用户名: 密码: 验证码:
武汉市南湖大型底栖动物群落结构与生态功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型底栖动物(Macrozoobenthos)是湖泊生态系统中的重要组成部分,具有重要的生态功能。它可以加速水底有机碎屑的分解和利用,调节泥--水界面的物质交换,促进水体自净;同时本身也是湖泊生态系统中食物链的重要环节,而且部分大型底栖动物(螺、蚌)具有直接利用的经济价值。水生昆虫中的摇蚊幼虫在富营养湖泊中的密度大,能摄食消化大量的沉积有机碎屑,成虫羽化后离开水体飞往陆地。可作为湖泊沉积物中N、P的有效利用者和清除者,可为湖底沉积的大量营养物的清除开辟一条新途径;另一方面,通过食物链,大型底栖动物为鱼所摄食后转化为鱼产品,通过捕获从水体中取出,是清除湖泊中N、P的又一途径。
     进入20世纪80年代以来,随着工业化和城市化的不断发展,人口的剧增,加上不合理的渔业行为,湖泊的富营养化程度越来越高,湖泊环境发生了显著改变。湖泊环境的变化,特别是富营养化后对大型底栖动物带来什么样的影响,大型底栖动物又会采取哪些生态响应,缺乏系统研究。为此,以武汉市南湖为例,对浅水富营养湖泊中的大型底栖动物的群落结构、时空分布、主要优势类群的N和P的含量及对N、P的释放和清除效率、繁殖和与鱼类的关系等问题进行了研究,主要结果如下:
     1、在南湖共采集到大型底栖动物34种,其中寡毛类7种,软体动物4科12种,水生昆虫12种,其它动物3种。湖心区定量采样中只发现寡毛类和水生昆虫幼虫,没有采到活体的软体动物。寡毛类目前主要由耐污种类组成,其年平均密度为3802ind/m2,最高达16576 ind./m2。水生昆虫中摇蚊幼虫的优势种为刺铗长足摇蚊Tanypus punctipennis (Fabricius),年均密度为730 ind./m2,其次为红裸须摇蚊Propsilocerus akamusi (Tokunaga),年均密度为50 ind./m2。从季节分布看,霍甫水丝蚓Limnodrilus hoffmeisteri Claperede以春季的5月份密度最大,夏季的8月份密度最低;刺铗长足摇蚊T.punctipennis和红裸须摇蚊P. akamusi的幼虫密度均以秋季的11月份最大。
     2、南湖大型底栖动物在湖底沉积物中的最大分布深度为25 cm,主要集中在0-15cm深度范围内。0-20 cm深度范围内,寡毛类占到了30 cm柱样中同类总量的99.28%,摇蚊幼虫占同类总量的99.31%,20 cm深度的样品,大型底栖动物的采集量可达到99%以上;实验室模拟,也证实其垂直迁移幅度不会超过20 cm深度。梨形环棱螺Bellamya aeruginosa和铜锈环棱螺Bellamya purificata 24 h运动的水平距离是不一样的,梨形环棱螺B. purificata最远达7m,平均为3.4 m;而铜锈环棱螺B.aeruginosa的最远距离为3.6 m,平均为2.4 m。
     3、南湖中大型底栖动物的生物多样性较低,优势种主要为寡毛类和摇蚊幼虫,其总生物量分别为176759.35 kg和46810.30 kg,其次为螺类,生物量为899.34kg,它们能够转移或清除的TN、TP量分别为3463.61kg和350.92 kg,大型底栖动物对南湖中N和P的清除是一条重要途径。但大型底栖动物的TN量只占到水体TN量的2.49%,因此,南湖在完全实现截污前,大型底栖动物从湖泊中清除N和P的量是有限的。颤蚓和摇蚊幼虫可以促进湖泊底泥中氮和磷的释放,其密度与释放量紧密相关;颤蚓在湖泊沉积物中氮和磷的循环与转化方面扮演了重要的角色。
     4、铜锈环棱螺B. aeruginosa的绝对繁殖力平均为63.97个,其中最大怀胚数为169个,最小怀胚数为4个,相对繁殖力为26.85个/克。而梨形环棱螺B. purificata的绝对繁殖力平均为38.57个,其中最大怀胚数为115个,最小怀胚数为3个,相对繁殖力为23.28个/克。铜锈环棱螺B. aeruginosa 3月开始产仔螺,而梨形环棱螺B.purificata要到4月才开始产仔螺。耳萝卜螺Radix auricularia 3月上旬开始产卵(水温8-12℃),繁殖高峰期在3、4月份,5月份以后产卵量和产卵次数均下降。产卵最适水温为16~24℃,在繁殖高峰期,可多次产卵。两次产卵的间隔期在1-10d之间,一般为1-3d。性成熟的个体一生可产4-5个卵囊,而每个卵囊中的怀卵量可达几十个到几百个。耳萝卜螺R. auricularia卵的受精率一般为95%-100%。平均孵化率为95.28%,最高可达100%,最低为85.7%。孵化时间与水温密切相关,水温越高,孵化时间越短。
     5、摇蚊幼虫集中羽化的时间有两次,主要为春末夏初的4-5月和秋末冬初的11-12月。两种摇蚊的个体繁殖力和卵囊结构均有所不同,刺铗长足摇蚊T. punctipennis的个体绝对繁殖力平均为665.7粒,红裸须摇蚊P. akamusil的个体绝对繁殖力超过1000粒。
     6、南湖0~10 cm深度范围内,水生植物残体量与水栖寡毛类和摇蚊幼虫的分布密度之间紧密相关,随着水生植物残体量的减少,水栖寡毛类和摇蚊幼虫的分布密度也会降低。TN与沉积深度相关不显著。在垂直分布上,水生植物残体的TP与沉积深度呈紧密负相关,即沉积年代越早,TP含量越低,沉积年代越晚,TP含量越高,较好地反映了南湖中营养盐类的变化情况。研究认为,水生植物残体可作为一种研究湖泊沉积学新的证据材料。
     7、鱼类对饵料生物(包括底栖动物)会产生下行效应(top-down)。在南湖中由于水草完全消失,发现鲤和鲫的繁殖行为被迫进行改变,由草上产卵变为在岸边的岩石上产卵。湖边及水中的岩石既是软体动物中螺类的栖息地和产仔地,也是摇蚊和鲤、鲫的产卵场所,同时也是摇蚊幼虫和鲤、鲫鱼苗的孵化场所,于是在栖息生境上出现了重叠,在同一岩石上共同构成一个复杂的群落。环棱螺成为了群落中的顶级消费者,由于捕食作用,会严重影响到鱼卵和摇蚊幼虫的孵化率,进而影响到产粘性卵的底层鱼类和水生昆虫新个体的产生和种群数量的增加。因此,螺类对产粘性卵的鱼类的繁殖和资源增殖所带来的影响不容忽视。
Macrozoobenthos is an important part of the lake ecosystem which has many ecology functions, such as accelerating the decomposition of the organics detritus, adjusting the substantial exchange of mud-water microcosms and promoting the self-cleaning of the water bodies. Meanwhile, macrozoobenthos itself is a significant link in the food chain in the lake ecosystem. The density of Chironomid larvae in the eutrophic lake is high. They can consume a large amout of organics detritus before the adult emergence and fly away to land. As the cleaner of nitrogen and phosphorus contained in sediments, macrozoobenthos broke a new path to clean nurition accumulated at the bottom of the lake. On the other hand, macrozoobenthos can be ingested by fish through food chain and then fished out of the water bodies, which makes another way to clean nitrogen and phosphorus in lakes.
     Since 1980s, as the development of industry and urbanization and the booming popultion of human being as well as the inappropriate fishing, the eutrophic degree of lakes has become higher and higher. Consequently, the envrionment changed dramatically. What is the effect on macrozoobenthos brought by the changed envrionment and what will macrozoobenthos do as a response? Research on these problems is lacking. In order to find the answers to these questions, we have studied the community structure, temporal and spatial distribution of macrozoobenthos in Nanhu Lake, a shallow eutrophic lake. We have also studied the relation between the release, as well as reproducing of nitrogen and phosphorus and fish. The results of our study are as follow:
     1. We have collected 34 kinds of macrobenthos from the Nanhu Lake in total, which includes 7 kinds of Oligochaeta,12 kinds of Mollusca,12 kinds of aquatic insects and 3 kinds of other animals. Only Oligochaeta and aquatic insects larval have been found in the epilimnion while no living mollusk has been found. Oligochaeta was mainly composed by tolerant species, with an annually average density of 3802 ind/m2 and the maximum reached 16576 ind/m2. The preponderant Chironomid larva of aquatic insects was Tanypus punctipennis with an annually average density of 730 ind/m2. Next to T. punctipennis was Propsilocerus akamusi, with an annually average density of 50 ind/m2. From the aspect of seasonal distribution, the largest density of Limnodrilus hoffmeisteri was in May while the least in August and the largest density of both T. punctipennis and P. akamusi were in November.
     2. The largest depth of macrozoobenthos was 25 cm and the depth range of major distribution was 0~15cm. In 30cm sediment core, the content of Oligochaeta within the depth of 0-20cm took up 99.28% of the total and the percentage of Chironomid larvae was 99.31%. in 20cm sediment core, the amount of macrozoobenthos was above 99% of the total. The horizontal motion distance in 24h of B. purificata and B. aeruginosa are different from each other. The maximum distance of the former is 7 m and the average distance is 3.4 m, while the figures of the latter are 3.6 m and 2.4 m.
     3. The biodiversity of macrozoobenthos in the Nanhu Lake is comparatively low. The dominant species are Oligochaeta and Chironomid larvae and the biomass of the two are 176759.35kg and 46810.30kg, respectively. Next to Oligochaeta and Chironomid larvae are freshwater snails, the biomass of which is 899.34 kg. The total nitrogen and total phosphorus transferred or removed by Oligochaeta as well as Chironomid larvae and freshwater snails are 3463.61kg and 350.92 kg respectively. As a result, macrozoobenthos is an important approach to remove nitrogen and phosphorus in the Nanhu Lake. However, the total nitrogen of macrozoobenthos takes up only 2.49% of the whole water body, so the nitrogen and phosphorous removed by macrozoobenthos is very limit before sewage interception is completely realized in the Nanhu Lake.
     4. The average absolute fecundity, the maximum and the minimum number of embryo and the relative fecundity of B. aeruginosa are 63.97 eggs,169 eggs,4 eggs and 26.85 eggs/g. While the figures of B. purificata are 38.57 eggs,115 eggs,3 eggs and 23.28 eggs/g. B. aeruginosa begins to spawn from March while B. purificata begins from April. Radix auricularia begins to spawn from the beginning of March (water temperature 8~12℃), and the peak appears in March or April. After May, both the fecundity and the frequency of spawning decline. The most suitable water temperature for spawning is 16~24℃. R. auricularia can spawn several times at the peak of fecundity and the interval between two spawning is 1~10 days, but normally 1-3 days. Mature individuals may spawn 4-5 oocysts during the whole life and the amount of eggs of each oocyst vary from dozens to hundreds. The fertilization rate of R. auricularia normally is 95% to 100%. The average hatching rate is 95.28%, while the maximum is 100% and the minimum is 85.7%. Incubation time is highly related to water temperature. The higher the water temperature is, the shorter the incubation time will be.
     5. The centralized adult emergence of Chironomid larvae appears twice a year and normally appears in April to May and November to December. There are some differences between both the individual fecundity and the structure of oocyst. The average individual absolute fecundity of T. punctipennis is 665.7 while the figure of P. akamusil is more than 1000.
