立式连续热处理炉带钢加热与冷却数学模型理论研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科学技术的进步,对高质量冷轧带钢的需求量日益增加,对后续深加工处理也提出了更高的要求。带钢连续热处理机组正是把冷轧带钢的脱脂、退火热处理和平整三个工序连结为整体而发展起来的新型设备,提高了处理带钢的速度和质量。立式连续带钢热处理炉是该机组中的关键工艺设备。
     要获得高质量的带钢机械性能,热处理过程中对带钢的温度控制是关键技术之一。在立式连续热处理炉中,影响带钢温度的因素很多,包括:炉内设备结构参数(喷射集管与带钢的距离、喷射集管的排列方式、喷孔直径、辐射管直径和排列形式、辐射管与带钢的距离等)、带钢参数(材质、厚度和宽度)和工艺参数(带钢速度、混合气喷射温度和速度、辐射管开启数量等)。各种参数相互影响,错综复杂,共同影响带钢的加热和冷却温度。在国外提供的带钢温度生产控制模型中,只包括带钢参数和工艺参数中的带钢速度和辐射管开启数量,而没有包括设备结构参数和混合气喷射温度和速度等参数。因而,在深入分析带钢的热处理机理时,存在着两个问题:只能简单地使用国外的带钢温度生产控制模型,而不了解模型的来源;缺乏对带钢温度变化机理的理论研究数学模型。要达到自主集成连续热处理炉的目的,必须要对带钢热处理过程进行系统科学地研究,建立完整的理论计算数学模型,再由其得到带钢温度生产控制模型。理论数学模型中应包括所有的设备结构参数、带钢参数和工艺参数。在所查文献中,未查到对于包括设备参数在内的研究内容。为此,本文经过系统科学地深入分析,创新性地提出了包括设备结构参数、带钢参数和各种工艺参数的理论研究数学模型,并由理论数学模型推导得到带钢温度生产控制模型。
     本文针对热处理炉中的预热、辐射加热和快冷三个具有典型代表意义的炉段,进行科学地理论研究。研究的主要内容分为:带钢的传导传热分析、常规强制对流换热带钢温度数学模型研究、建立预热段冲击射流换热带钢温度数学模型、建立快冷段冲击射流换热带钢温度数学模型、加热段辐射换热带钢温度数学模型五个部分。主要研究内容及成果如下:
     ①带钢的传导传热分析
     分析了炉内预热段、辐射加热段和快冷段的设备结构和换热系统的特点,根据带钢较薄的几何特征及内部传导传热规律,利用牛顿冷却定律,得到了带钢瞬时温度、边界温度、炉内温度和换热系数之间的关系。
     ②常规强制对流换热带钢温度计算数学模型研究
     根据常规强制对流换热,运动气体外掠平壁的基本原理,分析了带钢运动使气体外掠带钢壁面的特点。按照带钢的运行方式和炉内上下炉辊的位置,分析了混合气体在带钢表面边界层形成的紊流状态。推导了带钢瞬时对流换热系数和带钢瞬时温度理论计算数学模型,进而得到带钢在指定计算段中的平均换热系数和带钢温度数学模型。将带钢的计算温度与生产实测带钢温度数据比较,误差小于5%。
     ③建立预热段冲击射流换热带钢温度理论计算数学模型
     根据实际生产中预热段的炉内设备结构(气体喷射集管与带钢的位置、集管的排列、喷孔直径等)、带钢参数(材质、厚度和宽度)、工艺参数(带钢速度、喷气速度、炉内温度等),应用高温气体冲击射流换热机理,分析了气体和带钢在预热段中的对流换热。应用数值模拟方法,以计算冲击射流换热系数为目标,建立了带有未知系数和幂指数形式的努塞尔数与普朗特数和雷诺数的关系模型。代入多组生产实测炉内温度和带钢温度数据,得到预热段冲击射流加热带钢瞬时努塞尔数、换热系数、带钢边界温度数学模型,最终获得了基于冲击射流理论的带钢瞬时温度和平均温度理论计算数学模型。由该数学模型得到带钢温度生产控制模型,已用于生产中,计算结果与生产数据比较接近。
     ④建立快冷段冲击射流换热带钢温度理论计算数学模型
     应用冲击射流方式冷却带钢的换热机理,研究了在不同氢含量的混合气体冷却带钢条件下,冷却系统与带钢在快冷段中的对流换热。根据快冷段冷却带钢的炉内换热系统设备、带钢参数和各工艺参数的特点,预设带有未知系数和幂指数的努塞尔数与普朗特数和雷诺数的关系模型。用数值模拟方法,建立了快冷段瞬时换热系数、带钢瞬时边界温度数学模型,进而得到了基于冲击射流对流换热理论的冷却带钢瞬时温度和平均温度理论计算数学模型,并建立了生产控制模型,生产实测数据与用理论数学模型的计算结果比较符合。
     ⑤建立加热段辐射换热带钢温度理论计算数学模型
     根据辐射换热的基本原理和传热特性,分析了辐射段设备结构(辐射管与带钢的相互位置、辐射管直径、辐射管配列密度等)、带钢参数(材质、厚度与宽度)、工艺参数(带钢速度、辐射管组开启数量、炉内温度等),应用牛顿冷却定律、辐射换热系统与带钢之间的热流量转换、带钢的传导传热三者之间的关系,推导了瞬时辐射热流量、辐射换热系数、带钢边界温度计算数学模型,并推导得到基于系统辐射换热理论的带钢瞬时温度和带钢平均温度理论计算数学模型。由该模型推导得到生产控制模型,将生产控制模型用于生产中,生产实测数据与用理论数学模型的计算结果符合度较高。
     本文研究的新型多参数热处理炉预热段、辐射加热段和快冷段带钢温度理论计算数学模型和生产控制模型及其研究方法和研究成果,解决了连续热处理系统中带钢温度变化的理论研究问题,为研究带钢连续热处理工艺、自主集成热处理炉和实际生产提供了重要的参考和理论依据,是立式连续热处理炉中预热、辐射加热和快冷三个区段中带钢温度理论研究的创新性探索,对连续热处理炉的科学集成和生产控制将产生重要的推动作用。
With the development and advancement of science and technologies, the requirement progressively increases for higher qualities and better processing of cold strip. A continue heat treatment production line is a new type of heat treatment equipment developed for increasing speed and improving the quality of the strip, which combining cleaning function, annealing heat treatment, and skin pass for strip into a associated production line. Vertical Continue Annealing Furnace (VCAF) is the key process equipment in the line.
