradigm?[C]. Tampa:SC2006,2006.
    [10]刘守山.超声数字信号处理系统可重构架构的研究[D],杭州:浙江大学,2007:1~14.
    [11] A Debon,J Wawrzynek.Reconfigurable Computing:What,Why,andImplications for Design Automation,Proc.36th,ACM/1EEE Conf. on Designautomation, ACM Press,1999:610~615.
    [12] Masakazu Yamashina, Masato Motomura, reconfigurable computing: itsconcepts and a practical embediment using newly developed dynamicallyreconfigurable logic(DRL)LSI, ASP-DAC '00Proceedings of the2000Asia andSouth Pacific Design Automation Conference,2000:329~332
    [13]段然,樊晓桠,高德远,沈戈.可重构计算技术及其发展趋势[J].计算机应用研究,2004(8):14~17.
    [14]王志远,王建华,徐砀.可重构计算综述[J].小型微型计算机系统,2009(6):1203~1207.
    [15]宋立国,姜玉宪.粗粒度可配置计算结构的研究与发展[EB/OL].http://www.eeworld.com.cn/wltx/qtjs/200703/3009.html,2005-01-08/2007-03-09
    [16]陈勇.可再配置计算技术及其应用系统设计[J].天津工业大学学报,2001(3):47~50
    [17]刘勇,李华旺,尹增山,杨根庆.动态可重配置的星上嵌入式实时计算系统[J].计算机应用研究,2006(1):204~205.
    [18]吴巨红,陈曾平,张银福.基于平台的可配置计算及其在自动目标识别中的应用[J].信号处理,2010:26(8):1222~1228.
    [19] F Yang,M Paindavoine.Implementation of an RBF neural network onembedded systems:real-time face tracking and identity verification[J].IEEETransactions on Neural Networks,2003,14(5):1162~1175.
    [20]姜晶菲.可重构密码处理结构的研究与设计[D].长沙:国防科技大学,2004:2,10~11,133.
    [21] T J Callahan,J R Hauser,J Wawrzynek.The Garp architecture and Ccompiler Computer[?].2000.33(4):62-69.
    [22]窦勇,邬贵明,徐进辉,周兴铭.支持循环自动流水线的粗粒度可重构阵列体系结构[J].中国科学E辑:信息科学,2008,38(4):579~591.
    [23] Zain-ul-Abdin,Bertil Svensson.Evolution in architectures and programmingmethodologies of coarse-grained reconfigurable computing[J].Microprocessors andMicrosystems.2009,33:161~178.
    [24] Xilinx Inc.Development System Reference Guide[EB/OL].http://www.Xilinx.com/,2008-06-28.
    [25] Xilinx Inc..Virtex Series Configuration Architecture User Guide[EB/OL].Xapp151(v1.7).http://www.xilinx.com/,2004-10-02.
    [26] Xilinx Inc..Virtex-4FPGA Configuration User Guide[EB/OL].Ug071(v1.10),2006-01-24.
    [27] Hartej Singh,Ming-Hua LEE,Guangming Lu,Fadi J KurDahi,NaderBagherzadeh,Eliseu M.Chaves FilHo.MorphorSys:an integrated reconfigurable sys-tem for data-parallel and computation-intensive applications[J].IEEE TRANS-ACTION on computers,2000,49(5):465~479.
    [28] Katherine Compton,edited by Scott Hauck,A DeHon.Chapt4ofReconfigurable Computing-the Theory and Practice of FPGA-based Computation:Reconfiguration Management[EB/OL].http://www.books.elsevier.com,2008:66~80.
    [29] Lesley Shannon,edited by Scott Hauck,A DeHon.Chapt2of ReconfigurableComputing-the Theory and Practice of FPGA-based Computation:ReconfigurableComputing Architectures[EB/OL]. http://www.books.elsevier.com,2008:30~45.