     6. In the Nanhu Lake, within the depth range between 0cm and 10cm, the density of Oligochaeta and Chironomid larvae is highly related to the amount of aquatic plant residues. As the amount of aquatic plant residues declines, the density of Oligochaeta and Chironomid larvae declines, too. The relation between total nitrogen and sediment depth is not obvious. In terms of vertical distribution, there is a highly negative relation between total phosphorous of aquatic plant residues and sediment depth. That is to say, the earlier the sedimentary age is, the lower the total phosphorous will be. This relationship can illustrate the change of nutritional salts in the Nanhu Lake very well. Aquatic plant residues can serve as an evidence for sedimentology of lake.
     7. Fish can cause a top-down effect on food organisms (including benthic animal). Cyprinus carpio haematopterus and Carassius auratus auratus are compelled to change their reproductive behavior, changing their spawning place from the grass to the rocks along the shore of the lake. The rocks along the shore are not only the habitat and spawn place of snails, but also the spawn place of Chironomid and C. carpio haematopterus and C. auratus auratus. Meanwhile, they are also the hatching place of Chironomid larvae, fry of C. carpio haematopterus and C. auratus auratus. So there is overlap in terms of geographical distribution. Complicated assemblage is formed on the same rocks. Bellamy a occupies the top of the food chain, so it can affect the hatching rate of fishes's adhesive eggs and Chironomid larvae through predation, so as to affect the increase of both demersal fishes's and aquatic insects'population. Therefore, the effect on the breeding and resource enhancement of demersal fishes brought by freshwater snail cannot be ignored.
引文
1.边晓明,陈霞.武昌南湖的环境功能区及其发展趋势.环境与开发,1994,9:262-267
    2.蔡德陵,洪旭光,毛兴华等.崂山湾潮间带食物网结构的碳稳定同位素初步研究.海洋学报,2001,23:41-47
    3.蔡述明,易朝路,张晓阳.洪湖水体生物生产力综合开发及湖泊生态环境优化研究.见:中国科学院水生生物研究所洪湖课题研究组编.北京:海洋出版社,1991
    4.曹正光,蒋忻坡.几种环境因子对梨形环棱螺的影响.上海水产大学学报,1998,7:200-205
    5.陈洪达,何楚华.武昌东湖水生维管束植物的物物量及其在渔业上的合理利用问题.水生生物学集刊,1975,5:410-419
    6.陈洪达.武汉东湖水生维管植物群落的结构和动态.海洋与湖沼,1980,11:275-284
    7.陈洪达.养鱼对武汉东湖生态系的影响.水生生物学报,1989,13:359-368
    8.陈天乙,刘孜.摇蚊幼虫对底泥中中氮、磷的释放作用的研究.昆虫学报,1995,38:448-451
    9.陈少莲,刘肖芳,华俐.鲢鳙在东湖生态系统的氮、磷循环中的作用.水生生物学报,1991,15:8-26
    10.陈其羽,梁彦龄,宋贵保.武昌东湖软体动物的生态分布及种群密度.水生生物集刊,1975,5:371-379
    11.陈其羽.湖北省花马湖软体动物的调查报告.海洋与湖沼,1979,10:46-66
    12.陈其羽,梁彦龄,吴天惠.武汉东湖底栖动物群落结构和动态的研究.水生生物学集刊,1980,7:41-56
    13.陈康贵,谢嗣光.折叠萝卜螺胚胎发育的初步研究.西南师范大学学报(自然科学版),2003,28:130-133
    14.陈伟民,黄祥飞,周万平等.湖泊生态系统观测方法.北京:中国环境科学出版社,2005
    15.戴全裕,高翔,卢红.水生植物对重金属废水的吸收积累能力.环境科学学报,1983,4:213-221
    16.崔福义,林涛.水体治理中鲢鳙生物操纵作用的实验研究.南京理工大学学报:自然科学版,2004,28:668-672
    17.戴友芝,唐受印,张建波.洞庭湖底栖动物种类分布及水质生物学评价.生态学报,2000,3:277-282 132.