     The key technology is for controlling temperature of strip in heat treatment process if better mechanical characters of strip are obtained. There are many affecting parameters in VCAF. These parameters include in equipment configurations (the distance between jet pipes and strip, the arranging method for jet pipes, the diameter of jet holes, the diameter and arranging method of radiation tubes, the distance between radiation tubes and strip, etc), the strip parameters (thickness and width), and process parameters (the speed of strip, the temperature and speed of gas, the opening number of radiation tubes, etc). The parameters are affected each other, and they affect temperature of strip all together. The model of temperature of strip for production control from foreign company only consists of the strip parameters, strip speed and opening number of radiation tubes, not equipments parameters, temperature and speed of gas. Therefore, there are two problems for analyzing annealing furnace: the model from foreign company is difficult to be understood principle but used; the model of strip temperature for theory research is deficient. We must found the theory research models for attaining ability self-determination theory analyzing and a production control model from the theory research model. The theory research model should include in all equipments configuration parameters, strip parameters, and process parameters. The theory research model is not found in reference papers. The thesis perfectly analyses the characters of heat transfer system in VCAF and brings forward in innovation a set of new theory research model including in equipment, strip and process parameters. The control models for strip temperature for production are obtained from the theory research models.
     The main contents of the thesis consist of 5 contents: analysis on conduction heat transfer of strip, analysis on normal forced convection heat transfer, proposing the calculating temperature models of strip on jet impinging convection heat transfer in Jet Preheat Furnace (JPF) and Rapid Cooling Section (RCS), and building calculating temperature models of strip on radiation heat transfer in Radiation Tube Furnace (RTF). Main contents of the study are summarized as follows:
     ①Analysis on conduction heat transfer of strip
     The relation is founded on strip instantaneous temperature, boundary temperature of strip, inner temperature in furnace, heat transfer coefficient and the Newton's cooling law according to equipment configuration, conduction characters of strip, and characteristics of transfer system of JPF, RTF and RCS,
     ②Study for calculating temperature models of the strip on normal forced convection heat transfer
     The characteristics of the moving strip are analyzed according to the basic principle on a fluid flowing over a stationary surface. The boundary layer on the strip surface can be considered as turbulent flow according to the relation between the strip and the rollers in furnace. The calculating models are built by using the differential coefficient method for instantaneous heat transfer coefficient and instantaneous temperature of the strip. Then, they can be integrated to gain models for calculating the average heat transfer coefficient and strip temperature. The data errors are less than 5% by comparisons between the calculation data and production data.
     ③Proposing calculating temperature models of the strip on jet impinging convection heat transfer in JPF
     The convection heat transfer between strip and heat transfer system is analyzed in JPF using the jet impinging heat transfer principles according to equipment configuration parameters (the distance between jet pipes and strip, the arranging method for jet pipes, the diameter of jet holes, etc), the strip parameters (thickness and width), and process parameters (the speed of strip, the temperature and speed of gas, etc). The jet impinging convection heat transfer is analyzed between strip and heat transfer system. The relation model among Nusselt number, Prandt number and Reynolds number is proposed with coefficients and powers. The theory research models of instantaneous and average strip temperature are proposed. The model for production controlling temperature of strip is proposed from theory research model. The calculating data are basically accordance with production data.
     ④Proposing calculating temperature models of the strip on jet impinging convection heat transfer in RCS
     The convection heat transfer between strip and heat transfer system is analyzed in RCS using the jet impinging heat transfer principles according to equipment configuration, the strip parameters, and process parameters. The jet impinging convection heat transfer is analyzed between strip and heat transfer system. Using the numerical value simulation method, the relation model among Nusselt number, Prandt number and Reynolds number is proposed with coefficients and powers. The theory models of instantaneous and average strip temperature are proposed. The model for production controlling strip temperature is proposed from theory model. The calculating data are basically accordance with production data.