    [30] T J Todman,G.A.Constantinides,et al.Reconfigurable Computing:Architectures and Design Methods.IEE Proc.Comput.Digit.Tech.2005,152(2):193~207
    [31] K Bondalapati,V K Prasanna.Reconfigurable computing:Architectures,models and algorithms[J].Current Sci,2000,78(7):828~837.
    [32] Anthony L Slade,Brent E Nelson,Brad L Hutchings.ReconfigurableComputing Application Frameworks[C]. Proceedings of the11th Annual IEEESymposium on Field-Programmable Custom Computing Machines (FCCM’03),2003:251~262.
    [33] Michael Rencher,Brad L Hutchings.Automated Target Recognition onsplash2[C].FCCM '97Proceedings of the5th IEEE Symposium on FPGA-BasedCustom Computing Machines,1997:192~200.
    [34] Khaled Benkrid.High Performance Reconfigurable Computing:FromApplications to Hardware[EB/OL].IAENG International Journal of Computer Science,http://www.sciencedirect.com,2008-02-19/2010-04-21.
    [35] William H Mangione-Smith.Application Design for ConfigurableComputing[J]. Computer,1997,30(10):115~117.
    [36] Philip Garcia,Katherine Compton,Michael Schulte,Emily Blem,WenyinFu.An Overview of Reconfigurable Hardware in Embedded Systems[J].EURASIPJournal on Embedded Systems Volume,2006:1~19.
    [37] Zain-ul-Abdin,Bertil Svensson.Evolution in architectures and programmingmethodologies of coarse-grained reconfigurable computing[J].Microprocessors andMicrosystems2009,33:161~178.
    [38] Yoshihiro NAKATANI,Masanori HARIYAMA,Michitaka KAMEYAMA.Architecture of a Multi-Context FPGA Using a hybrid Multiple–Valued/BinaryContext Switching Signal[C]. IPDPS'06Proceedings of the20th internationalconference on Parallel and distributed processing,2006:207~207.
    [39] Weisheng CHONG,Sho Ogata,Masanori HARIYAMA,MichitakaKAMEYAMA.Architecture of a Multi-Context FPGA Using Reconfigurable ContextMemory[C]. IPDPS '05Proceedings of the19th IEEE International Parallel andDistributed Processing Symposium (IPDPS'05)-Workshop3-2005(4):144a~144a.
    [40] Ethan Mirsky,A.DeHon.MATRIX:A Reconfigurable ComputingArchitecture with Configurable Instruction Distribution and Deployable Resources[C],IEEE Symposium on FPGAs for Custom Computing Machines,Napa,CA,1996:17~19.
    [41] D A Buell,J M Arnold,W J Kleinfelder.Splash2:FPGA’s in a CustomComputing[J] Machine.Los Alamitos,CA:IEEE Computer Soc.Press,1996.
    [42] Steven A Guccione, edited by Scott Hauck,A DeHon.Chapt3ofReconfigurable Computing-the Theory and Practice of FPGA-based Computa-tion:Reconfigurable Computing System[EB/OL]. http://www.books.elsvier.com,2008:47~62.
    [43] Maya Gokhale.The Outer Limits:Reconfigurable Computing in Space andIn Orbit[EB/OL].from IEEE explore,http://library.nudt.edu.cn/news/index.do,2006-01-04/2009-03-17.
    [44] Anwar S Dawood,Stephen J Visser,John A Williams.Reconfigurable FPGAfor real time image processing in space[C].In Proceeding of IEEE DSP2002,2002:845~848.
    [45] Paul Graham,Michael Caffrey,Michael Wirthlin,D Eric Johnson,NathanRollins.Reconfigurable Computing in Space:From Current Technology toReconfigurable Systems-On-a-Chip[J].IEEEAC,2003,(5):2399~2409.
    [46] Rishi Khasgiwale,Luko Krnan,Atchuthan Perinkulam,Russell Tessier.Reconfigurable Data Acquisition System for Weather Radar Applications [C].Proceedings of48th Midwest Symposium on Circuits and Systems (MWSCAS’05),Cincinnati,Ohio, USA:2005:822~825.