    18.邓道贵,李洪远,胡万明等.巢湖富营养化对河蚬和环棱螺分布及种群密度影响.应用生态学报,2005,16:1502-1506
    19.董双林.鲢鱼的放养对水质影响的研究进展.生态学杂志,1994,13:66-68
    20.范成新.梅梁湖和五里湖水-沉积物界面物质交换.湖泊科学,1998,10:53-58
    21.范成新,杨龙元,张路.太湖底泥及其间隙水中氮磷垂直分布及相互关系分析.湖泊科学,2000,12:359-366
    22.付必清.生态学实验原理与方法.北京:科学出版社,2006
    23.谷孝鸿,刘桂英.滤食性鲢鳙鱼对池塘浮游生物的影响.农村生态环境,1996,12:6-10
    24.谷孝鸿,张圣照,白秀玲等.东太湖水生植物群落结构的演变及其沼泽化.生态学报,2005,25:1541-1548
    25.龚志军,谢平,阎云君.底栖动物次级生产力研究的理论与方法.湖泊科学,2001,13:79-88
    26.龚志军,谢平,唐汇涓等.水体富营养化对大型底栖动物群落结构及多样性的影响.水生生物学报,2001,25:210-216
    27.龚志军,李艳玲,谢平.武汉东湖湖球蚬种群动态及生产力的研究.水生生物学报,2004,28:552-556
    28.龚志军,李艳玲,谢平,武汉东湖铜锈环棱螺的种群动态及次级生产力,湖泊科学,2009,21:401-407
    29.高阳,蔡立哲,马丽等.深圳湾福田红树林潮滩大型底栖动物的垂直分布.台湾海峡,2004,23:76-81
    30.高俊峰,张琛,姜加虎.洞庭湖的冲淤变化和空间分布.地理学报,2001,56:269-277
    31.高贵琴,聂秀云,王运斗等.武昌南湖主施氯化铵养鱼综合技术的研究.水利渔业,1995,2:.32-34
    32.龚世园,库夭梅,梁开学.武昌南湖花鱼骨个体生殖力的研究.华中农业大学学报,1990,9:204-208
    33.郭先武.武汉南湖三种摇蚊幼虫生物学特性及其种群变动的研究.湖泊科学,1995,7:249-254
    34.郭先武.武汉南湖摇蚊幼虫中国新记录。华中农业大学学报,1994,13:615-620
    35.国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002:248-370
    36.胡春英.不同湖泊演替过程中浮游动物数量及多样性的研究.水生生物学报,1999,23:217-226
    37.胡俊,刘永定,刘剑彤.滇池沉积物间隙水中氮、磷形态及相关性的研究.环境科学学报,2005,25:1391-1396
    38.胡知渊,鲍毅新,葛宝明等.围垦滩涂潮沟秋季大型底栖动物群落和生态位分析.动物学报,200.6,52:800-809
    39.黄永杰,刘登义,王友保等.八种水生植物对重金属富集能力的比较研究.生态学杂志,2006,25:541-545
    40.黄玉瑶.内陆水域污染生物学-原理与应用.北京:中国环境科学出版社,2001
    41.黄先玉,刘沛然.水体污染生物检测的研究进展,环境科学进展,1999,7:14-18
    42.华中农业大学水产系主编.实作水库渔业技术.北京:金盾出版社,1993,358-360
    43.郝卫民,王士达,王德铭.洪湖底栖动物群落结构及其对水质的初步评价.水生生物学报,1995,19:124-134
    44.金立新.美国和加拿大五大湖的水污染防治与管理.水资源保护,1998,4:7-9
    45.金相灿,屠清英.湖泊富营养化调查规范(第二版),北京:中国环境科学出版社,1990
    46.金相灿,姜霞,徐玉慧等.太湖东北部沉积物可溶性氮、磷的季节性变化.中国环境科学,2006,26:409-413
    47.金相灿,王圣瑞,庞燕.太湖沉积物磷形态及pH值对磷释放的影响.中国环境科学,2004,24:707-711
    48.金送笛,李永函,倪彩虹等.菹草(Potamogeton crispus)对水中氮、磷的吸收及若干影响因素.生态学报,1994,14:168-173
    49.柯欣,杨莲芳.安徽丰溪河水生昆虫多样性及其水质生物评价.南京农业大学学报,1996,19:37-43
    50.刘红,马徐发,熊邦喜.武汉南湖的浮游植物.淡水渔业,2006,36:32-35
    51.刘红,马徐发,熊邦喜.武汉南湖的浮游甲壳动物.淡水渔业,2005,35:22-24
    52.刘建康.高级水生生物学.北京:科学出版社,2000
    53.刘建康,谢平.用鲢鳙直接控制微囊藻水华的围隔试验和湖泊实践.生态科学,2003,22:193-196
    54.李长春.水库养鱼与捕捞(第二版)[M].科学出版社,1984:230-235.
    55.李宽意,刘正文,胡耀辉等.椭圆萝卜螺Radix suinhoei对三种沉水植物的牧食选择.生态学报,2006,26:3221-3224
    56.李琪,李德尚,熊邦喜等.放养鲢鱼(Hypophthalmichys molitrix C et V)对水库围隔浮游生物群落的影响.生态学报,1993,13:30-37
    57.李伟.洪湖水生植被及其演替研究. [博士学位论文].武汉:中国科学院水生生物研究所,1995
    58.李文朝,杨清心.乌伦古湖水生植被的研究.海洋与湖沼,1993,24:100-107
    59.李文朝.东太湖沉积物中氮的积累与水生植物沉积.中国环境科学,1997,17:418-421
    60.李文朝.东太湖水生植物的促淤效应与磷的沉积.环境科学,1997,18:9-12
    61.李文朝,陈开宁,吴庆龙等.东太湖水生植物生物质腐烂分解实验.湖泊科学.2001,13:331-336
    62.李世红,李小梅,毛雪瑛等.INAA研究南极菲尔德斯半岛西湖沉积物和植物残体的生物地球化学特征.核技术,2005,28:263-268
    63.李辛夫,陈宜瑜.内陆水体生物学发展的回顾与展望.中国科学院院刊,1996,11:100-106
    64.梁彦龄.中国水栖寡毛类的研究Ⅲ.花马湖的水栖寡毛类.海洋与湖沼,1979,10:273-281
    65.梁彦龄,王洪铸.第十章底栖动物.见:刘建康主编,高级水生生物学.北京:科学出版社,1999,241-259
    66.林婉莲,刘鑫洲.武汉东湖颗粒有机碎屑碳、氮、磷的沉降速率.海洋与湖沼,1989,20:163-170
    67.林昌善,吴聿明.环境生物学.北京:中国环境科学出版社,1986
    68.林涛,崔福义,陈卫等.鱼类控制水蚤类浮游动物孳生的下行效应试验.南京理工大学学报:自然科学版,2008,32:646-650
    69.刘国才.池塘颗粒有机碎屑与浮游动植物量及透明度的相关性研究.内蒙古农业科技,1993,6:22-24
    70.刘恩生.鱼类与水环境间相互关系的研究回顾和设想.水产学报,2007,31:391-399
    71.刘建军.用底栖动物评价水磨河的污染程度—兼论Morisita指数的污染指示意义.生态学杂志,1989,8:52-54
    72.刘建军,徐艳华.水磨河底栖动物群落结构的生态位分析.水生生物学报,1997,21:101-108
    73.刘学勤.湖泊底栖动物食物组成与食物网研究.[博士学位论文].武汉:中国科学院水生生物研究所,2006
    74.陆开宏,钱云霞.细长摇蚊Tendipes attenuatus生物学及人工采卵技术的研究.浙江水产学院学报,1995,14:247-254
    75.吕晓霞,宋金明.海洋沉积物中氮的形态及其生态学意义.海洋科学集刊,2003,45:101-111
    76.马凯,蔡庆华,谢志才等.沉水植物分布格局对湖泊水环境N、P因子影响.水生生物报,2003,27:232-237
    77.厉恩华,刘贵华,李伟等.洪湖三种水生植物的分解速率及氮、磷动态.中国环境科学,2006,26:667-671
    78.聂秀云.南湖高产养殖技术总结.水利渔业,1997,17:45
    79.蓝宗辉.韩江下游底栖动物的分布及其对水质的评价.生态学杂志,1997,16:24-28
    80.潘洁慧,陆开宏.铜锈环棱螺对微囊藻的摄食及其毒素积累研究.宁波大学学报(理工版)2008,21:479-484
    81.齐钟彦.中国经济软体动物.北京:中国农业出版社,1998
    82.杞桑,黄伟建.珠江三角洲底栖动物群落与水质关系.环境科学学报,1993,13:80-86