     ⑤Proposing calculating temperature models of the strip on radiation heat transfer in RTF
     Based on the fundamental radiation heat transfer principles, the models of radiating heat transfer rate are proposed for description of the relation between strip and system by analyzing relation among equipment configuration parameters (the diameter and arranging method of radiation tubes, the distance between radiation and strip, etc), strip (thickness and width) and process parameters (the speed of strip, the diameter, arranging method and the opening number of radiation tubes, etc). The calculating models are proposed for instantaneous radiation heat transfer rate, radiation heat transfer coefficient, and boundary temperature of strip applyed the Newton's cooling law, heat transfer between strip and system, and conduction heat transfer. The theory research models of instantaneous and average strip temperature are proposed. The production controlling model of strip temperature is proposed from theory model. The calculating data are basically accordance with production data.
     The theory research model and production control models, research methods and results in the thesis can be used in theory analyzing the annealing furnace and production controlling for strip temperature. The models can offer important reference and theory foundation for researching heat treatment process. It is a new exploration on theoretical innovation on calculating strip temperature for 3 furnace sections of JPF, RTF and RCS in VCAF. The models and theories can become important action for theory analyzing continue annealing furnace and production control.
引文
[1]连退机组基础教材.宝钢分公司冷轧薄板厂连退机组培训资料(内部教材),2006,7.
    [2]何建锋.冷轧板连续退火技术及其应用[J].上海金属,2004,26(4): 50~53.
    [3]何建锋,宋建兴.冷轧板连续退火技术在宝钢的应用[J].轧钢,2003,20(3):32~35.
    [4]李运成.第一条全国产化大型带钢连续退火机组—武钢硅钢片厂CA-05机组[J].工业炉, 1999,21(2):8~12.
    [5]高健兵.关于太钢不锈钢冷轧厂冷热线退火炉及冷却段技术改造[J].工业加热, 2004,3(3):67~68.
    [6]何建锋,汪友国.冷轧板连续退火技术的实践和展望.78~85.
    [7]王福凯,白秀艳.冷轧不锈钢带连续退火炉综述[J].2006,28(1):18~20.
    [8]姚忠卯,张学成.冷轧带钢退火技术的发展和应用[J].河南冶金,2006,14(5):3~5.
    [9]张连瑞.现代热镀锌机组连续退火技术[J].武钢技术,1999,37(4):34~36.
    [10]何建锋.汽车用薄钢板的连续退火技术[J].钢铁研究,2006,4(总第139期):39~42.
    [11]边军,张福波,刘相华,王国栋.我国热镀锌机组连续退火技术的现状与展望[J].金属热处理, 2004,29(2):13~16.
    [12] Jeanneau M,Pichan P.The Trends of Steel Products in the European Automotive Industry[J]. La Revue De Metallurgies,CIT.2000.11:1399~1408.
    [13] Imose M,Recent.Development of Heating and Cooling Technology in Continuous Annealing Transaction[J].ISIJ,1985,25:915.
    [14]龚彦兵.现代冷轧不锈带钢的连续退火技术[J].工业炉,2000,22(5):21~22.
    [15]许晓江,齐建群,李庆,张静,孙长杰.连续退火带钢的工艺优化及产品质量分析[J].375~378.
    [16]马国和,肖白.汽车用热镀锌板连续退火工艺[J].轧钢.,1998,6(3):38~42.
    [17]杨维,崔永,庄权华.本钢1850mm连续退火机组和冷轧汽车板的生产[J].上海金属,2007, 29(5):14~17.
    [18]崔勇,佟强.冷轧汽车板退火技术剖析[J].本钢技术,2003,2:7~10.
    [19]周孝文,陈银莉,赵爱民,刘光明.连续退火工艺生产超低碳烘烤硬化汽车板[J].汽车工艺与材料,2007,11:49~50.
    [20]辜蕾钢,徐文章.冷轧带钢连续退火冷却技术及建设的连续退火机组.钢铁技术,2007,5: 13~17.
    [21]朱光俊,孙亚琴副主编.传输原理[M]北京,冶金工业出版社,2009.
    [22]张靖周.高等传热学[M].北京,科学出版社,2009.
    [23]王厚华,周根明,李新禹,廖光亚.传热学[M].重庆,重庆大学出版社,2006.
    [24]杨世铭,陶文铨编著.传热学[M](第四版).北京,高等教育出版社,2007.
    [25]陈新志,蔡振云,胡望明编著.化工热力学[M](第二版).北京,化学工业出版社,2005.
    [26] [美]弗兰克P英克鲁佩勒,大卫P德维特,迪奥多尔L伯格曼,艾德丽安S拉维恩.传热和传质基本原理.[M].北京,化学工业出版社, 2009.
    [27] [美]YUNUS A CENGEL著,冯妍卉,贾力,张欣欣,彭晓峰改编.HEAT TRANSFER(英文版)高等传热学[M].北京,科学出版社, 2007.
    [28]贾力,方肇洪.高等传热学[M].北京,高等教育出版社,2008.
    [29] Liancun Zheng,Lijuan Wang,Xinxin Zhang.Analytic solutions of unsteady boundary flow and heat transfer on a permeable stretching sheet with non-uniform heat source/sink[J].Commun Nonlinear Sci Numer Simulat,2010(16):731–740.
    [30] Szermer M,Pietrzak P,Napieralski A.Real time temperature monitoring of ICs with boundary temperature scan[J].Semiconductor Thermal Measurement and Management Symposium, 2009 SEMI-THERM 2009,25th Annual IEEE,03,2009:146-150.