    [47]李志刚,张彧,潘长勇,杨知行.抗单粒子翻转的可重构卫星通信系统[J].宇航学报,2009,30(5):1752~1756.
    [48] Xilinx Inc.. Correcting Single-Event Upsets in Virtex-II Platform FPGAConfiguration Memory[EB/OL].Xapp779(v1.1),http://www.xilinx.com/,2007-2-19.
    [49]杨孟飞,郭树玲,王嵘,李军予.基于SoC技术的星载电子系统小型化[J].控制工程,2005(2):1~9.
    [50]任小西,张克环,李仁发,金声震.基于可重构的星载数据处理系统结构研究[J].世界科技研究与发展,2008,30(2):147~150.
    [51]蔡洪波,金声震.空间太阳望远镜星载数据处理系统中的动态可重构协处理器研究[J].电子学报,2005,33(9):1717~1719.
    [52]任小西.基于可重构计算的高可靠星载计算机体系结构研究[D].长沙:湖南大学,2007:1~4.
    [53]安军社,李扬.航天计算机的发展趋势可重构计算机[C].中国空间科学学会空间探测专业委员会第15次会议,2002:49~52.
    [54] Sandeela Sumeem,M.Mobien,etc.al.A Pulse Doppler Rader UsingReconfigurable Computing[C].Proceeding IEEE INMIC,2003:213~217.
    [55] Peter Ryser.Software Defined Radio with Reconfigurable Hardware andSoftware[C]. San Francisco:Embedded Systems Conference2005:1~19.
    [56] Srikathyayani Srikanteswara,Jeffrey H Reed,Peter Athanas,Robert Boyle.Asoft radio architecture for reconfigurable platforms[J].Communications Magazine,IEEE,2000,38(2):140~147.
    [57]赵永杰,樊晓桠,佟风辉.一种可重构计算模式在自动目标识别中的应用研究[J].计算机工程与应用,2003,31:124~127.
    [58]袁孝康.卫星电子侦察与抗干扰[J].上海航天,1996,(5):32~37.
    [59] Ala Mahdavi,Amir Mansour Pezeshk.A Robust Method for PRI ModulationRecognition[C].Beijing:Proceedings2010IEEE10th International Conference onSignal Processing Proceedings(ICSP2010),2010:1873~1876.
    [60] Srikanteswara S,Reed J H,Athanas P,Boyle R.A soft radio architecture forreconfigurable platforms[J]. IEEE Communications Magazine,2000,38(2):140~147.
    [61] A DeHon,edited by Scott Hauck,A DeHon.Chapt5of ReconfigurableComputing-the Theory and Practice of FPGA-based Computation: Compute Modeland System Architectures [EB/OL].http://www.books.elsevier.com,2008:92~111.
    [62] Compton K,Hauck S.Reconfigurable computing:a survey of systems andsoftware[J].ACM Comput Surv,2002,34(2):171~210.
    [63] Mark L Chang, edited by Scott Hauck,A DeHon.Chapt1of ReconfigurableComputing-the Theory and Practice of FPGA-based Computation: DEVICEARCHITECTURE[EB/OL].http://www.books.elsevier.com,2008:3~27.
    [64] Christophe Bobda, Introduction to Reconfigurable Computing Architecture,Algrithms and Applications[M].Published by Springer,2007:1~8,15~49.
    [65] Xilinx Inc.Virtex-4RocketIO Multi-Gigabit Transceiver User Guide [EB/OL]. UG076(v3.2)[EB/OL].http://www.xilinx.com,2006-09-29.
    [66] Xilinx Inc.Virtex-5RocketIO GTP Transceiver User Guide,UG196(v1.1)[EB/OL].http://www.xilinx.com,2006-10-13.