    83.邱炳文,周勇,周敏等.武汉市南湖富营养化现状、趋势及其综合整治对策.华中农业大学学报,2000,19:350-352
    84.邱东茹,吴振斌.生物操纵、营养级联反应和下行影响.生态学杂志,1998,17:27-32
    85.秦伯强,胡维平,高光等.太湖沉积物悬浮的动力机制及内源释放的概念性模型.科学通报,2003,48:1822-1831
    86.秦伯强,范成新.大型浅水湖泊内源营养盐释放的概念性模式探讨.中国环境科学,2002,22:150-153
    87.秦伯强,朱广伟.长江中下游地区湖泊水和沉积物中营养盐的赋存、循环及其交换特征.中国科学D辑,地球科学,2005,35:1-10
    88.任淑智.京津及邻近地区底栖动物群落特性与水质等级.生态学报,1991,11:262-268
    89.任南,马国安,马剑敏等.环境因子对东湖几种沉水植物生理的影响研究.武汉大学学报(自然科学版),1996,42:213-218
    90.施炜纲,王博,王利民.长下游水生动物群落生物多样性变动趋势初探.水生生物学报,2002,26:654-661
    91.史为良,金文洪,王东强等.放养鲢鳙对水体富营养化的影响.大连水产学院学报,1989,3、4:11-20
    92.宋金明.中国近海生物地球化学.济南:山东科技出版社.2004:1-606
    93.孙光明,魏青山.武昌南湖圆背角无齿蚌食性与生长的研究.华中农业大学学报,1999,18:62-67
    94.孙云明,宋金明.中国近海沉积物在生源要素循环中的功能.海洋环境科学,2002,21:26-33
    95.孙惠民,何江,高兴东等.乌梁素海沉积物中全磷的分布特征.沉积学报,2006,24:579-584
    96.田津方,魏青山.武汉南湖褶纹冠蚌性腺发育与繁殖周期.华中农业大学学报,1993,12:190-196
    97.童晓立,胡慧建.利用水生昆虫评价南昆山溪流的水质.华南农业大学学报,1995,16:6-10
    98.万祎,胡建英,安立会,安伟等.利用稳定氮和碳同位素分析渤海湾食物网主要生物种的营养层次.科学通报,2005,50:708-712
    99.魏阳春,濮培民.太湖铜锈环棱螺对氮磷的降解作用.长江流域资源与环境,1999,8:89-93
    100.王国安.稳定碳同位素在第四纪古环境研究中的应用.第四纪研究,2003,23:471-484
    101.王华,逢勇,刘申宝等.沉水植物生长影响因子研究进展.生态学报,2008,28:3958-3968
    102.王银东,熊邦喜,杨学芬等.武汉市南湖的环境现状及生态恢复建议.水利渔业,2005,25:65-66
    103.王银东,熊邦喜,杨学芬.武汉市南湖大型底栖动物的群落结构.湖泊科学,2005,17:327-333
    104.王银东,熊邦喜,杨学芬.用大型底栖动物对武汉南湖水质的生物学评价.环境污染与防治,2006,28:312-314
    105.王银东.武汉市南湖大型底栖动物生态学和优势种群的遗传多样性.[博士学位论文].武汉:华中农业大学图书馆,2005
    106.王宇庭,孙建,阎红山.鱼类对生态系统下行影响敏感指标初探.莱阳农学院学报,2002,19:139-144
    107.王圣瑞,金相灿,赵海超等.长江中下游浅水湖泊沉积物对磷的吸附特征.环境科学,2005,26:38-43
    108.王士达,朱新源.官厅水库主要污染物质对底栖动物的影响.环境污染与生态学文集[C].南京:江苏科学技术出版社,1981,58-65
    109.王士达,王俊才.辽宁省摇蚊幼虫的研究.水生生物学报,1991,15:35-44王士达.武汉东湖底栖动物的多样性及其与富营养化的关系.水生生物学报,1996,20:75-89
    110.王苏民,张振克.中国湖泊沉积与环境演变研究的新进展.科学通报,1999,44:579-587
    111.王友亮,姚宏绿,吴乃薇等.主养青鱼高产池塘的浮游植物和有机碎屑.水产学报,1994,18:297-304
    112.王勇,焦念志.营养盐对浮游植物生长的上行效应的研究方法.海洋科学,2000,24:16-18
    113.王俊才.用底栖动物生物指数评价浑、太流域.环境科技,1989,9:83-86
    114.王俊才,王新华.辽宁省摇蚊科二新种.动物学研究,1996,17:121-124
    115.王俊才,方志刚,鞠复华等.摇蚊幼虫分布及其与水质的关系.生态学杂志,2000,19:27-37
    116.吴爱平,吴世凯,倪乐意.长江中游浅水湖泊水生植物氮磷含量与水柱营养的关系.水生生物学报,2005,29:406-412
    117.吴丰昌,万国江,黄荣贵.湖泊沉积物-水界面营养元素的生物地球化学作用和环境效应.Ⅰ界面氮循环及其环境效应.矿物学报,1996,16:403-409
    118.吴敬禄,王苏民,沈吉.湖泊沉积物有机质δ13C所揭示的环境气候信息.湖泊科学,1996,8:113-118
    119.邬红娟,崔博,吕晋等.武汉湖泊底栖动物群落结构及水质生态评价.华中科技大学学报(自然科学版),2005,33:96-98
    120.熊金林,梅兴国,胡传林.不同污染程度湖泊底栖动物群落结构及多样性比较.湖泊科学,2003,15:160-168
    121.谢诈浑,周一兵.池塘中摇蚊科幼虫现存量和组产力的研究.大连水产学院学报,1990,5:7-17
    122.徐新伟,于丹,刘春花等.椭圆萝卜螺对两种沉水植物生长的影响.水生生物学报,2002,26;719-721
    123.杨汉东,农生文,蔡述明等.武汉东湖沉积物的环境地球化学.水生生物学报,1994,18:208-214
    124.杨洪,易朝路,谢平等.武汉东湖沉积物碳氮磷垂向分布研究.地球化学,2004,33:507-514
    125.杨莲芳,李佑文.九华河水生昆虫群落结构和水质生物评价.生态学报,1992,12:8-15
    126.杨潼,胡德良.利用底栖大型无脊椎动物对湘江干流污染的生物学评价.生态学报,1986,6:262-274
    127.杨宇峰,黄祥飞.鲢鳙对浮游动物群落结构的影响.湖泊科学,1992,4:78-86
    128.杨明生,熊邦喜,杨学芬.武汉市南湖大型底栖动物的空间分布和氮磷评价.湖泊科学,2007,6:658-663
    129.杨明生,熊邦喜,杨学芬.武汉南湖沉积物中水生植物残体及其氮磷分布.生态学报,2008,4:1508-1513
    130.易朝路,吴显新,刘会平等.长江中游湖泊沉积微结构特征与沉积环境.沉积学报,2002,20:293-302
    131.俞大维,虞左明.杭州西湖底栖动物群落的研究.水生生物学报,1991,15:63-72
    132.虞左明,王锐,沈小东等.大红德永摇蚊种群生态在西湖氮磷循环中作用的调查研究.环境污染与防治,1997,19:28-31
    133.于丹.小兴凯湖的水生植被及其生态作用.水生生物学报,1992,16:24-32
    134.于丹.溪流生态系统生态学研究.水生生物学报,1996,20:104-112
    135.于力,暴学祥.长白山水生昆虫的研究.水生生物学报,1997,21:32-39
    136.阮景荣,戎克文.微型生态系统中鲢,鳙下行影响的实验研究.Ⅰ.浮游生物群落和初级生产力.湖泊科学,1995,7:226-234
    137.颜京松.以底栖动物评价甘肃境内黄河干支流枯水期水质.环境科学,1980,1:14-20
    138.颜京松,叶沧江.白洋淀的摇蚊幼虫及二新种记述.昆虫学报,1977,20:183-197
    139.颜素珠,彭秀娟.8种水生植物对污水中重金属2铜的抗性及净化能力研究.中国环境科学,1990,10:166-170
    140.严平川,黄荣华,彭小思等.湖北省湖泊环境现状及污染控制措施.中国水利,2004:33-34
    141.阎云君.浅水湖泊大型底栖动物生态能量学及生产量的研究.博士学位论文].武汉:中国科学院水生生物研究所,1998
    142.阎云君,梁彦龄.水生大型无脊椎动物的干湿重比的研究.华中理工大学学报,1999,27:61-63
    143.阎云君,梁彦龄,王洪铸.保安湖扁担塘螺类生产力的研究.1.铜锈环棱螺的周年生产量.水生生物学报,1999,23:346-351