    [31]王永萍,鲍戟,高立.连续退火炉冷却技术的发展和现状[J].工业炉,2002,24(1):21~24.
    [32]熊菲,姚朝晖,郝鹏飞,许宏庆.冲击射流PIV的实验研究流体力学试验与测量[J].2004,18(3): 68~72.
    [33]陈庆光,徐忠,张永建.湍流冲击射流流动与传热的数值研究进展.力学进展,2002,32(1): 92~107.
    [34] Gupa A K,Bolz S,Hasegawa T.Effect of Air Preheat Temperature and Oxygen Concentration on Flame Structure and Emission[J].Journal of Energy Resources Technology,1999,9: 209~216.
    [35]陈庆光,徐忠,张永建.湍流冲击射流流动与传热的数值研究进展[J].力学进展,2002,32(1): 92~107.
    [36]陈庆光,吴玉林,张永健,王涛.矩形管的湍流冲击射流流动与传热的数值研究[J].热能动力工程,2005,20(5):474~477.
    [37]许坤梅,张平.半封闭圆管冲击射流湍流换热数值模拟.北京理工大学学报,2003,23(5): 540~544.
    [38] Aldo German,Benavides Moran.Prediction of the Axisymmetric Impinging Jet with Different k ?ε Turbulence Models[J].Department thermo and Fluid ynamics Chalmers University of technology,Goteborg,Sweden.2004.
    [39] Ramezanpour,Ahad,Mirzaee,Iraj,Firth,David,Shirvani,Hassan.A numerical heat transfer study of slot jet impinging on an inclined plate[J].International Journal of Numerical Methods for Heat and Fluid Flow(Int. J. Numer. Methods Heat Fluid Flow)(United Kingdom),2007,17/7: 661-676.
    [40]吴大伟,张成林.对流传热系数的研究[J].现代食品科技,2006,22(4):88~89.
    [41] Sawant,S M Rao, C Gururaja.Fluid flow and heat transfer studies and correlations for mixed convection with conduction and radiation from a discretely heated vertical plate[J]. International Journal of Fluid Mechanics Research (United States) , 2009,36/3:255-271
    [42] Cherif,Yassine,Joulin,Annabelle,Zalewski,Laurent,Lassue,Stephane.Superficial heat transfer by forced convection and radiation in a horizontal channel[J].International Journal of Thermal Sciences(France),2009,48/9:1696-1706.
    [43] Abd El-Aziz,Mohamed.Radiation effect on the flow and heat transfer over an unsteady stretching sheet[J].International Communications in Heat and Mass Transfer(Int. Commun. Heat Mass Transf)(United Kingdom),2009,36/5:521-524.
    [44] D D Knight.Inflow Boundary Conditions for DNS and LES of Compressible Turbulent Boundary Layers[J].44th AIAA Aerospace Sciences Meeting and Exhibit,9-12 January 2006: 1-12,Reno,Nevada.
    [45] A A Bakr.Effects of chemical reaction on MHD free convection and mass transfer flow of a micropolar fluid with oscillatory plate velocity and constant heat source in a rotating frame of reference[J].Commun Nonlinear Sci Numer Simulat,16.2011: 698–710.
    [46] Alok Chaube1,P K Sahu,S C Solanki,P B Sharma.Effect of Artificial Roughness on Convective Heat transfer[J].40th Thermophysics Conference
,June 23-26,2008:1-7, Seattle,Washington.
    [47] Anatoli Tumin.Outlook for theoretical modeling of isolated roughness-induced perturbations in turbulent boundary layers[J].37th AIAA Fluid Dynamics Conference and Exhibit,25-28 June 2007:1-12, Miami,FL.
    [48]阎建民,马润宇.用减压膜蒸馏测定对流传热系数的研究[J].北京化工大学学报,2000,27(2): 1~4.
    [49]盖轲,董彦杰.对流传热过程影响因素分析[J].运城高等专科学校学报,2000,18(6):33~34.
    [50]叶丽娟.对流传热系数准数关联式的探讨[J].郴州师范高等专科学校学报,2000,21(4): 68~70.
    [51] Samy M Morkos,Ahmed M Farag ,Essam E Khalil.Experimental and Numerical Investigations of Air Flow Patterns and Heat Transfer in Precision Measuring Laboratory,[J]. 46th AIAA Aerospace Sciences Meeting and Exhibit,January 7-10,2008:1-9,Reno,Nevada.
    [52] T Kousksou,T ElRhafiki,K ElOmari,Y Zeraouli,Y.LeGuer.Forced convective heat transfer in supercooled phase-change material suspensions with stochastic crystallization[J].International journal of refrigeration.5.2010:1-14.
    [53] Mebine,Promise,Adigio,Emmanuel Munakurogha.Unsteady free convection flow withthermal radiation past a vertical porous plate with newtonian heating[J].Turkish Journal of Physics ( Turk. J. Phys. ) (Turkey) 2009,33/2:109-119.
    [54] Pal,Dulal;Mondal,Hiranmoy.Influence of temperature-dependent viscosity and thermal radiation on MHD forced convection over a non-isothermal wedge[J].Applied Mathematics and Computation ( Appl. Math. Comput. ) (United States) 2009,212/1:194-208.
    [55]陈庆光,徐忠,吴玉林,张永健,张永超.矩形管的湍流冲击射流场的PIV实验研究[J].实验流体力学,2005,19(1):87~93.