    [67]黄伟,罗新民.基于FPGA的高速数据采集系统接口设计[J].单片机与嵌入式系统应用,2006(4):34~37.
    [68] RocketIO及其在高速数据传输中的应用[EB/OL].http://www.21ic.com/App/eda/201011/70095.htm,2010-11-18/2011-05-26.
    [69]李江涛.RocketIO高速串行传输原理与实现[J].雷达与对抗,2004(3):48~50.
    [70]陆鑫达,林新华.并行程序设计原理[M].北京:机械工业出版社.
    [71] Anath Grama,Anshul Gupta,George Karypis,Vipin Kumar著,张武,毛国勇,程海英等译.并行计算导论[M].北京:机械工业出版社,2004:63~64.
    [72]罗塞,周学海.支持组合设计的一种可重构计算系统的任务模型[J].合肥:中国科学技术大学学报,2007,37(9):1066~1072.
    [73]古天龙.软件开发的形式化方法[M].北京:高等教育出版社,2005年:23~25.
    [74] C. A. R. Hoare.Communicating Sequential Processes[EB/OL].http://www.Docin.com/p-807065.html,2003-03-28/2011-08-10.
    [75]钱正平,齐德昱,曾鸣.分布式Kahn处理网络的一种集群调度算法[J].计算机应用研究,2009,26(12):4463~4466.
    [76] Eylon Caspi,Michael Chu,Randy Huang,Joseph Yeh,Yury Markovskiy,Andr′e DeHon,John Wawrzynek.Stream Computations Organized for ReconfigurableExecution (SCORE): Introduction and Tutorial[EB/OL],http://www.cs.berkeley.edu/projects/brass/documents/score_tutorial.html,2000-8-28/2011-03-01.
    [77] Franco Zambonelli,Marco Mamei.Spatial Computing: An EmergingParadigm for Autonomic Computing and Communication[C].In Proceedings ofWAC'2004,2004:44~57.
    [78] Mahim Mishra,Timothy J Callahan,Tiberiu Chelcea,Girish Venkataramani,Mihai Budiu,Seth C. Goldstein.Tartan:Evaluating Spatial Computation for WholeProgram Execution[C].In Proceedings of the12th International Conference onArchitectural Support for Programming Languages and Operating System,2006:163~174.
    [79] Jack B. Dennis.Data Flow Supercomputers[J].Computer,1980,13(9):48–56.
    [80] Jack B. Dennis,David P. Misunas.A Preliminary Architecture for a basicdata-flow processor[C].In Proceedings of the2nd Annual Symposium on ComputerArchitecture,1975:126~132.
    [81] E. A. Lee, D. G. Messerschmitt. Synchronous dataflow[J]. Proceedings ofthe IEEE1987,75(9):1235~1245.
    [82] Shuvra S. Bhattacharyya,Praveen K. Murthy,Edward A. Lee.SoftwareSynthesis from Dataflow Graphs,chapter Synchronous Dataflow.Kluwer AcademicPublishers,1996.
    [83] R.Stephens.A survey of stream processing[J].Acta Informatica,1997,34(7):491~541.
    [84] Bruce Powel Douglass著,柳翔等译.嵌入式与实时系统开发-使用UML、对象技术、框架与模式[M].北京:机械工业出版社.
    [85]张友生.软件体系结构[M].清华大学出版社,2006:153~168.
    [86] Erich Gamma, Richard Helm, etc.Design Patterns:Elements of ReusableObject-Oriented Software[M].机械工业出版社(影印),2008:2~6.
    [87] Xilinx Inc.PLB IPIF[EB/OL].DS448(V2.02a),http://www.xilinx.com,2006-10-30.
    [88] Xilinx Inc.User Core Templates Reference Guide[EB/OL].http://www.xilinx.com,2004-01-20.
    [89] Rafael Maestre, Fadi J.Kurdahi, Milagros Fernandez, Roman Hermida,Nader Bagherzadeh, Hartej Singh.A Framework for Reconfigurable Computing: TaskScheduling and Context Management[J].IEEE Transactions on Very Large ScaleIntegration (VLSI) Systems,2001,9(6):858~873.