    144.阎云君,梁彦龄,王洪铸.扁担塘螺类生产力的研究.11.纹沼螺的周年生产量.水生生物学报,2001,25:36-41
    145.闫云君,李晓宇,梁彦龄.草型湖泊和藻型湖泊中大型底栖动物群落结构的比较.湖泊科学,2005,17:176-182
    146.由文辉.螺类与着生藻类的相互作用及其对沉水植物的影响.生态学杂志,1999,18:54-58
    147.由文辉.淀山湖周丛动物群落的初步研究.水生生物学报,1997,21:114-122
    148.张国华,曹文宣,陈宜瑜.湖泊放养渔业对我国湖泊生态系统的影响.水生生物学报,1997,21:271-279
    149.张堂林.扁担塘鱼类生活史策略、营养特征及群落结构研究.[博士学位论文].武汉:中国科学院水生生物研究所,2004
    150.张圣照,王国祥,濮培民等.东太湖水生植被及其沼泽化趋势.植物资源与环境,1999,8:1-6
    151.张水元,刘瑞秋,黎道丰.保安湖沉积物和间隙水中氮和磷的浓度及其分布.水生生物学报,2000,24:434-438
    152.张玉兰.孢粉分析在环境考古中的应用.上海地质,2005,1:15-17
    153.张毓琪,陈叙龙.环境生物毒理学.天津:天津大学出版社,1993
    154.赵玉宝.鲤鱼种和鲢鳙对池塘浮游生物的影响.生态学报,1993,13:348-355
    155.赵艳,李佳佳,Carl Sayer.浅水湖泊孢粉和植物残体对水生植被的表现率.长江流域资源与环境,2005,14:456-459
    156.钟远,金相灿,孙凌.磷及环境因子对太湖梅梁湾藻类生长及其群落影响.城市环境与城市生态,2005,18:32-36
    157.朱广伟,秦伯强,高光.风浪扰动引起大型浅水湖泊内源磷暴发性释放的直接证据.科学通报,2005,50:66-71
    158.中国科学院南京土壤研究所.土壤理化分析.上海:上海科学技术出版社,1978,96-110
    159.中国科学院动物研究所动物生态室环保组.国外淡水环境质量的生物学评价与监测研究概况.环境污染与生态学文集[C].南京:江苏科学技术出版社,1981,251-257
    154. Allen K R. A study of a trout population. NZ Mar Depart Fish Bull,1951,10: 1-2
    155. Armitage P D, Moss D, Wright J F, Furse M T. The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Res,1983,17:333-347
    156. Arndt H, Berninger U G. Protists in aquatic food webs-complex interactions. In:Protistological Actualities. Proc.2nd Eur. congress of protistology and eight European conference on ciliate biology (Brugerolle G, Mignot JP Eds.). Clermont-Ferrand,1995, 224-232
    157. Aston R J. The.effect of temperature on the life cycle, growth and fecundity of. Brunchiura sowerbyi. (Oligochaeta, Tubificidae). J Zool,1968,154:29-40
    158. BA Menge, BA Daley, PA Wheeler et al. Benthic-pelagic links and rocky intertidal communities:Bottom-up effects on top-down control? Proc. Natl. Acad. Sci. USA,1991,94:14530-14535
    159. Boers P, Ballegooijen L V, Uunk J. Changes in phospborus cycling in a shallow lake due to food web manipulation. Freshwat Biol,1991,25:9-20
    160. Brinkhurst R O, Cook D G. Aquatic earthworms (Annelida:Oligochaeta). In: Hart C W & Saneal L H F eds., Pollution ecology of freshwater invertebrates. New York: Academic Press,1974,143-156
    161. Burkhard W. Scharf. Eutrophication history of Lake Arendsee (Germany). Palaeoecology,1998,140:85-96
    162. Brinkhurst R 0, Cook D G. Aquatic earthworms (Annelida:Oligochaeta). In: Hart C W & Saneal L H F eds., Pollution ecology of freshwater invertebrates. New York: Academic Press,1974,143-156.
    163. Carpenter, S.R., Caraco et al. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications.1998,8:559-568
    164. Carpenter, S.R., Christensen et al. Biological control of eutrophication. Environmental Science and Technology 1995,29:784-786
    165. Carpenter, S.R., Ludwig, D., Brock, W.A. Management of eutrophication for lakes subject to potentially irreversible change. Ecological Applications 9(in press).,1999
    166. Carvalho, L., Beklioglu, M., Moss, B. Changes in a deep lake following sewage diversion-a challenge to the orthodoxy of external phosphorus control as a restoration strategy? Freshwater Biology 1995,34:399-410
    167. Chitoshi M, Yonosuke M, Eisuke K. Spatial shifts in food sources for macrozoobenthos in an estuarine ecosystem:Carbon and nitrogen stable isotope analyses. Estuarine, Coastal and Shelf Science 2005,64:316-322
    168. Correll, D.L. The role of phosphorus in the eutrophication of receiving waters: a review. Journal of Environmental Quality,1998,27:261-266
    169. Dean A. Martens. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration.Soil Biology & Biochemistry,2000,32:361-369
    170. Diggins, T P, Stewart et al. Deformities of aquatic larval midges (Chironomidae: Dipera) in the Sediments of the Buffalo River, New York. Journal of Great Lakes Research,1993,19:648-659