    [56]吴建国,翟云,王勇.喷流换热中多个圆喷嘴射流流动特征的数值计算[J].冶金能源,1999, 18(1):31~35.
    [57] Vadiraj Katti1,S V Prabhu.Analysis of heat transfer from flat surface due to circular jet impingement[J].5th International Energy Conversion Engineering Conference and Exhibit (IECEC),June 25-27,2007:1-23,St. Louis, Missouri.
    [58] Kursun U,Kapat J.Numerical simulation of microscale slot jet impingement cooling of a surface with constant wall heat flux using DSMC-IP[J].Proceedings of the 6th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2008.
    [59] Lee H G,Yoon H S,Ha M Y.A numerical investigation on the fluid flow and heat transfer in the confined impinging slot jet in the low Reynolds number region for different channel heights[J].International Journal of Heat and Mass Transfer(Int. J. Heat Mass Transf.)(United Kingdom)2008,51/15-16:4055-4068.
    [60] Middelberg G,Herwig H.Convective heat transfer under unsteady impinging jets: The effect of the shape of the unsteadiness[J].Heat and Mass Transfer/Waerme- und Stoffuebertragung (Heat Mass Transfer)(Germany) 2009,45/12:1519-1532.
    [61] Isman M K,Pulat E,Etemoglu A B,Can M.Numerical investigation of turbulent impinging jet cooling of a constant heat flux surface[J].Numerical Heat Transfer,Part A,Applications (Numer Heat Transfer Part A Appl)(United States)2008,53/10:1109-1132.
    [62] Jeffers N,Punch J,Walsh E.An investigation of thermal and velocity fields for a confined jet over the re range of 1,000-24,000[J].2008 Proceedings of the ASME Summer Heat Transfer Conference, HT 2008.
    [63] Shapiro J D,Taslim M E.Experimental heat transfer and discharge coefficients for single confined jet impingement normal to a surface at close distances[J].Proceedings of the ASME Turbo Expo(Proc. ASME Turbo Expo)(United States) 2008,4/PART A:35-43.
    [64] Michaux G,Vauquelin O.Density effect on the mixing and the flow pattern of an impinging air-helium jet[J].Experimental Thermal and Fluid Science.(United States) 2009,33/6:976-982.
    [65] Cheng K C.Some observations on the origins of Newton's law of cooling and its influences onthermofluid science[J].Applied Mechanics Reviews.(United States)2009, 62/6:1-17.
    [66] Hadziabdic M,Hanjalic K.Vortical structures and heat transfer in a round impinging jet[J].Journal of Fluid Mechanics(United States)2008,596/-:221-260.
    [67] Uddin Naseem,Neumann Sven Olaf; Weigand Bernhard,Younis Bassam A.Large-eddy simulations and heat-flux modeling in a turbulent impinging jet[J].Numerical Heat Transfer; Part A,Applications.(United States)2009,55/10:906-930.
    [68] Paul J,Kreitzer,John M,Kuhlman,Deepak Mehra,Donald D Gray.Effects of Contact Charging on Spray Impingement Heat Transfer Performance and Spray Behavior[J].39th AIAA Thermophysics Conference,June 25-28,2007:1-16,Miami,FL.
    [69] Shann J Rufer,Robert J Nowak,Kamran Daryabeigi,Donald Picetti.Experimental and Computational Study of Underexpanded Jet Impingement Heat Transfer[J].41st AIAA Thermophysics Conference,June 22-25,2009:1-25,San Antonio,Texas.
    [70] Craft T J,et al. Impinging Jet Studies for Turbulence Model Assessment-II.An Examination of the Performance of Four Turbulence Models[J].Int J Heat Mass Transfer,1993,36(10): 2685~2692.
    [71] Lalizel Gildas,David Christophe,Fenot Matthieu,Dorignac Eva.Experimental aero-thermal characterization of a circular jet impinging a plate: Influence of impingement flow Mach number on convective heat exchange radial distribution[J].2008 Proceedings of the ASME Summer Heat Transfer Conference, HT 2008.
    [72]杜志龙,高振江,张世湘.气体冲击射流对流换热系数试验研究[J].农业工程学报,2006, 12(2),增刊:1~4.
    [73]向顺华,刘华飞,温宏权,李红梅.喷吹氢气时带钢的冷却速度[J].2005年中国钢铁年会论文集:421~425.
    [74]向顺华,黄夏兰,马新建,刘颖昊.带钢连续退火中气雾冷却速度的计算[J].轧钢,2002,24 (1):21~24.
    [75]鲍成人,李众,谭谨峰,邸洪双,潘恩宝.连续退火冷却速率对热镀锌双相钢DP780屈服平台的影响[J].钢铁,2010,45(5):81~83.
    [76] Kiran H,Dellimore,Carlos Cruz,Andre W Marshall,Christopher P,Cadou. A Jet model for slot film cooling with effect of variation in the mianstream pressure[J].43rd AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit,July 8-11,2007:1-12.
    [77] Fuchang Xu, Mohamed S Gadala.Heat transfer behavior in the impingement zone under circular water jet[J].International Journal of Heat and Mass Transfer 49 2006:3785-3799.