    [90] R.Maestre, M.Fernandez, R. Hermida, N. Bagherzadeh.A Framework forScheduling and Context Allocation in Reconfigurable Computing[C].Proceeding ofthe12th international symposium on System synthesis,ISSS '99,,IEEE ComputerSociety Washington, DC, USA,1999:134~140.
    [91] Xilinx Inc.Two Flows for Partial Reconfiguration: Module Based orDifference Based[EB/OL].Xapp290(v1.1),http://www.xilinx.com,2003-11-01.
    [92] Xilinx Inc.Early Access Partial Reconfiguration User Guide for ISE8.1.01i[EB/OL].Ug208(v1.1), http://www.xilinx.com,2006-03-06.
    [93] Xilinx Inc.Partial Reconfiguration[EB/OL]. http://www.xilinx.com.
    [94] Reid Porter,Jan Frigo,Al Conti,Neal Harvey,Garrett Kenyon,Maya Gokhale.A Reconfigurable Computing Framework for Multi-scale Cellular ImageProcessing[J]. Microprocessors&Microsystems,2007,31(8):546~563.
    [95] Qiang Wu Wei Xie Wei Wang, An Architecture and Programming Frame-Work for Dynamic Reconfigurable Computing Systems[C].CASES’01Proceedingsof the2001international conference on Compilers,architecture,and synthesis forembedded systems,ACM New York,2001:116~125.
    [96]赵秋桂,段青亚.FPGA动态局部可重构中基于TBUF总线宏设计[J].现代电子技术,2009,299(12):22~24.
    [97] Xilinx Inc.OPB HWICAP[EB/OL].DS280(v1.00.b),http://www.xilinx.com,2006-07-26.
    [98] Xilinx Inc.System ACE CompactFlash Solution[EB/OL].DS080(v2.0),http://www.xilinx.com,2008-10-01.
    [99] IBM Inc..64-Bit Processor Local Bus Architecture Specifications Version3.5[EB/OL].http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/8BA965C773B2E0ED87256AB20082CC9F/$file/64bitPlbBus.pdf,2001-05-16.
    [100] Xilinx Inc.XPS HWICAP[EB/OL].DS586(v3.00a),http://www.xilinx.com,2009-06-03.
    [101] CompactFlash Association.CF+and CompactFlash Specification Revision4.1[EB/OL].http://download.csdn.net/detail/lapiscero/840909/,2007-02-16/2008-12-05.
    [102] Ali Azarian, MahmoodAhmadi, Reconfigurable Computing Architecture:Survey and introduction[C]. Computer Science and Information Technology,2009.ICCSIT2009.2nd IEEE International Conference,2009:269~274.
    [103] Masanori Hariyama,Michitaka Kameyama.A Multi-Context FPGA Usinga Floating-Gate-MOS Functional Pass-Gate and Its CAD Environment[C].APCCAS2006:1803~1806.
    [104] Birk Y, Fiksman E.Dynamic reconfiguration architectures formulti-context FPGAs[J].Comput Electr Eng (2009),doi:10.1016/j.compeleceng.2008.11.024.
    [105]古海云.可重构SoC设计技术研究[D].南京:东南大学,2005:1~5.
    [106] Andrea Lodi,Luca Ciccarelli,etc.A Multi-context pipelined array forembedded systems[C]. FPL'06. International Conference,2006:1~8.
    [107] Julien Lallet, Sebastien Pillement, Olivier Sentieys.Efficient DynamicReconfiguration for Multi-Context Embedded FPGA[C].SBCCI’08,Gramado,Brazil,2008:210~215.
    [108] Andrea Lodi,Luca Ciccarelli,Claudio Mucci,Roberto Giansante,AndreaCappelli.An Embedded Reconfigurable Datapath for SoC[C].Proceedings of the13thAnnual IEEE Symposium on Field-Programmable Custom Computing Machines(FCCM’05),2005:1~2.