    171. Fukuhara, H; Sakamoto, M. Enhancement of Inorganic Nitrogen and Phosphate Release from Lake Sediment by Tubificid Worms and Chironomid Larvae. Oikos OIKSAA 1987,48(3):312-320
    172. Gabriel M. Filippelli, Catherine Souch, Brian Menounos. et al. Alpine lake sediment records of the impact of glaciation and climate change on the biogeochemical cycling of soil nutrients. Quaternary Research,2006,66:158-166
    173. Gasellato S, Caneva F. Composition and distribution of bottom oligochaete fauna of a north Italian eutrophic lake (Lake Ledro). Hydrobiologia 1994,278; 87-92
    174. George W. Gallepp. Chironomid Influence on Phosphorus Release in Sediment-Water Microcosms. Ecology 1979,60:547-556
    175. Geta R, Postolache C, Vadineanu A. Ecological significance of nitrogen cycling by tubificid communities in shallow eutrophic lakes of the Danube Delta. Hydrobiologia, 2004,524:193-202
    176. Greg Cronin, William M. Lewis Jr., Michael A. S. Influence of freshwater macrophytes on the littoral ecosystem structure and function of a young Colorado reservoir. Aquatic Botany,2006,85:37-43
    177. Guo X W. Studies on Chironomid communities of Nanhu Lake, Wuhan, China.华中农业大学学报,1995,14:578-585
    178. H Ferte, J Depaquit, S Carre et al. Presence of Trichobilharzia szidati in Lymnaea stagnalis and T. franki in Radix auricularia in northeastern France:molecular evidence. Parasitology Research,2005,95:150-154
    179. Henry R L. The impact of zooplankton size structure on phosphorus cycling in field enclosures. Hydrobiologia,1985,120:3-9
    180. Hideyuki D, Masatoshi M, Terumasa T et al. Rates of ammonia release from sediments by chironomid larvae. Freshwater Biology,1986,16:61-66
    181. Higashi Y, H. Seki. Application of an in situ gradostat for a natural phytoplankton community in a eutrophic environment. Environmental Pollution,1999, 105:101-109
    182. I F Rodil, M Lastra, J L. Macroinfauna community structure and biochemical composition of sedimentary organic matter along a gradient of wave exposure in sandy beaches (NW Spain). Hydrobiologia,2007,579:301-316
    183. Jin X, Wang S, Pang Y et al. Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake. China. Environmental Pollution,2006,139:288-295
    184. Jonas M. S. Influence of Chironomus plumosus larvae on ammonium flux and denitrification (measured by the acetylene blockage-and the isotope pairing-technique) in eutrophic lake sediment. Hydrobiologia,1997,346:157-168
    185. Jose'A A, Josef H. G. Role of the anecic earthworm Lumbricus terrestris L. in the distribution of plant residue nitrogen in a corn(Zea mays)-soil system. Applied Soil Ecology,2005,30:203-214
    186. Kairesalo. Top-down or Bottom-up Effects by Fish:Issues of Concern in Biomanipulation of Lakes. Restoration Ecology,1998,6:20-28
    187. Kasper H F. Denitrification, nitrate reduction to ammonium and inorganic nitrogen pool in intertidal sediments. Marine biology,1983,46:157-164
    188. Kim L. H., Choi E, Stenstrom M. K. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere,2003,50: 53-61
    189. Kristensen P M, S M, Jeppesen E. Resuspension in a shallow lake. Hydrobiologia,1992,228:101-109
    190. Kuwae T, Hosokawa Y, Eguchi N. Dissolved inorganic nitrogen cycling in Banzu intertidal sand-flat, Japan. Mangroves and Salt Marshes,1998,2:167-175
    191. Lars Hein. Cost-efficient eutrophication control in a shallow lake ecosystem subject to two steady states. Ecological Economics,2006,59:429-439
    192. Leonard A. S, D L Stoneburner. The Response of Macroinvertebrates to Aquatic Macrophyte Decomposition. Oikos,1980,35:397-403