    [78] William A Engblom,Michael O Gara,Amy Richards,David J.Sypeck,Donald Platt. Investigation of Microthruster Nozzle Performance for Nanosatellite Applications[J].37thAIAA Fluid Dynamics Conference and Exhibit,25-28 June 2007:1-14,Miami,FL.
    [79] Jungho Lee,Sang-Joon Lee.The Effect of Nozzle Configuration on Stagnation Region Heat Transfer Enhancement of Axisymmetric Jet Impingement[J].International Journal Heat Mass Transfer.2000.43.3497~3509.
    [80]张永恒,周勇,王良壁.四喷嘴圆形冲击射流局部传热性能的实验研究[J].华中科技大学学报,2006.34(7):11~14.
    [81]张永恒,周勇,王良壁.圆形冲击射流传热性能的实验研究[J].热科学与技术,2006,5(1): 38~43.
    [82]耿铁,李德群,周华民,邵玉杰,汪伟军.冲击射流及其强化换热的研究进展[J].机械设计与制造,2006,6:154~156.
    [83]耿铁,李德群,周华民,邵玉杰,汪伟军.冲击射流换热数值模拟技术研究概述[J].航空制造技术,2006,2:77~79.
    [84] Whelan,Brian P,Robinson,Anthony J.Nozzle geometry effects in liquid jet array impingement[J].Applied Thermal Engineering(Appl Therm Eng )(United Kingdom),2009, 29/11-12:2211-2221.
    [85] Gulati Puneet,Katti Vadiraj,Prabhu S V.Influence of the shape of the nozzle on local heat transfer distribution between smooth flat surface and impinging air jet[J].International Journal of Thermal Sciences(Int. J. Therm. Sci. )(France) ,2009 ,48/3:602-617.
    [86] Katti Vadiraj,Prabhu S V.Local heat transfer distribution between smooth flat surface and impinging air jet from a circular nozzle at low Reynolds numbers[J].6th International Energy Conversion Engineering Conference,IECEC(Int. Energy Convers. Eng. Conf., IECEC) (United States), 2008.
    [87]熊菲,姚朝晖,郝鹏,许宏庆冲击射流PIV的实验研究[J],流体力学试验与测量,2004,18(3): 68~72.
    [88]徐惊雷,徐忠,张堃元,黄淑娟.冲击高度对自由冲击射流影响的实验研究[J].力学与实践,2002,24:21~24.
    [89] Huber A M,Viskanta R.Comparison of Convective Heat Transfer to Perimeter and Center Jets in a confined, impinging Array of Axisymmetric Air Jets[J].Int J.Heat Mass Transfer,1994, 37(18):3025~3030.
    [90] Celik Nevin,Eren Haydar.Heat transfer due to impinging co-axial jets and the jets' fluid flow characteristics[J].Experimental Thermal and Fluid Science(Exp. Therm. Fluid Sci.)(United States), 2009,33/4:715-727).
    [91]周定伟,马重芳.圆形液体浸没射流冲击驻点传热的数值模拟.北京工业大学学报,2001,27 (3):316~320.
    [92]周定伟,马重芳,刘登瀛.L12378圆形射流冲击和浸没冷却传热[J].西安交通大学学报,2001,35(9):958~961.
    [93]周定伟,马重芳,苑中显.圆形浸没冲击射流速度与压力梯度的数值计算[J].北京工业大学学报,2000,26(1):63~66.
    [94] Eren,Haydar,Yesilata,Bulent,Celik,Nevin.Nonlinear flow and heat transfer dynamics of impinging jets onto slightly-curved surfaces[J].Applied Thermal Engineering(Appl Therm Eng)(United Kingdom) ,2007,27/14-15:2600-2608.
    [95] Jungho Lee,Sang-Joon Lee.The effect of Nozzle Aspect Ratio on Stagnation Region Heat Transfer Characteristics of Elliptic impinging Jet[J].Int J.Heat Mass Transfer,2000,43: 555-575.
    [96] Beitelmal A H.The Effect of Inclination on the Heat Transfer between a Flat surface and a impinging Two-dimensional Air Jet[J].Int J,Heat and Fluid Flow,2000,21:156~163.
    [97] Mark Ricklick,Roberto Claretti,J S Kapat.Comparison of Heat Transfer Coefficient and Thermal Performance of a Narrow Impingement Channel[J].48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition,January, 2010:4-7, Orlando,Florida.
    [98] Rahman,Muhammad M,Hernandez,Cesar F.Thermal management using free liquid jet impingement from a slot nozzle to a curved plate[J].Proceedings of the Energy Sustainability Conference 2007 (Proc. Energy Sustainability Conf.)(United States),2007:273-281.
    [99] Abdlmonem H Beitelmal,Michel A Saad.Effcts of Surface Roughness on the Average Heat Transfer of an Impinging Air Jet[J].Int Commun in Heat Mass Transfer.,2000,27(1):1~12.
    [100] Choi M S.Measurements of impinging Jet Flow and Heat Transfer on a Semi-circular Concave Surface[J].Int J.Heat Mass Transfer,2000.43:1811~1822.
    [101] Ashok Kumar,M Prasad.Computational investigations of flow and heat transfer on an effused concave surface with a single row of impinging jets for different exit configurations[J]. Proceedings of the ASME Turbo Expo 2009,Power for Land, Sea and Air.
    [102] Ito Ryuta,Oda Yutaka,Takeishi Kenichiro,Yoshida,Naoki.Heat transfer for round air jets flowing along a concave surface[J].2007 Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference - HT,2007.