    [109]杨栋.SoPC动态配置技术研究及其在雷达告警接收机中的应用[D].长沙:国防科技大学,2009:14~16.
    [110]安佰强.数字通信信号调制方式识别技术研究与实现[D].长沙:国防科技大学,2010:21~30.
    [111] John Hennessy,David Patterson.Computer Architecture a QuantitativeApproach[M].北京:机械工业出版社(影印),2002:26,29~33.
    [112] Xilinx Inc.Processor Local Bus(PLB)v3.4[EB/OL],DS400(v1.02a),http://www.xilinx.com/,2004-9-23.
    [113]韩俊,何明浩,朱元清,冒燕.雷达信号脉内特征自动识别的一种新方法[J].弹舰与制导学报,2007,27(2):270-272.
    [114]刘万全.阵地雷达告警系统实现技术研究[D].长沙:国防科学技术大学,2006:20~26.
    [115] M. Clinton Patrick.Reconfigurable Computing Concepts for SpaceMissions:Universal Modular Spares[R],MSFC732, http://ntrs. nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080018959_2008018944.pdf,2007-10-12.
    [116] Kevin Somervill.Lunar Applications in Reconfigurable Computing[C].Military and Aerospace Programmable Logic Devices Conference,2008.9
    [117]曾田,马中.可配置计算系统与军用设备(GF-A0096004N)[R].中船重工集团第七O九研究所,2005:1~3.
    [118]徐国栋,赵丹.可重构的卫星/运载复用电子系统设计[J].航空学报,2009,30(7):1298-1304.
    [119] J. Gause,P.Y.K.Cheung,W.Luk.Reconfigurable computing for shape-adaptive video processing[J].IEE Proc.-Comput. Digit. Tech,2004,151(5):313~320.
    [120]梅国宝,吴世龙.电子侦察卫星的发展、应用及其面临的挑战[J].舰船电子对抗,2005,28(4):28~32.
    [121]张志民,欧建平,黄埔堪.数字通信信号调制自动识别研究[J].计算机工程,2011,37(6):153~156.
    [122]毕大平,董晖,姜秋喜.基于瞬时频率的脉内调制识别技术[J].电子对抗技术,2005,(3):6~13.
    [123]刘东霞.脉内调制信号的分析与自动识别[D].西安:西安电子科技大学电子对抗研究所.2003:11~15,37~39.
    [124]黄知涛,周一宇.一种有效的BPSK/QPSK信号调制识别方法[J].电子对抗技术,2005,(3):10~13.
    [125]张君,吴巨红,陈曾平,张银福.基于Haar小波变换的雷达脉内分析及SoPC实现[J].计算机工程与应用,2011,47(8S):262~266.
    [126]李军予,梁洁枚,衣学慧.SoPC技术在LUT微小型化中的应用[J].北京:控制工程,2005(2):30~33.
    [127]杨孟飞,李军予,周新发.SoC/SoPC技术航天应用[J].北京:控制工程,2004(2):14~19.
    [128]覃祥菊,朱明程等.FPGA动态可重构技术原理及实现方法分析[J].电子器件.2004,27(2):277~282.
    [129]李涛,杨愚鲁.可重构资源管理即硬件任务布局的算法研究[J].计算机研究与发展,2008,45(2):375~382.
    [130]李涛,杨愚鲁.基于最大空闲矩形的可重构资源管理方法[J].计算机工程,2008,34(3):46~48.
    [131]黄俊.动态重构SoPC系统总线上IP模块的应用研究[D].深圳大学,2006:1~3.
    [132] Seonil Choi,Yongwha Chung, Viktor K. Prasanna. Configurable Hardwarefor Symbolic Search Operations[J].Intel Conference on Parrallel and DistributedSystem,1997:122~131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700