    193. Martin S, Jens P J, Erik J. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 2003,506-509:135-145
    194. McQueen, D J et al. Bottom-up and top down impacts on freshwater pelagic community structure Ecological Monographs,1989,59:289-309
    195. Medina H L D, Marin J C, Gutierrez E et al. Nitrogen mobility at the sediment-water interface of Lake Maracaibo, Venezuela. Water, Air, and Soil Pollution,2003,145:341-357
    196. MJ Coleman, HBN Hynes. The vertical distribution of the invertebrate fauna in the bed of a stream. Limnology and Oceanography,1970,15:31-40
    197. Nixdorf B, Deneke R. Why'very shallow' lakes are more successful opposing reduced nutrient loads. Hydrobiologia,1997,342/343:269-284
    198. Reddy K R, Fisher M M, Ivanoff D. Resuspension and diffusive flux of nitrogen and phosphorus in a hypereutrophic lake. Journal of Environmental Quality,1996,25:363-371
    199. Russ W G, Don C. R, Robert A. G et al. Influence of tillage and plant residue management on respiration of a Florida Everglades Histosol. Soil & Tillage Research, 2006,30:1-11
    200. Ryszard K. The impact of predation by perch on the size-structure of Chironomus larvae-the role of vertical distribution of the prey in the bottom sediments, and habitat complexity. Hydrobiologia 1997,341/343:207-213
    201.Sari M, Petri E. Lakes in the Finnish Eurowaternet:status and trends. The Science of the Total Environment,2003,310:37-45
    202. Smith D W. Biological control of excessive phytoplankton growth and the enhancement of aquacultural production. Can J Fish Aqua Sci,1985,42:1940—1945
    203. S(?)ndergaard M, Jensen J P, Jeppesen E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia,2003,506-509:135-145
    204. S(?)ndergaard M, Jensen J P, Jeppesen E. Retention and internal loading of phosphorus in shallow, eutrophic lakes. Scientific World 2001,1:427-442
    205. Starling M. Control of eutrophication by silver carp(Hyp。 phthalmichthys molitrix)in the tropical Paranoa Reservoir(Brasilia, Brazil):a mesocosm experiment. Hydrobiologia,1993,257:143-152
    206. Thomas P D, Randal J S. Three Decades of Change in the Benthic Macroinvertebrate Community and Water Quality in the Buffalo River Area of Concern, 1964-1993.J. Great Lakes Res.2003,29:652-663
    207. T.Wiederholm. Lncidence of deformed Chironomid larve (Dipteria: Chironomdae) in Sewedish lakes. Hydrobiologia.1984,109:243-249
    208. Van R W, Kloosterhuis H T. Phosphorus sorption in superficial intertidal sediments. Marine Chemistry,1994,48:1-16
    209. Vanessa L. L, Barb C, Patricia. Chow-Fraser Predictions on the effect of common carp (Cyprinus carpio) exclusion on water quality, zooplankton, and submergent macrophytes in a Great Lakes wetland. Can. J. Fish. Aquat. Sci.1998,55:1189-1197
    210. V.H. Smith, G.D. Tilman, J.C.Nekola. Eutrophication:impacts of excess nutrient inputs on freshwater,marine, and terrestrial ecosystems. Environmental Pollution,1999,100:179-196
    211. Wenchuan Qu, R.J. Morrison, R.J. West. et al. Organic matter and benthic metabolism in Lake Illawarra, Australia. Continental Shelf Research,2006,26: 1756-1774
    212. Wilhelm G, Doris S. Influence of aquatic macrophytes on phosphorus cycling in lakes. Hydrobiologia,1988,170:245-266
    213. Yan Y, Liang Y, Wang H. Annual production of five species of Chironomidae (Diptera) in Houhu Lake, a typical algal lake (Wuhan, China). China J Oceanol Limno, 1999,117:112-118
    214. Zheng G, Wei Q. Studies on the reproductive characteristics of Female Anodonta Woodiana Pacifica(Heude) in South Lake, Wuhan.华中农业大学学报,2000, 19:490-493

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700