    [103] Aldabbagh,L B Y.,Mohamad, A A.A three-dimensional numerical simulation of impinging jet arrays on a moving plate[J].International Journal of Heat and Mass Transfer( Int. J. Heat Mass Transf. ) (United Kingdom),2009,52/21-22:4894-4900.
    [104] Sagot B,Antonini G,Christgen A,Buron F.Jet impingement heat transfer on a flat plate at a constant wall temperature[J].International Journal of Thermal Sciences(Int. J. Therm.Sci. )(France), 2008,47/12 :1610-1619.
    [105] Ozmen Y,Baydar E.Flow structure and heat transfer characteristics of an unconfined impinging air jet at high jet Reynolds numbers[J].Heat and Mass Transfer/Waerme- und Stoffuebertragung(Heat Mass Transfer)(Germany),2008,44/11:1315-1322.
    [106] Laszlo Fuchs,Thomas Hallqvist.Numerical study of impinging jets with heat transfer-inlet conditions effects[J].47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition,5-8 January 2009:1-21,rlando,Florida.
    [107] Ashforth-frost S,Jambunathan K.Numerical Prediction of Semi-confines Jet Impingement and Comparison with Experimental Data[J].Int J Num Methods in Fluids,1996,23:295~306.
    [108] Chatterjee A,Deviprasathl J.Heat Transfer in Confined Laminar Axisymmetric impinging Jets at Small Nozzle-Plate Distances the Role of Upstream Vorticity Diffusion[J].Numerical Heat Transfer(Part A),2001,39:777~800.
    [109]邢改兰,苏永升,周邵萍.氮氢混合气体单孔冲击射流换热实验研究[J].矿冶,2007,16(4): 36~39.
    [110]李东生,吴建国.平面射流的数值模拟研究[J].冶金能源,2001,20(6):42~45.
    [111] Choo Kyo Sung,Youn Young Jik,Kim Sung Jin,Lee Dae Hee.Heat transfer characteristics of a micro-scale impinging slot jet[J].International Journal of Heat and Mass Transfer(Int. J. Heat Mass Transf. ) (United Kingdom) ,2009,52/13-14:3169-3175.
    [112] Helmut K,Ciezki,Tobias Tiedt,Jens von Kampen,Nora Bartels.Atomization Behavior of Newtonian Fluids with an Impinging Jet Injector in Dependence upon Reynolds and Weber Numbers[J].41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit,July 10-13, 2005:1-7,Tucson, Arizona.
    [113] G A Gerolymos,I Vallet?.Advances in the Numerical Computation of Complex Flows using Reynolds-Stress Models[J].AIAA 18.Computational Fluid Dynamics Conference,Miami,[FL], June 25-28,2007:1–20.
    [114]武成波,梁小平,王雨.冲击加热对流传热系数的计算模型[J].工业炉,1995,77(3):45~48.
    [115]徐惊雷,徐忠,肖敏,黄淑娟.冲击射流的研究概述[J].力学与实践,1999,21:8~16.
    [116] Louahlia-Gualous H.,Baonga J B.Experimental study of unsteady local heat transfer for impinging miniature jet[J].Heat Transfer Engineering(Heat Transfer Eng )(United States), 2008,29/9:782-792.
    [117]冀美萍.冲击射流强化换热的原理及其研究进展[J].甘肃科技,2004,20(5):53~56.
    [118]张靖周,李永康,谭晓茗,李立国.阵列射流冲击冷却局部对流换热特性的数值计算与实验研究[J].航空学报,2004,25(4):339~342.
    [119]贾丽娣,李锋,文伟,吕家舜,刘长鹏,杨大正.热镀锌立式退火炉快冷段传热过程分析[J].冶金能源,2007,26(3):34~36.
    [120]李兆敏,沈忠厚.轴对称紊流射流流场数值模拟[J].石油大学学报(自然科学版),1995,19(2): 48~51.
    [121]李宏顺,周怀春,陆继东,郑楚光.炉膛辐射换热计算的一种改进的离散传递法[J].中国电机工程学报,2003,23(4):162~166.
    [122] B Zhu,H S Schock,T Hogan,T P Shih.A Numerical Study of Convective and Radiative Heat Transfer between Parallel Plates Connected by an Array of Rods[J].44th AIAA Aerospace Sciences Meeting and Exhibit,January 9-12,2006:1-12, Reno, Nevada.
    [123] Mishra Subhash C,Pavan Kumar,T B.Analysis of a hyperbolic heat conduction-radiation problem with temperature dependent thermal conductivity[J].Journal of Heat Transfer(J. Heat Transf.)(United States)2009,131/11:1-7.
    [124] Aydin Orhan,Kaya,Ahmet.MHD mixed convective heat transfer flow about an inclined plate[J].Heat and Mass Transfer/Waerme-und Stoffuebertragung(Heat Mass Transfer) (Germany)2009,46/1:129-136.
    [125] Ishak Anuar.Mixed convection boundary layer flow over a horizontal plate with thermal radiation[J].Heat and Mass Transfer/Waerme-und Stoffuebertragung(Heat Mass Transfer) (Germany)2009,46/2:147-151.
    [126] Rubtsov N A,Sinitsyn V A.Unsteady radiative-convective heat transfer in a high-temperature gas-particle flow past a semi-transparent plate[J].Journal of Applied Mechanics and Technical Physics(J. Appl. Mech. Tech. Phys.)(United States),2009 ,50/3:478-483.
    [127]高仲龙,蒋大强.带钢加热用辐射管[J].工业加热,1998,5:9~11.
    [128]涂卫国,冯俊小,余凯.辐射管加热技术综述[J].工业炉,2007,29(3):15~18.
    [129]谢辰,黄德轩,周勇.辐射管加热炉的优劣化分析[J].四川冶金,2000,6:28~30.
    [130]张裕泰,夏远萍.镀锌板生产线退火炉辐射管燃烧实验研究[J].工业加热,2003,1:46~48.
    [131] Masayuki Imose.Heating and Cooling Technology in the Continuous Annealing[J]. Transaction ISIJ,1985,25:911~932,
    [132]杨建平,祁卫东,陈光,张丽薇.退火钢卷辐射换热及对流换热的讨论[J].安徽工业大学学报,2004,21(4):273~277.
    [133]韩小良.辐射管炉炉膛辐射换热计算方法[J].工业炉,2000,22(1):55~59.
    [134]韩小良.辐射管带钢退火炉内辐射角系数计算[J].冶金能源,1999,18(6):26~30.
    [135]韩小良.室式辐射管炉内辐射角系数计算[J].加热设备,2001,1:44~48.
    [136]白心爱.辐射换热角系数的计算[J].红外,2008,29(8):30~33.
    [137]杨学平,潘增富.多体之间角系数计算的新算法[J].宇航学报,1996,17(1):46~50.
    [138]黎和昌,黄晖,张莹.辐射角系数计算边界元法与奇异积分处理[J].热科学与技术,2004,3(4):323~326.
    [139]齐宏,阮立明,谈和平.辐射换热的分区计算研究[J].工程热物理学报,2005,26(4):650~6529.
    [140]何立群.角系数的数值计算方法[J].哈尔滨建筑大学学报,1995,28(5):86~89.
    [141]武成波,许鹏彦,杨进,沈小军,李廷豪.U型辐射管的表面温度分布实验研究[J].过程工程学报,2008,8增刊1:189~191.
    [142]贺志宏,刘林华,谈和平,董士奎.炉内辐射换热过程的有限体积法[J].动力工程,1999,19(4): 265~268.
    [143]马军.连续热镀锌铝生产线辐射管退火炉的热模型的建立[J].四川冶金,2006,28(2):40~43.
    [144]杨长留,仇钢,张尊璞.1550热镀锌加热炉加热模型研究和改善[J].冶金自动化,2004,增刊:13~16.
    [145]王弢,丛劲松,曹凯,李义.冷轧生产线连续退火炉加热段数学模型的应用[J].上海金属,2007, 29(5):121~125.
    [146]杨柏松.CAPL机组加热室内的传热数学模型[J].冶金能源,1998,17(5).36~38.
    [147]杨柏松,孙学文,王福凯.连续退火工艺中冷却技术的数学计算[J].冶金能源,2004,23(3): 24~25.
    [148]朱晓东.连续退火快冷工艺对冷轧超高强钢力学性能的影响[J].材料热处理学报,2006, 27(1):49~52.
    [149]何建锋.1420mm连续退火机组加热炉燃烧调整机参数优化[J].轧钢,2001,18(5):14~16.
    [150] Askri F,Salah.M.Ben,Nasrallah.S.Ben.Numerical prediction of coupled conduction, convection and radiation heat transfer[J].International Journal of Heat and Technology.(Italy)2009,27/1:81-88.
    [151]金武明.冷轧连续退火炉加热炉带温控制数学模型研究[J].冶金自动化,2005,增刊: 767~769.
    [152]李生勇,李谋渭,王邦文,张少军.圆形冲击射流破断现象的实验和数值模拟研究[J].冶金设备,2006,158(4):22~24.
    [153]牛钰,温治,王俊升.圆形喷口紊流冲击射流流动与传热过程数值模拟[J].冶金能源,2007, 26(1):16~20.
    [154]边军,刘相华,王国栋.IF钢冷轧板连续退火的实验研究[J].40~47.
    [155]林莉军.宝钢1800mm冷轧连续退火机组炉内最佳速度控制技术[J].宝钢技术,2005, 1:68~72.
    [156]潘勋平,杨杰.连续退火机组辊冷技术和板温控制[J].宝钢技术,2001,5:39~43.
    [157]荣蓓.宝钢冷轧1550连续退火机组的带钢温度控制[J].控制工程,2003,10(5):426~428.
    [158]宴晓华.宝钢连续退火机组加热炉带温控制技术[J].控制工程,2004,11(2):138~141.
    [159]周坚刚.连续退火机组加热段板温与速度控制研究[J].宝钢技术,1996,5:42~45.
    [160]《金属材料编写组..金属材料及热处理[M].上海,上海人民出版社,1978.
    [161]王海川,董元篪主编.冶金热力学数据测定与计算方法[M].北京,冶金工业出版社,2005.
    [162]中国金属学会,中国有色金属学会编.金属材料物理性能手册,第1册,金属物理性能及测试方法[M].北京,冶金工业出版社,1987.
    [163]崔忠,覃耀春主编.金属学与热处理[M].北京,机械工业出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700